Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2015, Vol. 6 Issue (4) : 288-296    https://doi.org/10.1007/s13238-015-0138-4
RESEARCH ARTICLE
Phosphorylation of Atg31 is required for autophagy
Wenzhi Feng1,Tong Wu2,Xiaoyu Dan2,Yuling Chen3,Lin Li4,She Chen4,Di Miao3,Haiteng Deng3,Xinqi Gong5,*(),Li Yu2,*()
1. PTN Program, College of Life Science, Peking University, Beijing 100871, China
2. State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
3. Center for Biomedical Analysis, Tsinghua University, Beijing 100084, China
4. National Institute of Biological Sciences, Beijing 102206, China
5. Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China
 Download: PDF(1641 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Autophagy is an evolutionarily conserved cellular process which degrades intracellular contents. The Atg17- Atg31-Atg29 complex plays a key role in autophagy induction by various stimuli. In yeast, autophagy occurs with autophagosome formation at a special site near the vacuole named the pre-autophagosomal structure (PAS). The Atg17-Atg31-Atg29 complex forms a scaffold for PAS organization, and recruits other autophagy-related (Atg) proteins to the PAS. Here, we show that Atg31 is a phosphorylated protein. The phosphorylation sites on Atg31 were identified by mass spectrometry. Analysis of mutants in which the phosphorylated amino acids were replaced by alanine, either individually or in various combinations, identified S174 as the functional phosphorylation site. An S174A mutant showed a similar degree of autophagy impairment as an Atg31 deletion mutant. S174 phosphorylation is required for autophagy induced by various autophagy stimuli such as nitrogen starvation and rapamycin treatment. Mass spectrometry analysis showed that S174 is phosphorylated constitutively, and expression of a phosphorylation-mimic mutant (S174D) in the Atg31 deletion strain restores autophagy. In the S174A mutant, Atg9-positive vesicles accumulate at the PAS. Thus, S174 phosphorylation is required for formation of autophagosomes, possibly by facilitating the recycling of Atg9 from the PAS. Our data demonstrate the role of phosphorylation of Atg31 in autophagy.

Keywords autophagy      Atg31      phosphorylation      autophagosome      pre-autophagosomal structure (PAS)     
Corresponding Author(s): Xinqi Gong,Li Yu   
Issue Date: 13 April 2015
 Cite this article:   
Wenzhi Feng,Tong Wu,Xiaoyu Dan, et al. Phosphorylation of Atg31 is required for autophagy[J]. Protein Cell, 2015, 6(4): 288-296.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-015-0138-4
https://academic.hep.com.cn/pac/EN/Y2015/V6/I4/288
1 Cheong H, Yorimitsu T, Reggiori F, Legakis JE, Wang CW, Klionsky DJ (2005) Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell 16: 3438-3453
https://doi.org/10.1091/mbc.E04-10-0894
2 DeLano WLT (2002) The PyMOL molecular graphics system. CCP4 Newslett Protein Crystallogr 40: 82-92
3 Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21: 3433-3434
https://doi.org/10.1093/bioinformatics/bti541
4 Gong X, Wang P, Yang F, Chang S, Liu B, He H, Cao L, Xu X, Li C, Chen W, . (2010) Protein-protein docking with binding site patch prediction and network-based terms enhanced combinatorial scoring. Proteins 78: 3150-3155
https://doi.org/10.1002/prot.22831
5 Harding TM, Morano KA, Scott SV, Klionsky DJ (1995) Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 131: 591-602
https://doi.org/10.1083/jcb.131.3.591
6 Hussey S, Travassos LH, Jones NL (2009) Autophagy as an emerging dimension to adaptive and innate immunity. Semin Immunol 21: 233-241
https://doi.org/10.1016/j.smim.2009.05.004
7 Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32: 1037-1049
https://doi.org/10.1093/nar/gkh253
8 Jiang P, Mizushima N (2014) Autophagy and human diseases. Cell Res 24: 69-79
https://doi.org/10.1038/cr.2013.161
9 Joosten RP, te Beek TAH, Krieger E (2011) A series of PDB related databases for everyday needs. Nucleic Acids Res 39: D411-D419
https://doi.org/10.1093/nar/gkq1105
10 Kabeya Y, Kawamata T, Suzuki K, Ohsumi Y (2007) Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochem Biophys Res Commun 356: 405-410
https://doi.org/10.1016/j.bbrc.2007.02.150
11 Kabeya Y, Noda NN, Fujioka Y, Suzuki K, Inagaki F, Ohsumi Y (2009) Characterization of the Atg17–Atg29–Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem Biophys Research Commun 389: 612-615
https://doi.org/10.1016/j.bbrc.2009.09.034
12 Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
13 Kinoshita E, Takahashi M, Takeda H, Shiro M, Koike T (2004) Recognition of phosphate monoester dianion by an alkoxidebridged dinuclear zinc(ii) complex. Dalton Trans 8: 1189-1193
https://doi.org/10.1039/b400269e
14 Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for autophagy-related genes. Dev Cell 5(4): 539-545
https://doi.org/10.1016/S1534-5807(03)00296-X
15 Kosako H, Yamaguchi N, Aranami C, Ushiyama M, Kose S, Imamoto N, Taniguchi H, Nishida E, Hattori, S (2009) Phosphoproteomics reveals new ERK MAP kinase targets and links ERK to nucleoporin-mediated nuclear transport. Nat Struct Mol Biol 16: 1026-1035
https://doi.org/10.1038/nsmb.1656
16 Longtine MS, McKenzie A III, Demarini DJ, Shah NG, Wach A, Peter Philippsen AB, Pringle JR (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14(8): 953-961
https://doi.org/10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
17 Lu J-Y, Lin Y-Y, Sheu J-C, Wu J-T, Lee F-J, Chen Y, Lin M-I, Chiang F-T, Tai T-Y, Berger SL (2011) Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 146: 969-979
https://doi.org/10.1016/j.cell.2011.07.044
18 Martin DDO, Ladha S, Ehrnhoefer DE, Hayden MR (2014) Autophagy in huntington disease and huntingtin in autophagy. Trends Neurosci 38(1): 26-35
https://doi.org/10.1016/j.tins.2014.09.003
19 Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147: 728-741
https://doi.org/10.1016/j.cell.2011.10.026
20 Pronk Sander, Pail Szilard, Schulz Roland (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7): 845
https://doi.org/10.1093/bioinformatics/btt055
21 Ragusa Michael J, Stanley Robin E, Hurley James H (2012) Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 151: 1501-1512
https://doi.org/10.1016/j.cell.2012.11.028
22 Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ (2004) The Atg1–Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell 6: 79-90
https://doi.org/10.1016/S1534-5807(03)00402-7
23 Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5: 725-738
https://doi.org/10.1038/nprot.2010.5
24 Suzuki K, Ohsumi Y (2010) Current knowledge of the preautophagosomal structure (PAS). FEBS Lett 584: 1280-1286
https://doi.org/10.1016/j.febslet.2010.02.001
25 Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, Veenhuis M, Wolf DH (1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349: 275-280
https://doi.org/10.1016/0014-5793(94)00672-5
26 Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27: 527-533
https://doi.org/10.1016/S0968-0004(02)02169-2
27 Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333: 169-174
https://doi.org/10.1016/0014-5793(93)80398-E
28 Winslow AR, Rubinsztein DC (2008) Autophagy in neurodegeneration and development. Biochim Biophys Acta 1782: 723-729
https://doi.org/10.1016/j.bbadis.2008.06.010
29 Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y (2012) Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 198: 219-233
https://doi.org/10.1083/jcb.201202061
30 Yi C, Ma M, Ran L, Zheng J, Tong J, Zhu J, Ma C, Sun Y, Zhang S, Feng W (2012) Function and molecular mechanism of acetylation in autophagy regulation. Science 336: 474-477
https://doi.org/10.1126/science.1216990
[1] Supplementary Material Download
[1] Kun Liu, Jiani Cao, Xingxing Shi, Liang Wang, Tongbiao Zhao. Cellular metabolism and homeostasis in pluripotency regulation[J]. Protein Cell, 2020, 11(9): 630-640.
[2] Mi Li, Hong-Bing Shu. Dephosphorylation of cGAS by PPP6C impairs its substrate binding activity and innate antiviral response[J]. Protein Cell, 2020, 11(8): 584-599.
[3] Tong Li, Jinbo Han, Liangjie Jia, Xiao Hu, Liqun Chen, Yiguo Wang. PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation[J]. Protein Cell, 2019, 10(8): 583-594.
[4] Na Qu, Zhao Ma, Mengrao Zhang, Muaz N. Rushdi, Christopher J. Krueger, Antony K. Chen. Inhibition of retroviral Gag assembly by non-silencing miRNAs promotes autophagic viral degradation[J]. Protein Cell, 2018, 9(7): 640-651.
[5] Xing Guo, Xiuliang Huang, Mark J. Chen. Reversible phosphorylation of the 26S proteasome[J]. Protein Cell, 2017, 8(4): 255-272.
[6] Mengqi Lv,Chongyuan Wang,Fudong Li,Junhui Peng,Bin Wen,Qingguo Gong,Yunyu Shi,Yajun Tang. Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy[J]. Protein Cell, 2017, 8(1): 25-38.
[7] Zhi-Dong Liu,Su Zhang,Jian-Jin Hao,Tao-Rong Xie,Jian-Sheng Kang. Cellular model of neuronal atrophy induced by DYNC1I1 deficiency reveals protective roles of RAS-RAF-MEK signaling[J]. Protein Cell, 2016, 7(9): 638-650.
[8] Jiaxiang Shao,Xiao Yang,Tengyuan Liu,Tingting Zhang,Qian Reuben Xie,Weiliang Xia. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage[J]. Protein Cell, 2016, 7(4): 281-290.
[9] Yan-Cheng Tang,Hong-Xia Tian,Tao Yi,Hu-Biao Chen. The critical roles of mitophagy in cerebral ischemia[J]. Protein Cell, 2016, 7(10): 699-713.
[10] Anna Gortat,Mónica Sancho,Laura Mondragón,Àgel Messeguer,Enrique Pérez-Payá,Mar Orzáez. Apaf1 inhibition promotes cell recovery from apoptosis[J]. Protein Cell, 2015, 6(11): 833-843.
[11] Jianhua Xiong. Atg7 in development and disease: panacea or Pandora’s Box?[J]. Protein Cell, 2015, 6(10): 722-734.
[12] Hui Yang,Hongbing Wang. Signaling control of the constitutive androstane receptor (CAR)[J]. Protein Cell, 2014, 5(2): 113-123.
[13] Xiaojuan Chen,Kai Wang,Yaling Xing,Jian Tu,Xingxing Yang,Qian Zhao,Kui Li,Zhongbin Chen. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity[J]. Protein Cell, 2014, 5(12): 912-927.
[14] Guanghua Xu,Jing Wang,George Fu Gao,Cui Hua Liu. Insights into battles between Mycobacterium tuberculosis and macrophages[J]. Protein Cell, 2014, 5(10): 728-736.
[15] Fengfeng Niu, Heng Ru, Wei Ding, Songying Ouyang, Zhi-Jie Liu. Structural biology study of human TNF receptor associated factor 4 TRAF domain[J]. Prot Cell, 2013, 4(9): 687-694.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed