Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2013, Vol. 4 Issue (9) : 687-694    https://doi.org/10.1007/s13238-013-3068-z
RESEARCH ARTICLE
Structural biology study of human TNF receptor associated factor 4 TRAF domain
Fengfeng Niu1,3, Heng Ru1,2, Wei Ding1, Songying Ouyang1(), Zhi-Jie Liu1,2()
1. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; 2. Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(1088 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

TRAF4 is a unique member of TRAF family, which is essential for innate immune response, nervous system and other systems. In addition to being an adaptor protein, TRAF4 was identifi ed as a regulator protein in recent studies. We have determined the crystal structure of TRAF domain of TRAF4 (residues 292-466) at 2.60 ? resolution by X-ray crystallography method. The trimericly assembled TRAF4 resembles a mushroom shape, containing a super helical “stalk” which is made of three right-handed intertwined α helixes and a C-terminal “cap”, which is divided at residue L302 as a boundary. Similar to other TRAFs, both intermolecular hydrophobic interaction in super helical “stalk” and hydrogen bonds in “cap” regions contribute directly to the formation of TRAF4 trimer. However, differing from other TRAFs, there is an additional flexible loop (residues 421-426), which contains a previously identified phosphorylated site S426 exposing on the surface. This S426 was reported to be phosphorylated by IKKα which is the pre-requisite for TRAF4-NOD2 complex formation and thus to inhibit NOD2-induced NF-κB activation. Therefore, the crystal structure of TRAF4-TRAF is valuable for understanding its molecular basis for its special function and provides structural information for further studies.

Keywords TRAF4      TRAF domain      crystal structure      additional loop      phosphorylation site     
Corresponding Author(s): Ouyang Songying,Email:ouyangsy@moon.ibp.ac.cn; Liu Zhi-Jie,Email:zjliu@ibp.ac.cn   
Issue Date: 01 September 2013
 Cite this article:   
Fengfeng Niu,Heng Ru,Wei Ding, et al. Structural biology study of human TNF receptor associated factor 4 TRAF domain[J]. Prot Cell, 2013, 4(9): 687-694.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-013-3068-z
https://academic.hep.com.cn/pac/EN/Y2013/V4/I9/687
1 Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.-W., Kapral, G.J., and GrosseKunstleve, R.W. (2010). PHE NIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221 .
doi: 10.1107/S0907444909052925
2 Bouwmeester, T., Bauch, A., Ruffner, H., Angrand, P.-O., Bergamini, G., Croughton, K., Cruciat, C., Eberhard, D., Gagneur, J., and Ghidelli, S. (2004). A p hysical and functional map of the human TNF-d, P.-O., Bergamini, G., Croughton,. Nat Cell Biol 6, 97-105 .
doi: 10.1038/ncb1086
3 Bradley, J.R., and Pober, J.S. (2001). Tumor necrosis factor receptorassociated factors (TRAFs). Oncogene 20, 6482-6491 .
doi: 10.1038/sj.onc.1204788
4 Chung, J.Y., Park, Y.C., Ye, H., and Wu, H. (2002). AllTRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 115, 679-688 .
5 Dephoure, N., Zhou, C., Vill H .,and Wu, H. (2002). All TRAFs are not created equal: common and distinct molecular mechative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A 105, 10762-10767 .
doi: 10.1073/pnas.0805139105
6 Emsley, P., Lohkamp, B., Scott, W., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486-501 .
doi: 10.1107/S0907444910007493
7 Holm, L., and Rosenstr., Scott, W., and Cowtan, K. (2010). Dali server: conservation mapping in 3D. Nucleic Acids Res 38, W545-W549 .
doi: 10.1093/nar/gkq366
8 Inoue, J., Ishida, T., Tsukamoto, N., Kobayashi, N., Naito, A., Azuma, S., and Yamamoto, T. (2000). Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp Cell Res 254, 14.
doi: 10.1006/excr.1999.4733
9 Kedinger, V., and Rio, M.C. (2007). TRAF4, the unique family member. In TNF Receptor Associated Factors (TRAFs) (Springer) ,pp. 60-71 .
doi: 10.1007/978-0-387-70630-6_5
10 Krajewska, M., Krajewski, S., Zapata, J.M., Van Arsdale, T., Gascoyne, R.D., Berern, K., McFadden, D., Shabaik, A., Hugh, J., and Reynolds, A. (1998). TRA F-4 expression in epithelial progenitor cells. Analysis in normal adult, fetal, and tumor tissues. Am J Pathol 152, 1549.
11 Krissinel, E., and Henrick, K. (2007). In ference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774-797 .
doi: 10.1016/j.jmb.2007.05.022
12 Li, J.M., Fan, L.M., Christie, M.R., and Shah, A.M. (2005). Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Mol Cell Biol 25, 2320-2330 .
doi: 10.1128/MCB.25.6.2320-2330.2005
13 Marinis, J.M., Homer, C.R., McDonald, C., and Abbott, D.W. (2011). An ovel motif in the Crohn’s disease susceptibility protein, NOD2, allows TRAF4 to down-regulate innate immune responses. J Biol Chem 286, 1938-1950 .
doi: 10.1074/jbc.M110.189308
14 Marinis, J.M., Hutti, J.E., Homer, C.R., Cobb, B.A., Cantley, L.C., McDonald, C., and Abbott, D.W. (2012). IκB Kinase α Phosphorylation of TRAF4 Downregulates Innate Immune Signaling. Mol Cell Biol 32, 2479-2489 .
doi: 10.1128/MCB.00106-12
15 McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Pha ser crystallographic software. J Appl Crystallogr 40, 658-674 .
doi: 10.1107/S0021889807021206
16 McWhirter, S.M., Pullen, S.S., Holton, J.M., Crute, J.J., Kehry, M.R., and Alber, T. (1999). Cry stallographic analysis of CD40 recognition and signaling by human TRAF2. Proc Natl Acad Sci U S A 96, 8408-8413 .
doi: 10.1073/pnas.96.15.8408
17 Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240-255 .
doi: 10.1107/S0907444996012255
18 Ni, C.-Z., Welsh, K., Leo, E., Chiou, C.-k., Wu, H., Reed, J.C., and Ely, K.R. (2000). Molecular basis for CD40 signaling mediated by TRAF3. Proc Natl Acad Sci U S A 97, 10395-10399 .
doi: 10.1073/pnas.97.19.10395
19 Olsen, J.V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M.L., Jensen, L.J., Gnad, F., Cox, J., Jensen, T.S., and Nigg, E.A. (2010). Qua ntitative phosphoproteomics reveals widespread full phosphor rylation site occupancy during mitosis. Sci Signal 3, ra3.
doi: 10.1126/scisignal.2000475
20 Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data. Methods enzymol 276, 307-326 .
doi: 10.1016/S0076-6879(97)76066-X
21 Park, Y.C., Burkitt, V., Villa, A.R., Tong, L., and Wu, H. (1999). Structural basis for self-association and receptor recognition of human TRAF2. Nature 398, 533-538 .
doi: 10.1038/19110
22 Park, Y.C., Ye, H., Hsia, C., Segal, D., Rich, R.L., Liou, H.-C., Myszka, D.G., and Wu, H. (2000). A novel mechanism of TRAF signaling revealed by structural and functional analyses of the TRADD-TRAF2 interaction. Cell 101, 777-787 .
doi: 10.1016/S0092-8674(00)80889-2
23 Régnier, C.H., Tomasetto, C., Moog-Lutz, C., Chenard, M.-P., Wendling, C., Basset, P., and Rio, M.-C. (1995). Presence of a new conserved domain in CART1, a novel member of the tumor necrosis factor receptor-associated protein family, which is expressed in breast carcinoma. J Biol Chem 270, 25715-25721 .
doi: 10.1074/jbc.270.43.25715
24 Wajant, H., Henkler, F., and Scheurich, P. (2001). The TNF-receptorassociated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal 13, 389-400 .
doi: 10.1016/S0898-6568(01)00160-7
25 Wu, H. (2007). TNF receptor associated factors (TRAFs),Vol 597 (Springer).
doi: 10.1007/978-0-387-70630-6
26 Xie, P. (2013). TRA F molecules in cell signaling and in human diseases. J Mol Signal 8, 7.
doi: 10.1186/1750-2187-8-7
27 Ye, H., Arron, J.R., Lamothe, B., Cirilli, M., Kobayashi, T., Shevde, N.K., Segal, D., Dzivenu, O.K., Vologodskaia, M., and Yim, M. (2002). Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443-447 .
doi: 10.1038/nature00888
28 Ye, H., Park, Y.C., Kreishman, M., Kieff, E., and Wu, H. (1999a). The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol Cell 4, 321-330 .
doi: 10.1016/S1097-2765(00)80334-2
29 Ye, X., Mehlen, P., Rabizadeh, S., VanArsdale, T., Zhang, H., Shin, H., Wang, J.J., Leo, E., Zapata, J., and Hauser, C.A. (1999b). TRAF family proteins interact with the common neurotrophin receptor and modulate apoptosis induction. J Biol Chem 274, 30202-30208 .
doi: 10.1074/jbc.274.42.30202
30 Yin, Q., Lin, S.-C., Lamothe, B., Lu, M., Lo, Y.-C., Hura, G., Zheng, L., Rich, R.L., Campos, A.D., and Myszka, D.G. (2009). E2 interaction and dimerization in the crystal structure of TRAF6. Nat Struct Mol Biol 16, 658-666 .
doi: 10.1038/nsmb.1605
31 Zepp, J.A., Liu, C., Qian, W., Wu, L., Gulen, M.F., Kang, Z., and Li, X. (2012). Cut ting edge: TNF receptor-associated factor 4 restricts IL-17-mediated pathology and signaling processes. J Immunol 189, 33-37 .
doi: 10.4049/jimmunol.1200470
32 Zhang, P., Reichardt, A., Liang, H., Aliyari, R., Cheng, D., Wang, Y., Xu, F., Cheng, G., and Liu, Y. (2012). Single amino acid substitutions confer the antiviral activity of the TRAF3 adaptor protein onto TRAF5. Sci Signal 5, ra81.
doi: 10.1126/scisignal.2003152
33 Zheng, C., Kabaleeswaran, V., Wang, Y., Cheng, G., and Wu, H. (2010). Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affi nity, specifi city, and regulation. Mol Cell 38, 101-113 .
doi: 10.1016/j.molcel.2010.03.009
34 Zotti, T., and Vito, P. (2012). The seventh ring: exploring TRAF7 functions. J Cell Physiol 227, 1280-1284 .
doi: 10.1002/jcp.24011
[1] Vsevolod V. Gurevich, Eugenia V. Gurevich, Vladimir N. Uversky. Arrestins: structural disorder creates rich functionality[J]. Protein Cell, 2018, 9(12): 986-1003.
[2] Yusuke Mimura, Toshihiko Katoh, Radka Saldova, Roisin O’Flaherty, Tomonori Izumi, Yuka Mimura-Kimura, Toshiaki Utsunomiya, Yoichi Mizukami, Kenji Yamamoto, Tsuneo Matsumoto, Pauline M. Rudd. Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy[J]. Protein Cell, 2018, 9(1): 47-62.
[3] Hongliang Tian,Xiaoyun Ji,Xiaoyun Yang,Zhongxin Zhang,Zuokun Lu,Kailin Yang,Cheng Chen,Qi Zhao,Heng Chi,Zhongyu Mu,Wei Xie,Zefang Wang,Huiqiang Lou,Haitao Yang,Zihe Rao. Structural basis of Zika virus helicase in recognizing its substrates[J]. Protein Cell, 2016, 7(8): 562-570.
[4] Shishang Dong,Peng Yang,Guobang Li,Baocheng Liu,Wenming Wang,Xiang Liu,Boran Xia,Cheng Yang,Zhiyong Lou,Yu Guo,Zihe Rao. Insight into the Ebola virus nucleocapsid assembly mechanism: crystal structure of Ebola virus nucleoprotein core domain at 1.8 ? resolution[J]. Protein Cell, 2015, 6(5): 351-362.
[5] Ping Wang,Chang Sun,Tingting Zhu,Yanhui Xu. Structural insight into mechanisms for dynamic regulation of PKM2[J]. Protein Cell, 2015, 6(4): 275-287.
[6] Ning Hao,Yutao Chen,Ming Xia,Ming Tan,Wu Liu,Xiaotao Guan,Xi Jiang,Xuemei Li,Zihe Rao. Crystal structures of GI.8 Boxer virus P dimers in complex with HBGAs, a novel evolutionary path selected by the Lewis epitope[J]. Protein Cell, 2015, 6(2): 101-116.
[7] Chenjun Jia,Mei Li,Jianjun Li,Jingjing Zhang,Hongmei Zhang,Peng Cao,Xiaowei Pan,Xuefeng Lu,Wenrui Chang. Structural insights into the catalytic mechanism of aldehyde-deformylating oxygenases[J]. Protein Cell, 2015, 6(1): 55-67.
[8] Kelei Bi,Yueting Zheng,Feng G"ao,Jianshu Dong,Jiangyun Wang,Yi Wang,Weimin Gong. Crystal structure of E. coli arginyl-tRNA synthetase and ligand binding studies revealed key residues in arginine recognition[J]. Protein Cell, 2014, 5(2): 151-159.
[9] Jun Li, Yu Dong, Xingru Lü, Lu Wang, Wei Peng, Xuejun C. Zhang, Zihe Rao. Crystal structures and biochemical studies of human lysophosphatidic acid phosphatase type 6[J]. Prot Cell, 2013, 4(7): 548-561.
[10] Honggang Zhou, Yuna Sun, Ying Wang, Min Liu, Chao Liu, Wenming Wang, Xiang Liu, Le Li, Fei Deng, Hualin Wang, Yu Guo, Zhiyong Lou. The nucleoprotein of severe fever with thrombocytopenia syndrome virus processes a stable hexameric ring to facilitate RNA encapsidation[J]. Prot Cell, 2013, 4(6): 445-455.
[11] Yingxiao Chen, Xianqiang Song, Sheng Ye, Lin Miao, Yun Zhu, Rong-Guang Zhang, Guangju Ji. Structural insight into enhanced calcium indicator GCaMP3 and GCaMPJ to promote further improvement[J]. Prot Cell, 2013, 4(4): 299-309.
[12] Yu-Chung Chang, Hao Zhang, Mark L. Brennan, Jinhua Wu. Crystal structure of Lamellipodin implicates diverse functions in actin polymerization and Ras signaling[J]. Prot Cell, 2013, 4(3): 211-219.
[13] Neil Shaw, Songying Ouyang, Zhi-Jie Liu. Binding of bacterial secondary messenger molecule c di-GMP is a STING operation[J]. Prot Cell, 2013, 4(2): 117-129.
[14] Demeng Sun, Qing Liu, Yao He, Chengliang Wang, Fangming Wu, Changlin Tian, Jianye Zang. The putative propeptide of MycP1 in mycobacterial type VII secretion system does not inhibit protease activity but improves protein stability[J]. Prot Cell, 2013, 4(12): 921-931.
[15] Gol Nam, Yi Shi, Myongchol Ryu, Qihui Wang, Hao Song, Jun Liu, Jinghua Yan, Jianxun Qi, George F Gao. Crystal structures of the two membrane-proximal Ig-like domains (D3D4) of LILRB1/B2: alternative models for their involvement in peptide-HLA binding[J]. Prot Cell, 2013, 4(10): 761-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed