Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2014, Vol. 5 Issue (4) : 307-316    https://doi.org/10.1007/s13238-014-0029-0      PMID: 24585413
RESEARCH ARTICLE
The immunostimulatory effects of retinoblastoma cell supernatant on dendritic cells
Juan Ma1,*(),Huamin Han1,2,Li Ma3,Changzhen Liu1,Xin Xue4,Pan Ma1,Xiaomei Li1,Hua Tao1
1. CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
2. Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
3. Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, China
4. Department of Immunology, Basic Medical Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
 Download: PDF(1119 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Dendritic cells (DCs) are crucial for the induction and maintenance of tumor-specific immune responses. Studies have shown that tumor-associated DCs are immunosuppressed in some human tumors. However, phenotype and function of DCs in retinoblastoma (RB) remain unclear. RB cell supernatant (RBcs) was used to treat DCs in vitro to explore the effect of RB cells on DCs. DCs were generated from peripheral blood mononuclear cells of healthy donors. On day 5 of culture, DCs were treated with RBcs for 24 h, and then purified using magnetic beads. The maturation of DCs was induced by TNF-α or LPS. After treatment with RBcs, expression of co-stimulatory molecules CD80 and CD86 was elevated in DCs, accompanied by increased production of IL-12p70, TNF-α, IL-6, IL-1β, and IL-8 but decreased production of IL-10. RBcs neither inhibited DC maturation nor promoted DC apoptosis. Moreover, RBcs-exposed DCs stimulated allogenetic T cell proliferation and T cell-derived cytokine production. These results indicate that RBcs can improve DCs’ antigen presenting function and capability to activate T cells, suggesting that RB cells may have an immunostimulatory effect on DCs, and Dcbased immunotherapy may be adopted in the treatment of RB.

Keywords retinoblastoma      dendritic cell      anti-tumor immunity      immunotherapy     
Corresponding Author(s): Juan Ma   
Issue Date: 25 June 2014
 Cite this article:   
Juan Ma,Huamin Han,Li Ma, et al. The immunostimulatory effects of retinoblastoma cell supernatant on dendritic cells[J]. Protein Cell, 2014, 5(4): 307-316.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-014-0029-0
https://academic.hep.com.cn/pac/EN/Y2014/V5/I4/307
1 Ataera H, Hyde E, Price KM, Stoitzner P, Ronchese F (2011) Murine melanoma-infiltrating dendritic cells are defective in antigen presenting function regardless of the presence of CD4CD25 regulatory T cells. PLoS One6: e17515
doi: 10.1371/journal.pone.0017515
2 Beckebaum S, Zhang X, Chen X, Yu Z, Frilling A, Dworacki G, Grosse-Wilde H, Broelsch CE, Gerken G, Cicinnati VR (2004) Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res10: 7260-7269
doi: 10.1158/1078-0432.CCR-04-0872
3 Bharadwaj U, Li M, Zhang R, Chen C, Yao Q(2007) Elevated interleukin-6 and G-CSF in human pancreatic cancer cell conditioned medium suppress dendritic cell differentiation and activation. Cancer Res67: 5479-5488
doi: 10.1158/0008-5472.CAN-06-3963
4 Carreno BM, Collins M(2002) The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol20: 29-53
doi: 10.1146/annurev.immunol.20.091101.091806
5 Chaux P, Favre N, Martin M, Martin F (1997) Tumor-infiltrating dendritic cells are defective in their antigen-presenting function and inducible B7 expression in rats. Int J Cancer72: 619-624
doi: 10.1002/(SICI)1097-0215(19970807)72:4<619::AID-IJC12>3.0.CO;2-6
6 Collins M, Ling V, Carreno BM (2005) The B7 family of immuneregulatory ligands. Genome Biol6: 223
doi: 10.1186/gb-2005-6-6-223
7 Colombo MP, Trinchieri G(2002) Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev13: 155-168
doi: 10.1016/S1359-6101(01)00032-6
8 Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, Rabbe N, Laurans L, Tartour E, de Chaisemartin L (2008) Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol26: 4410-4417
doi: 10.1200/JCO.2007.15.0284
9 Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP(1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med2: 1096-1103
doi: 10.1038/nm1096-1096
10 Gottfried E, Kreutz M, Mackensen A (2008) Tumor-induced modulation of dendritic cell function. Cytokine Growth Factor Rev19: 65-77
doi: 10.1016/j.cytogfr.2007.10.008
11 Houston SK, Murray TG, Wolfe SQ, Fernandes CE(2011) Current update on retinoblastoma. Int Ophthalmol Clin51: 77-91
doi: 10.1097/IIO.0b013e3182010f29
12 Iwamoto M, Shinohara H, Miyamoto A, Okuzawa M, Mabuchi H, Nohara T, Gon G, Toyoda M, Tanigawa N (2003) Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer104: 92-97
doi: 10.1002/ijc.10915
13 Kanto T, Kalinski P, Hunter OC, Lotze MT, Amoscato AA(2001) Ceramide mediates tumor-induced dendritic cell apoptosis. J Immunol167: 3773-3784
doi: 10.4049/jimmunol.167.7.3773
14 Khetan V, Mathur G, Kumar SK, Gopal L (2013) Late recurrence of tumor necessitating enucleation in an adult onset retinoblastoma. Ophthalmic Genet34: 87-89
doi: 10.3109/13816810.2012.718028
15 Kiertscher SM, Luo J, Dubinett SM, Roth MD(2000) Tumors promote altered maturation and early apoptosis of monocytederived dendritic cells. J Immunol164: 1269-1276
doi: 10.4049/jimmunol.164.3.1269
16 Kubin M, Kamoun M, Trinchieri G(1994) Interleukin 12 synergizes with B7/CD28 interaction in inducing efficient proliferation and cytokine production of human T cells. J Exp Med180: 211-222
doi: 10.1084/jem.180.1.211
17 Ladanyi A, Kiss J, Somlai B, Gilde K, Fejos Z, Mohos A, Gaudi I, Timar J(2007) Density of DC-LAMP(+) mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother56: 1459-1469
doi: 10.1007/s00262-007-0286-3
18 Lim DS, Kim JH, Lee DS, Yoon CH, Bae YS(2007) DC immunotherapy is highly effective for the inhibition of tumor metastasis or recurrence, although it is not efficient for the eradication of established solid tumors. Cancer Immunol Immunother56: 1817-1829
doi: 10.1007/s00262-007-0325-0
19 Lippitz BE(2013) Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol14: e218-e228
doi: 10.1016/S1470-2045(12)70582-X
20 Loza MJ, Perussia B(2001) Final steps of natural killer cell maturation: a model for type 1 type 2 differentiation? Nat Immunol2: 917-924
doi: 10.1038/ni1001-917
21 Lundqvist A, Nagata T, Kiessling R, Pisa P(2002) Mature dendritic cells are protected from Fas/CD95-mediated apoptosis by upregulation of Bcl-X(L). Cancer Immunol Immunother51: 139-144
doi: 10.1007/s00262-002-0265-7
22 Ma J, Usui Y, Takeuchi M, Okunuki Y, Kezuka T, Zhang L, Mizota A, Goto H(2010) Human uveal melanoma cells inhibit the immunostimulatory function of dendritic cells. Exp Eye Res91: 491-499
doi: 10.1016/j.exer.2010.06.025
23 Merchant TE, Gould CJ, Wilson MW, Hilton NE, Rodriguez-Galindo C, Haik BG (2004) Episcleral plaque brachytherapy for retinoblastoma. Pediatr Blood Cancer43: 134-139
doi: 10.1002/pbc.20094
24 Michielsen AJ, Hogan AE, Marry J, Tosetto M, Cox F, Hyland JM, Sheahan KD, O’Donoghue DP, Mulcahy HE, Ryan EJ (2011) Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer. PLoS One6: e27944
doi: 10.1371/journal.pone.0027944
25 Movassagh M, Spatz A, Davoust J, Lebecque S, Romero P, Pittet M, Rimoldi D, Lienard D, Gugerli O, Ferradini L (2004) Selective accumulation of mature DC-Lamp+ dendritic cells in tumor sites is associated with efficient T-cell-mediated antitumor response and control of metastatic dissemination in melanoma. Cancer Res64: 2192-2198
doi: 10.1158/0008-5472.CAN-03-2969
26 Nakakubo Y, Miyamoto M, Cho Y, Hida Y, Oshikiri T, Suzuoki M, Hiraoka K, Itoh T, Kondo S, Katoh H(2003) Clinical significance of immune cell infiltration within gallbladder cancer. Br J Cancer89: 1736-1742
doi: 10.1038/sj.bjc.6601331
27 Preynat-Seauve O, Schuler P, Contassot E, Beermann F, Huard B, French LE (2006) Tumor-infiltrating dendritic cells are potent antigen-presenting cells able to activate T cells and mediate tumor rejection. J Immunol176: 61-67
doi: 10.4049/jimmunol.176.1.61
28 Preynat-Seauve O, Contassot E, Schuler P, French LE, Huard B (2007) Melanoma-infiltrating dendritic cells induce protective antitumor responses mediated by Tcells. Melanoma Res17: 169-176
doi: 10.1097/CMR.0b013e3281844531
29 Sandel MH, Dadabayev AR, Menon AG, Morreau H, Melief CJ, Offringa R, van der Burg SH, Janssen-van Rhijn CM, Ensink NG, Tollenaar RA (2005) Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin Cancer Res11: 2576-2582
doi: 10.1158/1078-0432.CCR-04-1448
30 Schueler AO, Jurklies C, Heimann H, Wieland R, Havers W, Bornfeld N(2003) Thermochemotherapy in hereditary retinoblastoma. Br J Ophthalmol87: 90-95
doi: 10.1136/bjo.87.1.90
31 Sombroek CC, Stam AG, Masterson AJ, Lougheed SM, Schakel MJ, Meijer CJ, Pinedo HM, van den Eertwegh AJ, Scheper RJ, de Gruijl TD (2002) Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol168: 4333-4343
doi: 10.4049/jimmunol.168.9.4333
32 Stoitzner P, Green LK, Jung JY, Price KM, Atarea H, Kivell B, Ronchese F (2008) Inefficient presentation of tumor-derived antigen by tumor-infiltrating dendritic cells. Cancer Immunol Immunother57: 1665-1673
doi: 10.1007/s00262-008-0487-4
33 Treilleux I, Blay JY, Bendriss-Vermare N, Ray-Coquard I, Bachelot T, Guastalla JP, Bremond A, Goddard S, Pin JJ, Barthelemy-Dubois C (2004) Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res10: 7466-7474
doi: 10.1158/1078-0432.CCR-04-0684
34 Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R, Gabrilovich D, Heller R, Coppola D (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med10: 48-54
doi: 10.1038/nm976
35 Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer5: 263-274
doi: 10.1038/nrc1586
[1] Dan Tong, Li Zhang, Fei Ning, Ying Xu, Xiaoyu Hu, Yan Shi. Contact-dependent delivery of IL-2 by dendritic cells to CD4 T cells in the contraction phase promotes their long-term survival[J]. Protein Cell, 2020, 11(2): 108-123.
[2] Yelei Guo, Kaichao Feng, Yao Wang, Weidong Han. Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment[J]. Protein Cell, 2018, 9(6): 516-526.
[3] Yanjing Song, Chuan Tong, Yao Wang, Yunhe Gao, Hanren Dai, Yelei Guo, Xudong Zhao, Yi Wang, Zizheng Wang, Weidong Han, Lin Chen. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo[J]. Protein Cell, 2018, 9(10): 867-878.
[4] Jiangtao Ren, Yangbing Zhao. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9[J]. Protein Cell, 2017, 8(9): 634-643.
[5] Hua Li, Yangbing Zhao. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy[J]. Protein Cell, 2017, 8(8): 573-589.
[6] Haibo Zhou, Li Wu. The development and function of dendritic cell populations and their regulation by miRNAs[J]. Protein Cell, 2017, 8(7): 501-513.
[7] Dongfang Liu, Shuo Tian, Kai Zhang, Wei Xiong, Ndongala Michel Lubaki, Zhiying Chen, Weidong Han. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV[J]. Protein Cell, 2017, 8(12): 861-877.
[8] Haisheng Yu,Peng Zhang,Xiangyun Yin,Zhao Yin,Quanxing Shi,Ya Cui,Guanyuan Liu,Shouli Wang,Pier Paolo Piccaluga,Taijiao Jiang,Liguo Zhang. Human BDCA2+CD123+CD56+ dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC subset[J]. Protein Cell, 2015, 6(4): 297-306.
[9] Nicholas Borcherding,David Kusner,Guang-Hui Liu,Weizhou Zhang. ROR1, an embryonic protein with an emerging role in cancer biology[J]. Protein Cell, 2014, 5(7): 496-502.
[10] Shuanglin Deng,Shan Zhu,Yuan Qiao,Yong-Jun Liu,Wei Chen,Gang Zhao,Jingtao Chen. Recent advances in the role of toll-like receptors and TLR agonists in immunotherapy for human glioma[J]. Protein Cell, 2014, 5(12): 899-911.
[11] Musheng Bao, Yong-Jun Liu. Regulation of TLR7/9 signaling in plasmacytoid dendritic cells[J]. Prot Cell, 2013, 4(1): 40-52.
[12] Kelly Roney, Eda Holl, Jenny Ting. Immune plexins and semaphorins: old proteins, new immune functions[J]. Prot Cell, 2013, 4(1): 17-26.
[13] Yifan Zhan, Li Wu. Functional regulation of monocyte-derived dendritic cells by microRNAs[J]. Prot Cell, 2012, 3(7): 497-507.
[14] Natalie L. Patterson, Justine D. Mintern. Intersection of autophagy with pathways of antigen presentation[J]. Prot Cell, 2012, 3(12): 911-920.
[15] Priyanka Sathe, Li Wu. The network of cytokines, receptors and transcription factors governing the development of dendritic cell subsets[J]. Prot Cell, 2011, 2(8): 620-630.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed