Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2014, Vol. 5 Issue (8) : 616-630    https://doi.org/10.1007/s13238-014-0046-z
RESEARCH ARTICLE
Mechanism of the Rpn13-induced activation of Uch37
Lianying Jiao1,Songying Ouyang1,Neil Shaw1,Gaojie Song2,Yingang Feng3,Fengfeng Niu1,Weicheng Qiu1,Hongtao Zhu1,Li-Wei Hung4,Xiaobing Zuo5,V. Eleonora Shtykova6,Ping Zhu1,Yu-Hui Dong7,Ruxiang Xu8,*(),Zhi-Jie Liu1,3,*()
1. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
2. iHuman Institute, ShanghaiTech University, Shanghai 201210, China
3. Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
4. Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
5. X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
6. Institute of Crystallography, Russian Academy of Sciences, 59 Leninsky Pr., 117333 Moscow, Russian Federation
7. Center for Multi-disciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
8. Department of Nerosurgery, The Military General Hospital of Beijing PLA, Beijing 100700, China
 Download: PDF(1747 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Uch37 is a de-ubiquitinating enzyme that is activated by Rpn13 and involved in the proteasomal degradation of proteins. The full-length Uch37 was shown to exhibit low iso-peptidase activity and is thought to be auto-inhibited. Structural comparisons revealed that within a homodimer of Uch37, each of the catalytic domains was blocking the other’s ubiquitin (Ub)-binding site. This blockage likely prevented Ub from entering the active site of Uch37 and might form the basis of auto-inhibition. To understand the mode of auto-inhibition clearly and shed light on the activation mechanism of Uch37 by Rpn13, we investigated the Uch37-Rpn13 complex using a combination of mutagenesis, biochemical, NMR, and smallangle X-ray scattering (SAXS) techniques. Our results also proved that Uch37 oligomerized in solution and had very low activity against the fluorogenic substrate ubiquitin-7-amino-4-methylcoumarin (Ub-AMC) of de-ubiquitinating enzymes. Uch37ΔHb,Hc,KEKE, a truncation removal of the C-terminal extension region (residues 256–329) converted oligomeric Uch37 into a monomeric form that exhibited iso-peptidase activity comparable to that of a truncation-containing the Uch37 catalytic domain only. Wealso demonstrated that Rpn13C (Rpn13 residues 270–407) could disrupt the oligomerization of Uch37 by sequestering Uch37 and forming a Uch37-Rpn13 complex. Uch37 was activated in such a complex, exhibiting 12-fold-higher activity than Uch37 alone. Time-resolved SAXS (TR-SAXS) and FRET experiments supported the proposed mode of auto-inhibition and the activation mechanism of Uch37 by Rpn13. Rpn13 activated Uch37 by forming a 1:1 stoichiometric complex in which the active site of Uch37 was accessible to Ub.

Keywords Uch37-Rpn13 complex      de-ubiquitination      SAXS analysis      oligomerization      iso-peptidase     
Corresponding Author(s): Ruxiang Xu   
Issue Date: 27 August 2014
 Cite this article:   
Lianying Jiao,Songying Ouyang,Neil Shaw, et al. Mechanism of the Rpn13-induced activation of Uch37[J]. Protein Cell, 2014, 5(8): 616-630.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-014-0046-z
https://academic.hep.com.cn/pac/EN/Y2014/V5/I8/616
1 Armstrong CT, Vincent TL, Green PJ, Woolfson DN(2011) SCORER 2.0: an algorithm for distinguishing parallel dimeric and trimeric coiled-coil sequences. Bioinformatics27: 1908-1914
doi: 10.1093/bioinformatics/btr299
2 Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang J-S, Kuszewski J, Nilges M, Pannu NSet al (1998) Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Crystallogr Sect D54: 905-921
doi: 10.1107/S0907444998003254
3 Burgie SE, Bingman CA, Soni AB, Phillips GN Jr (2011) Structural characterization of human Uch37. Proteins80: 649-654
doi: 10.1002/prot.23147
4 Chen X, Lee BH, Finley D, Walters KJ(2010) Structure of proteasome ubiquitin receptor hRpn13 and its activation by the scaffolding protein hRpn2. Mol Cell38: 404-415
doi: 10.1016/j.molcel.2010.04.019
5 wDas C, Hoang QQ, Kreinbring CA, Luchansky SJ, Meray RK, Ray SS, Lansbury PT, Ringe D, Petsko GA(2006) Structural basis for conformational plasticity of the Parkinson’s disease-associated ubiquitin hydrolase UCH-L1. Proc Natl Acad Sci USA103: 4675-4680
6 Duggan B, Legge G, Dyson HJ, Wright P(2001) SANE (Structure Assisted NOE Evaluation): an automated model-based approach for NOE assignment. J Biomol NMR19: 321-329
doi: 10.1023/A:1011227824104
7 Fischer H, de Oliveira Neto M, Napolitano HB, Polikarpov I, Craievich AF(2010) Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J Appl Crystallogr43: 101-109
doi: 10.1107/S0021889809043076
8 Glickman MH, Zhang DN, Chen T, Ziv I, Rosenzweig R, Matiuhin Y, Bronner V, Fushman D(2009) Together, Rpn10 and Dsk2 can serve as a polyubiquitin chain-length sensor. Mol Cell36: 1018-1033
doi: 10.1016/j.molcel.2009.11.012
9 Groll M, Schreiner P, Chen X, Husnjak K, Randles L, Zhang NX, Elsasser S, Finley D, Dikic I, Walters KJ(2008) Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature453: 548-552
doi: 10.1038/nature06924
10 Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program Dyana. J Mol Biol273: 283-298
doi: 10.1006/jmbi.1997.1284
11 Hamazaki J, Iemura S, Natsume T, Yashiroda H, Tanaka K, Murata S(2006) A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J25: 4524-4536
doi: 10.1038/sj.emboj.7601338
12 Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D, Dikic I(2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature453: 481-488
doi: 10.1038/nature06926
13 Johnson B, Blevins R(1994) NMR view: acomputer program for the visualization and analysis of NMR data. J Biomol NMR4: 603-614
doi: 10.1007/BF00404272
14 Johnston SC, Larsen CN, Cook WJ, Wilkinson KD, Hill CP(1997) Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 angstrom resolution. EMBO J16: 3787-3796
doi: 10.1093/emboj/16.13.3787
15 Johnston SC, Riddle SM, Cohen RE, Hill CP(1999) Structural basis for the speciflcity of ubiquitin C-terminal hydrolases. EMBO J18: 3877-3887
doi: 10.1093/emboj/18.14.3877
16 Konarev PV, Petoukhov MV, Svergun DI(2001) MASSHA—a graphics system for rigid-body modelling of macromolecular complexes against solution scattering data. J Appl Crystallogr34: 527-532
doi: 10.1107/S0021889801006100
17 Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI(2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr36: 1277-1282
doi: 10.1107/S0021889803012779
18 Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph14: 51-55
doi: 10.1016/0263-7855(96)00009-4
19 Koulich E, Li X, DeMartino GN(2008) Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol Biol Cell19: 1072-1082
doi: 10.1091/mbc.E07-10-1040
20 Kozin MB, Svergun DI(2001) Automated matching of high- and lowresolution structural models. J Appl Crystallogr34: 33-41
doi: 10.1107/S0021889800014126
21 Krissinel E, Henrick K(2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol372: 774-797
doi: 10.1016/j.jmb.2007.05.022
22 Lam YA, Xu W, DeMartino GN, Cohen RE(1997) Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature385: 737-740
doi: 10.1038/385737a0
23 Larzabal M, Mercado EC, Vilte DA, Salazar-Gonzalez H, Cataldi A, Navarro-Garcia F (2010) Designed coiled-coil peptides inhibit the type three secretion system of enteropathogenic Escherichia coli. PLoS One5: e9046
doi: 10.1371/journal.pone.0009046
24 Laskowski R, Rullmann JA, MacArthur M, Kaptein R, Thornton J(1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR8: 477-486
25 Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z, Yu H, Thomas PJ, DeMartino GN(2006) ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Mol Cell24: 39-50
doi: 10.1016/j.molcel.2006.08.025
26 Maiti TK, Permaul M, Boudreaux DA, Mahanic C, Mauney S, Das C(2011) Crystal structure of the catalytic domain of UCHL5, a proteasome-associated human deubiquitinating enzyme, reveals an unproductive form of the enzyme. FEBS J278: 4917-4926
doi: 10.1111/j.1742-4658.2011.08393.x
27 Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wuthrich K(1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids—(IUPAC Recommendations 1998). Pure Appl Chem70: 117-142
doi: 10.1351/pac199870010117
28 Misaghi S, Galardy PJ, Meester WJ, Ovaa H, Ploegh HL, Gaudet R(2005) Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. J Biol Chem280: 1512-1520
doi: 10.1074/jbc.M410770200
29 Nederveen AJ, Doreleijers JF, Vranken W, Miller Z, Spronk CAEM, Nabuurs SB, Güntert P, Livny M, Markley JL, Nilges M (2005) RECOORD: a recalculated coordinate database of 500+proteins from the PDB using restraints from the BioMagResBank. Proteins59: 662-672
doi: 10.1002/prot.20408
30 Nishio K, Kim SW, Kawai K, Mizushima T, Yamane T, Hamazaki J, Murata S, Tanaka K, Morimoto Y(2009) Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochem Biophys Res Commun390: 855-860
doi: 10.1016/j.bbrc.2009.10.062
31 Niu F, Shaw N, Wang YE, Jiao L, Ding W, Li X, Zhu P, Upur H, Ouyang S, Cheng G (2013) Structure of the Leanyer orthobunyavirus nucleoprotein-RNA complex reveals unique architecture for RNA encapsidation. Proc Natl Acad Sci USA110: 9054-9059
doi: 10.1073/pnas.1300035110
32 Popp MW, Artavanis-Tsakonas K, Ploegh HL(2009) Substrate flltering by the active site crossover loop in UCHL3 revealed by sortagging and gain-of-function mutations. J Biol Chem284: 3593-3602
doi: 10.1074/jbc.M807172200
33 Qiu XB, Ouyang SY, Li CJ, Miao S, Wang L, Goldberg AL(2006) hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J25: 5742-5753
doi: 10.1038/sj.emboj.7601450
34 Reyes-Turcu FE, Ventii KH, Wilkinson KD(2009) Regulation and cellular roles of ubiquitin-speciflc deubiquitinating enzymes. Annu Rev Biochem78: 363-397
doi: 10.1146/annurev.biochem.78.082307.091526
35 Schuck P(2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J78: 1606-1619
doi: 10.1016/S0006-3495(00)76713-0
36 Shen Y, Delaglio F, Cornilescu G, Bax A(2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR44: 213-223
doi: 10.1007/s10858-009-9333-z
37 Svergun D(1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr25: 495-503
doi: 10.1107/S0021889892001663
38 Svergun DI, Petoukhov MV, Koch MH(2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J80: 2946-2953
doi: 10.1016/S0006-3495(01)76260-1
39 Ventii KH, Wilkinson KD(2008) Protein partners of deubiquitinating enzymes. Biochem J414: 161-175
doi: 10.1042/BJ20080798
40 Voges D, Zwickl P, Baumeister W(1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem68: 1015-1068
doi: 10.1146/annurev.biochem.68.1.1015
41 Wicks SJ, Haros K, Maillard M, Song L, Cohen RE, Dijke PT, Chantry A(2005) The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling. Oncogene24: 8080-8084
doi: 10.1038/sj.onc.1208944
42 Yao T, Song L, Xu W, DeMartino GN, Florens L, Swanson SK, Washburn MP, Conaway RC, Conaway JW, Cohen RE(2006) Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat Cell Biol8: 994-1002
doi: 10.1038/ncb1460
43 Yao T, Song L, Jin J, Cai Y, Takahashi H, Swanson SK, Washburn MP, Florens L, Conaway RC, Cohen RE (2008) Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Mol Cell31: 909-917
doi: 10.1016/j.molcel.2008.08.027
44 Yin ST, Huang H, Zhang YH, Zhou ZR, Song AX, Hong FS, Hu HY(2011) A fluorescence assay for elucidating the substrate speciflcities of deubiquitinating enzymes. Biochem Biophys Res Commun416: 76-79
doi: 10.1016/j.bbrc.2011.10.147
45 Young P, Deveraux Q, Beal RE, Pickart CM, Rechsteiner M(1998) Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J Biol Chem273: 5461-5467
doi: 10.1074/jbc.273.10.5461
46 Zhang H, Chen J, Wang Y, Peng L, Dong X, Lu Y, Keating AE, Jiang T(2009) A computationally guided protein-interaction screen uncovers coiled-coil interactions involved in vesicular trafflcking. J Mol Biol392: 228-241
doi: 10.1016/j.jmb.2009.07.006
47 Zhou ZR, Zhang YH, Liu S, Song AX, Hu HY(2012) Length of the active-site crossover loop deflnes the substrate speciflcity of ubiquitin C-terminal hydrolases for ubiquitin chains. Biochem J441: 143-149
doi: 10.1042/BJ20110699
48 Zhu QZ, Wani G, Wang QE, El-mahdy M, Snapka RM, Wani AA(2005) Deubiquitination by proteasome is coordinated with substrate translocation for proteolysis in vivo. Exp Cell Res307: 436-451
doi: 10.1016/j.yexcr.2005.03.031
[1] Supplementary Material Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed