Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2013, Vol. 4 Issue (11) : 813-819    https://doi.org/10.1007/s13238-013-3085-y      PMID: 24214874
MINI-REVIEW
MicroRNA-21 in the pathogenesis of acute kidney injury
Ya-Feng Li1,2(), Ying Jing3, Jielu Hao4, Nathan C Frankfort5, Xiaoshuang Zhou1,2, Bing Shen6, Xinyan Liu1,2, Lihua Wang1,2, Rongshan Li2,7()
1. Department of Nephrology and Hemodialysis Center, Second Hospital of Shanxi Medical University, Taiyuan 030001, China; 2. Shanxi Renal Disease Research Institution, Taiyuan 030001, China; 3. Department of Blood Purification, General Hospital of Jinan Military Command of PLA, Jinan 250031, China; 4. Nephrology Institute of PLA, Changzheng Hospital of Second Military Medical University, Shanghai 200003, China; 5. Department of Neuroscience and Neurovirology, Temple University School of Medicine, Philadelphia, PA 19140, USA; 6. Department of Urology, Shanghai First People’s Hospital, Shanghai 200080, China; 7. Department of Nephrology and Hemodialysis Center, Shanxi Provincial People’s Hospital, Taiyuan 030012, China
 Download: PDF(291 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Acute kidney injury (AKI), associated with significant morbidity and mortality, is widely known to involve epithelial apoptosis, excessive inflammation, and fibrosis in response to ischemia or reperfusion injury, which results in either chronic pathological changes or death. Therefore, it is imperative that investigations are conducted in order to find effective, early diagnoses, and therapeutic targets needed to help prevent and treat AKI. However, the mechanisms modulating the pathogenesis of AKI still remain largely undetermined. MicroRNAs (miRNAs), small noncoding RNA molecules, play an important role in several fundamental biological and pathological processes by a post transcriptional regulatory function of gene expression. MicroRNA-21 (miR-21) is a recently identified, typical miRNA that is functional as a regulator known to be involved in apoptosis as well as inflammatory and fibrotic signaling pathways in AKI. As a result, miR-21 is now considered a novel biomarker when diagnosing and treating AKI. This article reviews the correlative literature and research progress regarding the roles of miR-21 in AKI.

Keywords microRNA      microRNA-21      gene expression      acute kidney injury     
Corresponding Author(s): Li Ya-Feng,Email:Dr.yafengli@gmail.com; Li Rongshan,Email:rongshanli@126.com   
Issue Date: 01 November 2013
 Cite this article:   
Ya-Feng Li,Ying Jing,Jielu Hao, et al. MicroRNA-21 in the pathogenesis of acute kidney injury[J]. Prot Cell, 2013, 4(11): 813-819.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-013-3085-y
https://academic.hep.com.cn/pac/EN/Y2013/V4/I11/813
1 Akcay, A., Nguyen, Q., and Edelstein, C.L. (2009). Mediators of infl ammation in acute kidney injury. Mediators Infl amm 2009, 137072.
doi: 10.1155/2009/137072
2 Bonventre, J.V., and Weinberg, J.M. (2003). Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14, 2199-2210 .
doi: 10.1097/01.ASN.0000079785.13922.F6
3 Bonventre, J.V., and Zuk, A. (2004). Ischemic acute renal failure: an infl ammatory disease? Kidney Int 66, 480-485 .
doi: 10.1111/j.1523-1755.2004.761_2.x
4 Buscaglia, L.E.B., and Li, Y. (2011). Apoptosis and the target genes of microRNA-21. Chin J Cancer 30, 371-380 .
5 Carpenter, S., and O’Neill,L.(2009). Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins. Biochem J 422, 1-10 .
doi: 10.1042/BJ20090616
6 Chan, J.A., Krichevsky, A.M., and Kosik, K.S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65, 6029-6033 .
doi: 10.1158/0008-5472.CAN-05-0137
7 Chen, Y., Chen, J., Wang, H., Shi, J., Wu, K., Liu, S., Liu, Y., and Wu, J. (2013). HCV-induced miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathog 9, e1003248.
doi: 10.1371/journal.ppat.1003248
8 Cheng, Y., Zhu. , P., Yang, J., Liu, X., Dong, S., Wang, X., Chun, B., Zhuang, J., and Zhang, C. (2010). Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res 87,431-439 .
doi: 10.1093/cvr/cvq082
9 Chung, A.C.K., Dong, Y., Yang, W., Zhong, X., Li, R., and Lan, H.Y. (2013). Smad7 suppresses renal fibrosis via altering expression of TGF- miR-21 protects hmicroRNAs. Mol Ther 21, 388-398 .
doi: 10.1038/mt.2012.251
10 Daemen, M.A., Veer, C.V.t., Denecker, G., Heemskerk, V.H., Wolfs, T.G., Clauss, M., Vandenabeele, P., and Buurman, W.A. (1999).Inhibition of apoptosis induced by ischemia-reperfusion prevents infl ammation. J Clin Invest 104, 541-549 .
doi: 10.1172/JCI6974
11 Devarajan, P. (2006). Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 17, 1503-1520 .
doi: 10.1681/ASN.2006010017
12 Dey, N., Ghosh-Choudhury,N., Kasinath, B.S., and Choudhury, G.G. (2012). TGF Am Soc Nephrol 17, 1503 and Buurman, W.A. (1999). Inhibition of apoptosis induced by ischemia-reperfusion prevents infl ammation. J Clin 7, e42316.
13 Dobrovolskaia, M.A., Medvedev, A.E., Thomas, K.E., Cuesta, N., Toshchakov, V., Ren, T., Cody, M.J., Michalek, S.M., Rice, N.R., and Vogel, S.N. (2003). Induction of in vitro reprogramming by Toll-like receptor (TLR)2 and TLR4 agonists in murine macrophages: effects of TLR ?homotolerance? versus ?heterotolerance? on NF-kappa B signaling pathway components. J Immunol 170, 508-519 .
14 Du, J., Cao, X., Zou, L., Chen, Y., Guo, J., Chen, Z., Hu, S., and Zheng, Z. (2013a). MicroRNA-21 and risk of severe acute kidney injury and poor outcomes after adult cardiac surgery. PLoS One 8, e63390.
doi: 10.1371/journal.pone.0063390
15 Du, T., Zou, X., Cheng, J., Wu, S., Zhong, L., Ju, G., Zhu, J., Liu, G., Zhu, Y., and Xia, S. (2013b). Human Wharton’s jelly-derived mesenchymal stromal cells reduce renal fibrosis through induction of native and foreign hepatocyte growth factor synthesis in injured tubular epithelial cells. Stem Cell Res Ther 4, 59. (In Press).
doi: 10.1186/scrt215
16 Freitas, M.C.S., Uchida, Y., Lassman, C., Danovitch, G.M., Busuttil, R.W., and Kupiec-weglinski,J.W. (2011). Type I interferon pathway mediates renal ischemia/reperfusion injury. Transplantation 92, 131-138 .
doi: 10.1097/TP.0b013e318220586e
17 Friedman, J.M., and Jones, P.A. (2009). MicroRNAs: critical mediators of differentiation, development and disease. Swiss Med Wkly 139, 466-472 .
18 Fujita, S., Ito, T., Mizutani, T., Minoguchi, S., Yamamichi, N., Sakurai, K., and Iba, H. (2008). miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 378, 492-504 .
doi: 10.1016/j.jmb.2008.03.015
19 Glowacki, F., Savary, G., Gnemmi, V., Buob, D., Hauwaert, C.V.D., Loguidice, J.-m.,Bouy (2008). miR-21 Gene expression triggered b, et al. (2013). Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS One 8, e58014.
doi: 10.1371/journal.pone.0058014
20 Godwin, J.G., Ge, X., Stephan, K., Jurisch, A., Tullius, S.G., and IaComini, J. (2010). Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci U S A 107, 14339-14344 .
doi: 10.1073/pnas.0912701107
21 Gregory, P.A., Bracken, C.P., Bert, A.G., and Goodall, G.J. (2008). MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7, 3112-3118 .
doi: 10.4161/cc.7.20.6851
22 Hao, J.L., Li, Y.F., and Li, R.S. (2013). A novel mechanism of NALP3 inducing ischemia reperfusion injury by activating MAPK pathway in acute renal failure. Medical hypotheses 80, 463-465 .
doi: 10.1016/j.mehy.2012.12.041
23 Humphreys, B.D., Czerniak, S., Dirocco, D.P., Hasnain, W., Cheema, R., and Bonventre, J.V. (2011). Repair of injured proximal tubuledoes not involve specialized progenitors. Proc Natl Acad Sci U S A 108.
doi: 10.1073/pnas.1100629108
24 Humphreys, B.D., Valerius, M.T., Kobayashi, A., Mugford, J.W., Soeung, S., Duffield,J.S., Mcmahon, A.P., and Bonventre, J.V. (2008). Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284-291 .
doi: 10.1016/j.stem.2008.01.014
25 Jang, H.R., and Rabb, H. (2009). The innate immune response in ischemic acute kidney injury. Clin Immunol 130, 41-50 .
doi: 10.1016/j.clim.2008.08.016
26 Jenkins, K., and Mansell, A. (2010). TIR-containing adaptors in Toll-like receptor signalling. Cytokine 49, 237-244 .
doi: 10.1016/j.cyto.2009.01.009
27 Jia, P., Teng, J., Zou, J., Fang, Y., Zhang, X., Bosnjak, Z.J., Liang, M., and Ding, X. (2013). miR-21 Contributes to Xenon-conferred Amelioration of Renal Ischemia-Reperfusion Injury in Mice. Anesthesiology 119, 621-630 .
doi: 10.1097/ALN.0b013e318298e5f1
28 Kawagoe, T., Sato, S., Matsushita, K., H, H.K., Matsui, K., Kumagai, Y., Saitoh, T., Kawai, T., Takeuchi, O., and Akira, S. (2008). Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol 9, 684-691 .
doi: 10.1038/ni.1606
29 Koyner, J.L., Garg, A.X., Coca, S.G., Sint, K., Thiessen-Philbrook, H., Patel, U.D., Shlipak, M.G., and Parikh, C.R. (2012). Biomarkers predict progression of acute kidney injury after cardiac surgery. J Am Soc Nephrol 23, 905-914 .
doi: 10.1681/ASN.2011090907
30 Krichevsky, A.M., and Gabriely, G. (2009). miR-21: a small multi-faceted RNA. J Cell Mol Med 13, 39-53 .
doi: 10.1111/j.1582-4934.2008.00556.x
31 Kumarswamy, R., Volkmann, I., and Thum, T. (2011). Regulation and function of miRNA-21 in health and disease. RNA Biol 8, 706-713 .
doi: 10.4161/rna.8.5.16154
32 Lagos-Quintana,M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Curr Biol 12, 735-739 .
doi: 10.1016/S0960-9822(02)00809-6
33 Lameire, N., Biesen, W.V., and Vanholder, R. (2006). The changing epidemiology of acute renal failure. Nat Clin Pract Nephrol 2, 364-377 .
doi: 10.1038/ncpneph0218
34 Lameire, N., and Vanholder, R. (2001). Pathophysiologic features and prevention of human and experimental acute tubular necrosis. J Am Soc Nephrol 12 Suppl 17, S20-32 .
35 Laterza, O.F., Lim, L., Garrett-Engele,P.W., Vlasakova, K., Muniappa, N., Tanaka, W.K., Johnson, J.M., Sina, J.F., Fare, T.L., Sistare, F.D., . (2009). Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55, 1977-1983 .
doi: 10.1373/clinchem.2009.131797
36 Lin, S., Lo, Y., and Wu, H. (2010). Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465, 885-890 .
doi: 10.1038/nature09121
37 Lindsay, M. (2008). microRNAs and the immune response. Trends Immunol 29, 343-351 .
doi: 10.1016/j.it.2008.04.004
38 Lu, Z., Liu, M., Stribinskis, V., Klinge, C.M., Ramos, K.S., Colburn, N.H., and Li, Y. (2008). MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27, 4373-4379 .
doi: 10.1038/onc.2008.72
39 Lv, L., Huang, F., Mao, H., Li, M., Li, X., Yang, M., and Yu, X. (2013). MicroRNA-21 is overexpressed in renal cell carcinoma. Int J Biol Markers 28, e201-207 .
doi: 10.5301/JBM.2013.10831
40 O’Neill,L., and Bowie, A. (2007). The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7, 353-364 .
doi: 10.1038/nri2079
41 Rana, A., Sathyanarayana, P., and Lieberthal, W. (2001). Role of apoptosis of renal tubular cells in acute renal failure: therapeutic implications. Apoptosis 6, 83-102 .
doi: 10.1023/A:1009680229931
42 Ren, X.-P., Wu, J., Wang, X., Sartor, M.A., Qian, J., Jones, K., Nicolaou, P., Pritchard, T.J., and Fan, G.-C. (2009). MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119, 2357-2366 .
doi: 10.1161/CIRCULATIONAHA.108.814145
43 Rifkin, D.E., Coca, S.G., and Kalantar-Zadeh,K.(2012). Does AKI truly lead to CKD? J Am Soc Nephrol 23, 979-984 .
doi: 10.1681/ASN.2011121185
44 Saikumar, J., Hoffmann, D., Kim, T.-m., Gonzalez, V.R., Zhang, Q., Goering, P.L., Brown, R.P., Bijol, V., Park, P., Waikar, S.S., .(2012). Expression, circulation, and excretion profile of micro-RNA-21, -155, and-18a following acute kidney injury. Toxicol Sci 129, 256-267 .
doi: 10.1093/toxsci/kfs210
45 Sheedy, F.J., Palsson-mcdermott,E., Hennessy, E.J., Martin, C., O’leary,J.J., Ruan, Q., Johnson, D.S., Chen, Y., and O’neill,L.A.J. (2010). Negative regulation of TLR4 via targeting of the proinfl ammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11, 141-147 .
doi: 10.1038/ni.1828
46 Taganov, K.D., Boldin, M.P., Chang, K.-J., and Baltimore, D. (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103, 12481-12486 .
doi: 10.1073/pnas.0605298103
47 Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu Rev Immunol 21, 335-376 .
doi: 10.1146/annurev.immunol.21.120601.141126
48 Talotta, F., Cimmino, A., Matarazzo, M.R., Casalino, L., Vita, G.D., D’esposito,M., Lauro, R.D., and Verde, P. (2009). An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene 28, 73-84 .
doi: 10.1038/onc.2008.370
49 Thum, T., Catalucci, D., and Bauersachs, J. (2008a). MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc Res 79, 562-570 .
doi: 10.1093/cvr/cvn137
50 Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., . (2008b). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980-984 .
doi: 10.1038/nature07511
51 Trindade, A.J., Medvetz, D.A., Neuman, N.A., Myachina, F., Yu, J., Priolo, C., and Henske, E.P. (2013). MicroRNA-21 is induced by rapamycin in a model of tuberous sclerosis (TSC) and lymphangioleiomyomatosis (LAM). PLoS One 8, e60014.
doi: 10.1371/journal.pone.0060014
52 Vasudevan, S., Tong, Y., and Steitz, J. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931-1934 .
doi: 10.1126/science.1149460
53 Velu, C.S., Baktula, A.M., and Grimes, H.L. (2009). Gfi1 regulates miR-21 and miR-196b to control myelopoiesis. Blood 113, 4720-4728 .
doi: 10.1182/blood-2008-11-190215
54 Wang, J., Gao, Y., Ma, M., Li, M., Zou, D., Yang, J., Zhu, Z., and Zhao, X. (2013). Effect of miR-21 on Renal Fibrosis by Regulating MMP-9 and TIMP1 in kk-ay Diabetic Nephropathy Mice. Cell Biochem Biophys . (In Press).
doi: 10.1007/s12013-013-9539-2
55 Xu, X., Kriegel, A.J., Liu, Y., Usa, K., Mladinov, D., Liu, H., Fang, Y., Ding, X., and Liang, M. (2012). Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int 82, 1167-1175 .
doi: 10.1038/ki.2012.241
56 Yang, L., Humphreys, B.D., and Bonventre, J.V. (2011). Pathophysiology of acute kidney injury to chronic kidney disease: maladaptive repair. Contrib Nephrol 174, 149-155 .
doi: 10.1159/000329385
57 Zamore, P., and Haley, B. (2005). Ribo-gnome: the big world of small RNAs. Science 309, 1519-1524 .
doi: 10.1126/science.1111444
58 Zhang, H., Guo, Y., Shang, C., Song, Y., and Wu, B. (2012). miR-21downregulated TCF21 to inhibit KISS1 in renal cancer.Urology 80, 1298-1302 .
doi: 10.1016/j.urology.2012.08.013
59 Zhong, X., Chung, A.C.K., Chen, H.Y., Dong, Y., Meng, X.M., Li, R., Yang, W., Hou, F.F., and Lan, H.Y. (2013a). miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes.Diabetologia 56, 663-674 .
doi: 10.1007/s00125-012-2804-x
60 Zhong, X., Chung, A.C.K., Chen, H.Y., Dong, Y., Meng, X.M., Li, R., Yang, W., Hou, F.F., and Lan, H.Y. (2013b). miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56, 663-674 .
doi: 10.1007/s00125-012-2804-x
[1] Xi Chen, Lin Wang, Rujin Huang, Hui Qiu, Peizhe Wang, Daren Wu, Yonglin Zhu, Jia Ming, Yangming Wang, Jianbin Wang, Jie Na. Dgcr8 deletion in the primitive heart uncovered novel microRNA regulating the balance of cardiac-vascular gene program[J]. Protein Cell, 2019, 10(5): 327-346.
[2] Wei Shao, Shasha Li, Lu Li, Kequan Lin, Xinhong Liu, Haiyan Wang, Huili Wang, Dong Wang. Chemical genomics reveals inhibition of breast cancer lung metastasis by Ponatinib via c-Jun[J]. Protein Cell, 2019, 10(3): 161-177.
[3] Na Qu, Zhao Ma, Mengrao Zhang, Muaz N. Rushdi, Christopher J. Krueger, Antony K. Chen. Inhibition of retroviral Gag assembly by non-silencing miRNAs promotes autophagic viral degradation[J]. Protein Cell, 2018, 9(7): 640-651.
[4] Yuanyuan Gu, Shuoxin Liu, Xiaodan Zhang, Guimin Chen, Hongwei Liang, Mengchao Yu, Zhicong Liao, Yong Zhou, Chen-Yu Zhang, Tao Wang, Chen Wang, Junfeng Zhang, Xi Chen. Oncogenic miR-19a and miR-19b co-regulate tumor suppressor MTUS1 to promote cell proliferation and migration in lung cancer[J]. Protein Cell, 2017, 8(6): 455-466.
[5] Shaohong Chen, Guangxia Gao. MicroRNAs recruit eIF4E2 to repress translation of target mRNAs[J]. Protein Cell, 2017, 8(10): 750-761.
[6] Zhiju Zhao,Shu Li,Erwei Song,Suling Liu. The roles of ncRNAs and histone-modifiers in regulating breast cancer stem cells[J]. Protein Cell, 2016, 7(2): 89-99.
[7] Qian Fan,Xiangrui Meng,Hongwei Liang,Huilai Zhang,Xianming Liu,Lanfang Li,Wei Li,Wu Sun,Haiyang Zhang,Ke Zen,Chen-Yu Zhang,Zhen Zhou,Xi Chen,Yi Ba. miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma[J]. Protein Cell, 2016, 7(12): 899-912.
[8] Yanqing Liu,Uzair-ur-Rehman,Yu Guo,Hongwei Liang,Rongjie Cheng,Fei Yang,Yeting Hong,Chihao Zhao,Minghui Liu,Mengchao Yu,Xinyan Zhou,Kai Yin,Jiangning Chen,Junfeng Zhang,Chen-Yu Zhang,Feng Zhi,Xi Chen. miR-181b functions as an oncomiR in colorectal cancer by targeting PDCD4[J]. Protein Cell, 2016, 7(10): 722-734.
[9] Lin Lin,Qingqing Cai,Xiaoyan Zhang,Hongwei Zhang,Yang Zhong,Congjian Xu,Yanyun Li. Two less common human microRNAs miR-875 and miR-3144 target a conserved site of E6 oncogene in most high-risk human papillomavirus subtypes[J]. Protein Cell, 2015, 6(8): 575-588.
[10] Liping Deng,Ruotong Ren,Jun Wu,Keiichiro Suzuki,Juan Carlos Izpisua Belmote,Guang-Hui Liu. CRISPR/Cas9 and TALE: beyond cut and paste[J]. Protein Cell, 2015, 6(3): 157-159.
[11] Jigang Li, Li Yang, Dan Jin, Cynthia D. Nezames, William Terzaghi, Xing Wang Deng. UV-B-induced photomorphogenesis in Arabidopsis[J]. Prot Cell, 2013, 4(7): 485-492.
[12] Hongwei Liang, Junfeng Zhang, Ke Zen, Chen-Yu Zhang, Xi Chen. Nuclear microRNAs and their unconventional role in regulating non-coding RNAs[J]. Prot Cell, 2013, 4(5): 325-330.
[13] Yongkui Li, Jiajia Xie, Xiupeng Xu, Jun Wang, Fang Ao, Yushun Wan, Ying Zhu. MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-λ1[J]. Prot Cell, 2013, 4(2): 130-141.
[14] Yifan Zhan, Li Wu. Functional regulation of monocyte-derived dendritic cells by microRNAs[J]. Prot Cell, 2012, 3(7): 497-507.
[15] Jigang Li, William Terzaghi, Xing Wang Deng. Genomic basis for light control of plant development[J]. Prot Cell, 2012, 3(2): 106-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed