|
|
|
Phosphorylation of Atg31 is required for autophagy |
Wenzhi Feng1,Tong Wu2,Xiaoyu Dan2,Yuling Chen3,Lin Li4,She Chen4,Di Miao3,Haiteng Deng3,Xinqi Gong5,*( ),Li Yu2,*( ) |
1. PTN Program, College of Life Science, Peking University, Beijing 100871, China 2. State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China 3. Center for Biomedical Analysis, Tsinghua University, Beijing 100084, China 4. National Institute of Biological Sciences, Beijing 102206, China 5. Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China |
|
|
|
|
Abstract Autophagy is an evolutionarily conserved cellular process which degrades intracellular contents. The Atg17- Atg31-Atg29 complex plays a key role in autophagy induction by various stimuli. In yeast, autophagy occurs with autophagosome formation at a special site near the vacuole named the pre-autophagosomal structure (PAS). The Atg17-Atg31-Atg29 complex forms a scaffold for PAS organization, and recruits other autophagy-related (Atg) proteins to the PAS. Here, we show that Atg31 is a phosphorylated protein. The phosphorylation sites on Atg31 were identified by mass spectrometry. Analysis of mutants in which the phosphorylated amino acids were replaced by alanine, either individually or in various combinations, identified S174 as the functional phosphorylation site. An S174A mutant showed a similar degree of autophagy impairment as an Atg31 deletion mutant. S174 phosphorylation is required for autophagy induced by various autophagy stimuli such as nitrogen starvation and rapamycin treatment. Mass spectrometry analysis showed that S174 is phosphorylated constitutively, and expression of a phosphorylation-mimic mutant (S174D) in the Atg31 deletion strain restores autophagy. In the S174A mutant, Atg9-positive vesicles accumulate at the PAS. Thus, S174 phosphorylation is required for formation of autophagosomes, possibly by facilitating the recycling of Atg9 from the PAS. Our data demonstrate the role of phosphorylation of Atg31 in autophagy.
|
| Keywords
autophagy
Atg31
phosphorylation
autophagosome
pre-autophagosomal structure (PAS)
|
|
Corresponding Author(s):
Xinqi Gong,Li Yu
|
|
Issue Date: 13 April 2015
|
|
| 1 |
Cheong H, Yorimitsu T, Reggiori F, Legakis JE, Wang CW, Klionsky DJ (2005) Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell 16: 3438-3453
https://doi.org/10.1091/mbc.E04-10-0894
|
| 2 |
DeLano WLT (2002) The PyMOL molecular graphics system. CCP4 Newslett Protein Crystallogr 40: 82-92
|
| 3 |
Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21: 3433-3434
https://doi.org/10.1093/bioinformatics/bti541
|
| 4 |
Gong X, Wang P, Yang F, Chang S, Liu B, He H, Cao L, Xu X, Li C, Chen W, . (2010) Protein-protein docking with binding site patch prediction and network-based terms enhanced combinatorial scoring. Proteins 78: 3150-3155
https://doi.org/10.1002/prot.22831
|
| 5 |
Harding TM, Morano KA, Scott SV, Klionsky DJ (1995) Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 131: 591-602
https://doi.org/10.1083/jcb.131.3.591
|
| 6 |
Hussey S, Travassos LH, Jones NL (2009) Autophagy as an emerging dimension to adaptive and innate immunity. Semin Immunol 21: 233-241
https://doi.org/10.1016/j.smim.2009.05.004
|
| 7 |
Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32: 1037-1049
https://doi.org/10.1093/nar/gkh253
|
| 8 |
Jiang P, Mizushima N (2014) Autophagy and human diseases. Cell Res 24: 69-79
https://doi.org/10.1038/cr.2013.161
|
| 9 |
Joosten RP, te Beek TAH, Krieger E (2011) A series of PDB related databases for everyday needs. Nucleic Acids Res 39: D411-D419
https://doi.org/10.1093/nar/gkq1105
|
| 10 |
Kabeya Y, Kawamata T, Suzuki K, Ohsumi Y (2007) Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochem Biophys Res Commun 356: 405-410
https://doi.org/10.1016/j.bbrc.2007.02.150
|
| 11 |
Kabeya Y, Noda NN, Fujioka Y, Suzuki K, Inagaki F, Ohsumi Y (2009) Characterization of the Atg17–Atg29–Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem Biophys Research Commun 389: 612-615
https://doi.org/10.1016/j.bbrc.2009.09.034
|
| 12 |
Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
|
| 13 |
Kinoshita E, Takahashi M, Takeda H, Shiro M, Koike T (2004) Recognition of phosphate monoester dianion by an alkoxidebridged dinuclear zinc(ii) complex. Dalton Trans 8: 1189-1193
https://doi.org/10.1039/b400269e
|
| 14 |
Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for autophagy-related genes. Dev Cell 5(4): 539-545
https://doi.org/10.1016/S1534-5807(03)00296-X
|
| 15 |
Kosako H, Yamaguchi N, Aranami C, Ushiyama M, Kose S, Imamoto N, Taniguchi H, Nishida E, Hattori, S (2009) Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat Struct Mol Biol 16: 1026-1035
https://doi.org/10.1038/nsmb.1656
|
| 16 |
Longtine MS, McKenzie A III, Demarini DJ, Shah NG, Wach A, Peter Philippsen AB, Pringle JR (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14(8): 953-961
https://doi.org/10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
|
| 17 |
Lu J-Y, Lin Y-Y, Sheu J-C, Wu J-T, Lee F-J, Chen Y, Lin M-I, Chiang F-T, Tai T-Y, Berger SL (2011) Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 146: 969-979
https://doi.org/10.1016/j.cell.2011.07.044
|
| 18 |
Martin DDO, Ladha S, Ehrnhoefer DE, Hayden MR (2014) Autophagy in huntington disease and huntingtin in autophagy. Trends Neurosci 38(1): 26-35
https://doi.org/10.1016/j.tins.2014.09.003
|
| 19 |
Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147: 728-741
https://doi.org/10.1016/j.cell.2011.10.026
|
| 20 |
Pronk Sander, Pail Szilard, Schulz Roland (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7): 845
https://doi.org/10.1093/bioinformatics/btt055
|
| 21 |
Ragusa Michael J, Stanley Robin E, Hurley James H (2012) Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 151: 1501-1512
https://doi.org/10.1016/j.cell.2012.11.028
|
| 22 |
Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ (2004) The Atg1–Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6: 79-90
https://doi.org/10.1016/S1534-5807(03)00402-7
|
| 23 |
Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5: 725-738
https://doi.org/10.1038/nprot.2010.5
|
| 24 |
Suzuki K, Ohsumi Y (2010) Current knowledge of the preautophagosomal structure (PAS). FEBS Lett 584: 1280-1286
https://doi.org/10.1016/j.febslet.2010.02.001
|
| 25 |
Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, Veenhuis M, Wolf DH (1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349: 275-280
https://doi.org/10.1016/0014-5793(94)00672-5
|
| 26 |
Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27: 527-533
https://doi.org/10.1016/S0968-0004(02)02169-2
|
| 27 |
Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333: 169-174
https://doi.org/10.1016/0014-5793(93)80398-E
|
| 28 |
Winslow AR, Rubinsztein DC (2008) Autophagy in neurodegeneration and development. Biochim Biophys Acta 1782: 723-729
https://doi.org/10.1016/j.bbadis.2008.06.010
|
| 29 |
Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y (2012) Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198: 219-233
https://doi.org/10.1083/jcb.201202061
|
| 30 |
Yi C, Ma M, Ran L, Zheng J, Tong J, Zhu J, Ma C, Sun Y, Zhang S, Feng W (2012) Function and molecular mechanism of acetylation in autophagy regulation. Science 336: 474-477
https://doi.org/10.1126/science.1216990
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|