Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2015, Vol. 6 Issue (8) : 575-588    https://doi.org/10.1007/s13238-015-0142-8
RESEARCH ARTICLE
Two less common human microRNAs miR-875 and miR-3144 target a conserved site of E6 oncogene in most high-risk human papillomavirus subtypes
Lin Lin1,Qingqing Cai1,3,Xiaoyan Zhang5,Hongwei Zhang1,Yang Zhong6,7,Congjian Xu1,2,3,4,*(),Yanyun Li1,*()
1. Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
2. Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China
3. Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
4. Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
5. School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
6. Shanghai Center for Bioinformation Technology, Shanghai 200235, China
7. School of Life Sciences, Fudan University, Shanghai 200433, China
 Download: PDF(2351 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Human papillomaviruses (HPVs) including high-risk (HR) and low-risk (LR) subtypes have distinguishable variation on both genotypes and phenotypes. The coinfection of multiple HR-HPVs, headed by HPV16, is common in cervical cancer in female. Recently accumulating reports have focused on the interaction between virus and host, particularly the role of human microRNAs (miRNAs) in anti-viral defense by targeting viral genome. Here, we found a well-conserved target site of miRNAs in the genomes of most HR-HPVs, not LR-HPVs, by scanning all potential target sites of human miRNAs on 24 HPVs of unambiguous subtypes of risk. The site is targeted by two less common human miRNAs, miR-875 and miR-3144, and is located in E6 oncogene open reading frame (ORF) and overlap with the first alternative splice exon of viral early transcripts. In validation tests, miR-875 and miR-3144 were identified to suppress the target reporter activity markedly and inhibit the expression of both synthetically exogenous E6 and endogenous E6 oncogene. High level of two miRNAs can inhibit cell growth and promote apoptosis in HPV16-positive cervical cancer cells. This study provides a promising common target of miRNAs for most HR-HPVs and highlights the effects of two low expressed human miRNAs on tumour suppression.

Keywords human papillomavirus      microRNA      E6      miR-875      miR-3144     
Corresponding Author(s): Congjian Xu,Yanyun Li   
Issue Date: 05 August 2015
 Cite this article:   
Lin Lin,Qingqing Cai,Xiaoyan Zhang, et al. Two less common human microRNAs miR-875 and miR-3144 target a conserved site of E6 oncogene in most high-risk human papillomavirus subtypes[J]. Protein Cell, 2015, 6(8): 575-588.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-015-0142-8
https://academic.hep.com.cn/pac/EN/Y2015/V6/I8/575
1 Alp Avci G (2012) Genomic organization and proteins of human papillomavirus. Mikrobiyol bul 46: 507-515
2 Ambros V (2004) The functions of animal microRNAs. Nature 431: 350-355
https://doi.org/10.1038/nature02871
3 Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Lett 579: 5904-5910
https://doi.org/10.1016/j.febslet.2005.09.040
4 Bernard HU, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers EM(2010) Classification of papillomaviruses (PVs) basedon 189 PV types and proposal of taxonomic amendments. Virology 401: 70-79
https://doi.org/10.1016/j.virol.2010.02.002
5 Chan LW, Wang FF, Cho WC (2012) Genomic sequence analysis of EGFR regulation by microRNAs in lung cancer. Curr Top Med Chem 12: 920-926
https://doi.org/10.2174/156802612800166747
6 de Freitas AC, Coimbra EC, Leitao Mda C (2014) Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis. Biochim Biophys Acta 1845: 91-103
https://doi.org/10.1016/j.bbcan.2013.12.004
7 del Moral-Hernandez O, Lopez-Urrutia E, Bonilla-Moreno R, Martinez-Salazar M, Arechaga-Ocampo E, Berumen J, Villegas-Sepulveda N (2010) The HPV-16 E7 oncoprotein is expressed mainly from the unspliced E6/E7 transcript in cervical carcinoma C33-A cells. Arch Virol 155: 1959-1970
https://doi.org/10.1007/s00705-010-0787-9
8 Dreher A, Rossing M, Kaczkowski B, Andersen DK, Larsen TJ, Christophersen MK, Nielsen FC, Norrild B (2011) Differential expression of cellular microRNAs in HPV 11, -16, and-45 transfected cells. Biochem Biophys Res Commun 412: 20-25
https://doi.org/10.1016/j.bbrc.2011.07.011
9 Filippova M, Johnson MM, Bautista M, Filippov V, Fodor N, Tungteakkhun SS, Williams K, Duerksen-Hughes PJ (2007) The large and small isoforms of human papillomavirus type 16 E6 bind to and differentially affect procaspase 8 stability and activity. J Virol 81: 4116-4129
https://doi.org/10.1128/JVI.01924-06
10 Forman JJ, Coller HA (2010) The code within the code: microRNAs target coding regions. Cell Cycle 9: 1533-1541
https://doi.org/10.4161/cc.9.8.11202
11 Ghosh Z, Mallick B, Chakrabarti J (2009) Cellular versus viral microRNAs in host-virus interaction. Nucleic Acids Res 37: 1035-1048
https://doi.org/10.1093/nar/gkn1004
12 Greco D, Kivi N, Qian K, Leivonen SK, Auvinen P, Auvinen E (2011) Human papillomavirus 16 E5 modulates the expression of host microRNAs. PLoS One 6: e21646
https://doi.org/10.1371/journal.pone.0021646
13 Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36: D154-D158
https://doi.org/10.1093/nar/gkm952
14 Gunasekharan V, Laimins LA (2013) Human papillomaviruses modulate microRNA 145 expression to directly control genome amplification. J Virol 87: 6037-6043
https://doi.org/10.1128/JVI.00153-13
15 Hamfjord J, Stangeland AM, Hughes T, Skrede ML, Tveit KM, Ikdahl T, Kure EH (2012) Differential expression of miRNAs in colorectal cancer: comparison of paired tumor tissue and adjacent normal mucosa using high-throughput sequencing. PLoS One 7: e34150
https://doi.org/10.1371/journal.pone.0034150
16 Hao J, Zhang S, Zhou Y, Hu X, Shao C (2011) MicroRNA 483-3p suppresses the expression of DPC4/Smad4 in pancreatic cancer. FEBS Lett 585: 207-213
https://doi.org/10.1016/j.febslet.2010.11.039
17 Harper DM, Demars LR (2014) Primary strategies for HPV infection and cervical cancer prevention. Clin Obstet Gynecol 57: 256-278
https://doi.org/10.1097/GRF.0000000000000027
18 Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20: 460-469
https://doi.org/10.1016/j.molmed.2014.06.005
19 Hernandez-Lopez HR, Graham SV (2012) Alternative splicing in human tumour viruses: a therapeutic target? Biochem J 445: 145-156
20 Houzet L, Klase Z, Yeung ML, Wu A, Le SY, Quinones M, Jeang KT (2012) The extent of sequence complementarity correlates with the potency of cellular miRNA-mediated restriction of HIV-1. Nucleic Acids Res 40: 11684-11696
https://doi.org/10.1093/nar/gks912
21 Jimenez-Wences H, Peralta-Zaragoza O, Fernandez-Tilapa G (2014) Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review). Oncol Rep 31: 2467-2476
22 John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2: e363
https://doi.org/10.1371/journal.pbio.0020363
23 Juan Moran GR, Uribe-Boll Jimena, Cruz Alfredo, Jimenez Luis, Banales Jose-Luis, Romero Sandra, Hidalgo Alfredo, Bautista Edgar, Merino Enrique, Zuniga Joaquin (2014) Circulating microRNA profiles in patients with severe pneumonia associated to the A/H1N1 virus. Am J Respir Crit Care Med 189: A2694
24 Jung HM, Phillips BL, Chan EK (2014) miR-375 activates p21 and suppresses telomerase activity by coordinately regulating HPV E6/E7, E6AP, CIP2A, and 14-3-3zeta. Mol Cancer 13: 80
https://doi.org/10.1186/1476-4598-13-80
25 Kuhn DE, Martin MM, Feldman DS, Terry AV Jr, Nuovo GJ, Elton TS (2008) Experimental validation of miRNA targets. Methods 44: 47-54
https://doi.org/10.1016/j.ymeth.2007.09.005
26 Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129: 1401-1414
https://doi.org/10.1016/j.cell.2007.04.040
27 Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib A, Voinnet O (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308: 557-560
https://doi.org/10.1126/science.1108784
28 Li Y, Li Z, He Y, Kang Y, Zhang X, Cheng M, Zhong Y, Xu C (2009) Phylogeographic analysis of human papillomavirus 58. Sci China Ser C 52: 1164-1172
https://doi.org/10.1007/s11427-009-0149-6
29 Li YP, Gottwein JM, Scheel TK, Jensen TB, Bukh J (2011) MicroRNA-122 antagonism against hepatitis C virus genotypes 1-6 and reduced efficacy by host RNA insertion or mutations in the HCV 5′ UTR. Proc Natl Acad Sci U S Am 108: 4991-4996
https://doi.org/10.1073/pnas.1016606108
30 Li L, Chen HZ, Chen FF, Li F, Wang M, Wang L, Li YQ, Gao DS (2013) Global microRNA expression profiling reveals differential expression of target genes in 6-hydroxydopamine-injured MN9D cells. Neuromol Med 15: 593-604
https://doi.org/10.1007/s12017-013-8244-z
31 Mahajan VS, Drake A, Chen J (2009) Virus-specific host miRNAs: antiviral defenses or promoters of persistent infection? Trends Immunol 30: 1-7
https://doi.org/10.1016/j.it.2008.08.009
32 Martinez I, Gardiner AS, Board KF, Monzon FA, Edwards RP, Khan SA (2008) Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene 27: 2575-2582
https://doi.org/10.1038/sj.onc.1210919
33 Mejlhede N, Pedersen BV, Frisch M, Fomsgaard A (2010) Multiple human papilloma virus types in cervical infections: competition or synergy? APMIS 118: 346-352
https://doi.org/10.1111/j.1600-0463.2010.2602.x
34 Melar-New M, Laimins LA (2010) Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol 84: 5212-5221
https://doi.org/10.1128/JVI.00078-10
35 Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, Snijders PJ, Meijer CJ, International Agency for Research on Cancer Multicenter Cervical Cancer Study, G (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348: 518-527
https://doi.org/10.1056/NEJMoa021641
36 Nguyen HC, Xie W, Yang M, Hsieh CL, Drouin S, Lee GS, Kantoff PW (2013) Expression differences of circulating microRNAs in metastatic castration resistant prostate cancer and low-risk, localized prostate cancer. Prostate 73: 346-354
https://doi.org/10.1002/pros.22572
37 Nuovo GJ, Wu X, Volinia S, Yan F, di Leva G, Chin N, Nicol AF, Jiang J, Otterson G, Schmittgen TD (2010) Strong inverse correlation between microRNA-125b and human papillomavirus DNA in productive infection. Diagn Mol Pathol 19: 135-143
https://doi.org/10.1097/PDM.0b013e3181c4daaa
38 Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449: 919-922
https://doi.org/10.1038/nature06205
39 Pim D, Banks L (1999) HPV-18 E6*I protein modulates the E6-directed degradation of p53 by binding to full-length HPV-18 E6. Oncogene 18: 7403-7408
https://doi.org/10.1038/sj.onc.1203134
40 Potenza N, Papa U, Mosca N, Zerbini F, Nobile V, Russo A (2011) Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen. Nucleic Acids Res 39: 5157-5163
https://doi.org/10.1093/nar/gkr067
41 Qian K, Pietila T, Ronty M, Michon F, Frilander MJ, Ritari J, Tarkkanen J, Paulin L, Auvinen P, Auvinen E (2013) Identification and validation of human papillomavirus encoded microRNAs. PLoS One 8: e70202
https://doi.org/10.1371/journal.pone.0070202
42 Qingqing Cai X.Z, Zoufeng Li (2010) MiRNAs as promising phylogenetic markers for inferring deep metazoan phylogeny and in support of Olfactores hypothesis. Bioinformatics and Biomedicine (BIBM), 2010 IEEE International Conference on 18-21 Dec 2010, Hong Kong, 101-104
43 Rosenberger S, De-Castro Arce J, Langbein L, Steenbergen RD, Rosl F (2010) Alternative splicing of human papillomavirus type- 16 E6/E6* early mRNA is coupled to EGF signaling via Erk1/2 activation. Proc Natl Acad Sci U S A 107: 7006-7011
https://doi.org/10.1073/pnas.1002620107
44 Russo A, Potenza N (2011) Antiviral effects of human microRNAs and conservation of their target sites. FEBS lett 585: 2551-2555
https://doi.org/10.1016/j.febslet.2011.07.015
45 Scaria V, Hariharan M, Maiti S, Pillai B, Brahmachari SK (2006) Host-virus interaction: a new role for microRNAs. Retrovirology 3: 68
https://doi.org/10.1186/1742-4690-3-68
46 Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129-1136
https://doi.org/10.1016/0092-8674(90)90409-8
47 Shi M, Du L, Liu D, Qian L, Hu M, Yu M, Yang Z, Zhao M, Chen C, Guo L (2012) Glucocorticoid regulation of a novel HPV-E6- p53-miR-145 pathway modulates invasion and therapy resistance of cervical cancer cells. J Pathol 228: 148-157
https://doi.org/10.1002/path.3997
48 Song L, Liu H, Gao S, Jiang W, Huang W (2010) Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol 84: 8849-8860
https://doi.org/10.1128/JVI.00456-10
49 Stacey SN, Jordan D, Snijders PJ, Mackett M, Walboomers JM, Arrand JR (1995) Translation of the human papillomavirus type 16 E7 oncoprotein from bicistronic mRNA is independent of splicing events within the E6 open reading frame. J Virol 69: 7023-7031
50 Stark MS, Tyagi S, Nancarrow DJ, Boyle GM, Cook AL, Whiteman DC, Parsons PG, Schmidt C, Sturm RA, Hayward NK (2010) Characterization of the melanoma miRNAome by deep sequencing. PloS One 5: e9685
https://doi.org/10.1371/journal.pone.0009685
51 Stewart BW, Wild CP (2014) World cancer report. IARC Scientific Publications, New Delhi
52 Thorland EC, Myers SL, Persing DH, Sarkar G, McGovern RM, Gostout BS, Smith DI (2000) Human papillomavirus type 16 integrations in cervical tumors frequently occur in common fragile sites. Cancer Res 60: 5916-5921
53 Weng L, Wu X, Gao H, Mu B, Li X, Wang JH, Guo C, Jin JM, Chen Z, Covarrubias M (2010) MicroRNA profiling of clear cell renal cell carcinoma by whole-genome small RNA deep sequencing of paired frozen and formalin-fixed, paraffin-embedded tissue specimens. J Pathol 222: 41-51
https://doi.org/10.1002/path.2736
54 Witten D, Tibshirani R, Gu SG, Fire A, Lui WO (2010) Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biol 8: 58
https://doi.org/10.1186/1741-7007-8-58
55 Zaravinos A, Lambrou GI, Mourmouras N, Katafygiotis P, Papagregoriou G, Giannikou K, Delakas D, Deltas C (2014) New miRNA profiles accurately distinguish renal cell carcinomas and upper tract urothelial carcinomas from the normal kidney. PLoS One 9: e91646
https://doi.org/10.1371/journal.pone.0091646
56 Zhao X, Liu Q, Cai Q, Li Y, Xu C, Li Z, Zhang X (2012) Dr.VIS: a database of human disease-related viral integration sites. Nucleic Acids Res 40: D1041-D1046
https://doi.org/10.1093/nar/gkr1142
57 Zheng ZM, Baker CC (2006) Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci 11: 2286-2302
https://doi.org/10.2741/1971
58 Zheng ZM, Wang X (2011) Regulation of cellular miRNA expression by human papillomaviruses. Biochim Biophys Acta 1809: 668-677
https://doi.org/10.1016/j.bbagrm.2011.05.005
59 zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2: 342-350
https://doi.org/10.1038/nrc798
[1] Xi Chen, Lin Wang, Rujin Huang, Hui Qiu, Peizhe Wang, Daren Wu, Yonglin Zhu, Jia Ming, Yangming Wang, Jianbin Wang, Jie Na. Dgcr8 deletion in the primitive heart uncovered novel microRNA regulating the balance of cardiac-vascular gene program[J]. Protein Cell, 2019, 10(5): 327-346.
[2] Na Qu, Zhao Ma, Mengrao Zhang, Muaz N. Rushdi, Christopher J. Krueger, Antony K. Chen. Inhibition of retroviral Gag assembly by non-silencing miRNAs promotes autophagic viral degradation[J]. Protein Cell, 2018, 9(7): 640-651.
[3] Yuanyuan Gu, Shuoxin Liu, Xiaodan Zhang, Guimin Chen, Hongwei Liang, Mengchao Yu, Zhicong Liao, Yong Zhou, Chen-Yu Zhang, Tao Wang, Chen Wang, Junfeng Zhang, Xi Chen. Oncogenic miR-19a and miR-19b co-regulate tumor suppressor MTUS1 to promote cell proliferation and migration in lung cancer[J]. Protein Cell, 2017, 8(6): 455-466.
[4] Shaohong Chen, Guangxia Gao. MicroRNAs recruit eIF4E2 to repress translation of target mRNAs[J]. Protein Cell, 2017, 8(10): 750-761.
[5] Zhiju Zhao,Shu Li,Erwei Song,Suling Liu. The roles of ncRNAs and histone-modifiers in regulating breast cancer stem cells[J]. Protein Cell, 2016, 7(2): 89-99.
[6] Qian Fan,Xiangrui Meng,Hongwei Liang,Huilai Zhang,Xianming Liu,Lanfang Li,Wei Li,Wu Sun,Haiyang Zhang,Ke Zen,Chen-Yu Zhang,Zhen Zhou,Xi Chen,Yi Ba. miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma[J]. Protein Cell, 2016, 7(12): 899-912.
[7] Yanqing Liu,Uzair-ur-Rehman,Yu Guo,Hongwei Liang,Rongjie Cheng,Fei Yang,Yeting Hong,Chihao Zhao,Minghui Liu,Mengchao Yu,Xinyan Zhou,Kai Yin,Jiangning Chen,Junfeng Zhang,Chen-Yu Zhang,Feng Zhi,Xi Chen. miR-181b functions as an oncomiR in colorectal cancer by targeting PDCD4[J]. Protein Cell, 2016, 7(10): 722-734.
[8] Hongwei Liang, Junfeng Zhang, Ke Zen, Chen-Yu Zhang, Xi Chen. Nuclear microRNAs and their unconventional role in regulating non-coding RNAs[J]. Prot Cell, 2013, 4(5): 325-330.
[9] Yongkui Li, Jiajia Xie, Xiupeng Xu, Jun Wang, Fang Ao, Yushun Wan, Ying Zhu. MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-λ1[J]. Prot Cell, 2013, 4(2): 130-141.
[10] Ya-Feng Li, Ying Jing, Jielu Hao, Nathan C Frankfort, Xiaoshuang Zhou, Bing Shen, Xinyan Liu, Lihua Wang, Rongshan Li. MicroRNA-21 in the pathogenesis of acute kidney injury[J]. Prot Cell, 2013, 4(11): 813-819.
[11] Yifan Zhan, Li Wu. Functional regulation of monocyte-derived dendritic cells by microRNAs[J]. Prot Cell, 2012, 3(7): 497-507.
[12] Munish Kumar, Sayantan Nath, Himanshu K Prasad, G D Sharma, Yong Li. MicroRNAs: a new ray of hope for diabetes mellitus[J]. Prot Cell, 2012, 3(10): 726-738.
[13] Xi Chen, Hongwei Liang, Junfeng Zhang, Ke Zen, Chen-Yu Zhang. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications[J]. Prot Cell, 2012, 3(1): 28-37.
[14] Yong Huang, Quan Zou, Haitai Song, Fei Song, Ligang Wang, Guozheng Zhang, Xingjia Shen. A study of miRNAs targets prediction and experimental validation[J]. Prot Cell, 2010, 1(11): 979-986.
[15] Shenglin Huang, Xianghuo He. microRNAs: tiny RNA molecules, huge driving forces to move the cell[J]. Prot Cell, 2010, 1(10): 916-926.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed