Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2015, Vol. 6 Issue (8) : 599-609    https://doi.org/10.1007/s13238-015-0173-1
RESEARCH ARTICLE
LSY-2 is essential for maintaining the germ-soma distinction in C. elegans
Long Lin1,2,3,Yuping Li3,Libo Yan2,Gangming Zhang3,Yu Zhao2,Hong Zhang3,*()
1. College of Life Sciences, Beijing Normal University, Beijing 100875, China
2. National Institute of Biological Sciences, Beijing 102206, China
3. State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
 Download: PDF(1081 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The mechanisms that specify and maintain the characteristics of germ cells during animal development are poorly understood. In this study, we demonstrated that loss of function of the zinc-finger gene lsy-2 results in various somatic cells adopting germ cells characteristics, including expression of germline-specific P granules, enhanced RNAi activity and transgene silencing. The soma to germ transformation in lsy-2 mutants requires the activities of multiple chromatin remodeling complexes, including the MES-4 complex and the ISW-1 complex. The distinct germline-specific features in somatic cells and the gene expression profile indicate that LSY-2 acts in the Mec complex in this process. Our study demonstrated that lsy-2 functions in the maintenance of the soma-germ distinction.

Keywords P granules      soma      lsy-2      C. elegans     
Corresponding Author(s): Hong Zhang   
Issue Date: 05 August 2015
 Cite this article:   
Long Lin,Yuping Li,Libo Yan, et al. LSY-2 is essential for maintaining the germ-soma distinction in C. elegans[J]. Protein Cell, 2015, 6(8): 599-609.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-015-0173-1
https://academic.hep.com.cn/pac/EN/Y2015/V6/I8/599
1 Broday L, Kolotuev I, Didier C, Bhoumik A, Gupta BP, Sternberg PW, Podbilewicz B, Ronai Z (2004) The small ubiquitin-like modifier (SUMO) is required for gonadal and uterine-vulval morphogenesis in Caenorhabditis elegans. Genes Dev 18: 2380-2391
https://doi.org/10.1101/gad.1227104
2 Cai Y, Jin J, Tomomori-Sato C, Sato S, Sorokina I, Parmely TJ, Conaway RC, Conaway JW (2003) Identification of new subunits of the multiprotein mammalian TRRAP/TIP60-containing histone acetyltransferase complex. J Biol Chem 278: 42733-42736
https://doi.org/10.1074/jbc.C300389200
3 Cardoso C, Couillault C, Mignon-Ravix C, Millet A, Ewbank JJ, Fontes M, Pujol N (2005) XNP-1/ATR-X acts with RB, HP1 and the NuRD complex during larval development in C. elegans. Dev Biol 278: 49-59
https://doi.org/10.1016/j.ydbio.2004.10.014
4 Chesney MA, Kidd AR 3rd, Kimble J (2006) gon-14 functions with class B and class C synthetic multivulva genes to control larval growth in Caenorhabditis elegans. Genetics 172: 915-928
https://doi.org/10.1534/genetics.105.048751
5 Cui M, Fay DS, Han M (2004) lin-35/Rb cooperates with the SWI/ SNF complex to control Caenorhabditis elegans larval development. Genetics 167: 1177-1185
https://doi.org/10.1534/genetics.103.024554
6 Cui M, Kim EB, Han M (2006) Diverse chromatin remodeling genes antagonize the Rb-involved SynMuv pathways in C. elegans. PLoS Genet 2(5): e74
https://doi.org/10.1371/journal.pgen.0020074
7 Doyon Y, Selleck W, Lane WS, Tan S, Cote J (2004) Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol 24: 1884-1896
https://doi.org/10.1128/MCB.24.5.1884-1896.2004
8 Draper BW, Mello CC, Bowerman B, Hardin J, Priess JR (1996) MEX-3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos. Cell 87: 205-216
https://doi.org/10.1016/S0092-8674(00)81339-2
9 Fay DS, Yochem J (2007) The SynMuv genes of Caenorhabditis elegans in vulval development and beyond. Dev. Biol 306: 1-9
https://doi.org/10.1016/j.ydbio.2007.03.016
10 Fay DS, Large E, Han M, Darland M (2003) lin-35/Rb and ubc-18, an E2 ubiquitin-conjugating enzyme, function redundantly to control pharyngeal morphogenesis in C. elegans. Development 130: 3319-3330
https://doi.org/10.1242/dev.00561
11 Fay DS, Qiu X, Large E, Smith CP, Mango S, Johanson BL (2004) The coordinate regulation of pharyngeal development in C. elegans by lin-35/Rb, pha-1, and ubc-18. Dev Biol 271: 11-25
https://doi.org/10.1016/j.ydbio.2004.03.022
12 Gruidl ME, Smith PA, Kuznicki KA, McCrone JS, Kirchner J, Roussell DL, Strome S, Benneth KL (1996) Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. PNAS 93: 13837-13842
https://doi.org/10.1073/pnas.93.24.13837
13 Guedes S, Priess JR (1997) The C. elegans MEX-1 protein is present in germline blastomeres and is a P granule component. Development 124: 731-739
14 Hird SN, Paulsen JE, Strome S (1996) Segregation of germ granules in living Caenorhabditis elegans embryos: cell type-specific mechanisms for cytoplasmic localisation. Development 122: 1303-1312
15 Johnston RJ Jr, Hobert O (2005) A novel C. elegans zinc finger transcription factor, lsy-2, required for the cell type-specific expression of the lsy-6 microRNA. Development 132: 5451-5460
https://doi.org/10.1242/dev.02163
16 Kaczynski J, Cook T, Urrutia R (2003) Sp1- and Kruppel-like transcription factors. Genome Biol 4: 206
https://doi.org/10.1186/gb-2003-4-2-206
17 Kawasaki I, Shim YH, Kirchner J, Kaminker J, Wood WB, Strome S (1998) PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell 94: 635-645
https://doi.org/10.1016/S0092-8674(00)81605-0
18 Kunert N, Wagner E, Murawska M, Klinker H, Kremmer E, Brehm A (2009) dMec: a novel Mi-2 chromatin remodelling complex involved in transcriptional repression. Embo J 28: 533-544
https://doi.org/10.1038/emboj.2009.3
19 Kuznicki KA, Smith PA, Leung-Chiu WM, Estevez AO, Scott HC, Benneth KL (2000) Combinatorial RNA interference indicates GLH-4 can compensate for GLH-1; these two P granule components are critical for fertility in C. elegans. Development 127: 2907-2916
20 Leight ER, Glossip D, Kornfeld K (2005) Sumoylation of LIN-1 promotes transcriptional repression and inhibition of vulval cell fates. Development 132: 1047-1056
https://doi.org/10.1242/dev.01664
21 Mello CC, Schubert C, Draper B, Zhang W, Lobel R, Priess JR (1996) The PIE-1 protein and germline specification in C. elegans embryos. Nature 382: 710-712
https://doi.org/10.1038/382710a0
22 Ortiz CO, Faumont S, Takayama J, Ahmed HK, Goldsmith AD, Pocock R, McCormick KE, Kunimoto H, Iino Y, Lockery S, Hobert O (2009) Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases. Curr Biol 19: 996-1004
https://doi.org/10.1016/j.cub.2009.05.043
23 Poole RJ, Bashllari E, Cochella L, Flowers EB, Hobert O (2011) A Genome-Wide RNAi Screen for Factors Involved in Neuronal Specification in Caenorhabditis elegans. PLoS Genet 7(6): e1002109
https://doi.org/10.1371/journal.pgen.1002109
24 Poulin G, Dong Y, Fraser AG, Hopper NA, Ahringer J (2005) Chromatin regulation and sumoylation in the inhibition of Rasinduced vulval development in Caenorhabditis elegans. EMBO J 24: 2613-2623
https://doi.org/10.1038/sj.emboj.7600726
25 Robert VJ, Sijen T, van Wolfswinkel J, Plasterk RH (2005) Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences. Genes Dev 19: 782-787
https://doi.org/10.1101/gad.332305
26 Sarin S, O’Meara MM, Flowers EB, Antonio C, Poole RJ, Didiano D, Johnston RJ Jr, Chang S, Narula S, Hobert O (2007) Genetic screens for Caenorhabditis elegans mutants defective in left/right asymmetric neuronal fate specification. Genetics 176: 2109-2130
https://doi.org/10.1534/genetics.107.075648
27 Sijen T, Plasterk RH (2003) Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426: 310-314
https://doi.org/10.1038/nature02107
28 Stielow B, Sapetschnig A, Kruger I, Kunert N, Brehm A, Boutros M, Suske G (2008) Identification of SUMO-dependent chromatinassociated transcriptional repression components by a genomewide RNAi screen. Mol Cell 29: 742-754
https://doi.org/10.1016/j.molcel.2007.12.032
29 Strome S (2005) Specification of the germ line. WormBook 28: 1-10
https://doi.org/10.1895/wormbook.1.9.1
30 Tabara H, Hill RJ, Mello CC, Priess JR, Kohara Y (1999) pos-1 encodes a cytoplasmic zinc-finger protein essential for germline specification in C. elegans. Development 126: 1-11
31 Unhavaithaya Y, Shin TH, Miliaras N, Lee J, Oyama T, Mello CC (2002) MEP-1 and a homolog of the NURD complex component Mi-2 act together to maintain germline-soma distinctions in C. elegans. Cell 111: 991-1002
https://doi.org/10.1016/S0092-8674(02)01202-3
32 Wang D, Kennedy S, Conte D Jr, Kim JK, Gabel HW, Kamath RS, Mello CC, Ruvkun G (2005) Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 436: 593-597
https://doi.org/10.1038/nature04010
33 Wu X, Shi Z, Cui M, Han M, Ruvkun G (2012) Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes. PLoS Genet 8(3): e1002542
https://doi.org/10.1371/journal.pgen.1002542
34 Zhang YX, Yan LB, Zhou Z, Yang PG, Tian E, Zhang K, Zhao Y, Li ZP, Song B, Han JH (2009) SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136: 308-321
https://doi.org/10.1016/j.cell.2008.12.022
[1] Yang Li, Yu Zhang, Qiwen Gan, Meng Xu, Xiao Ding, Guihua Tang, Jingjing Liang, Kai Liu, Xuezhao Liu, Xin Wang, Lingli Guo, Zhiyang Gao, Xiaojiang Hao, Chonglin Yang. C. elegans-based screen identifies lysosome-damaging alkaloids that induce STAT3-dependent lysosomal cell death[J]. Protein Cell, 2018, 9(12): 1013-1026.
[2] Wenzhi Feng,Tong Wu,Xiaoyu Dan,Yuling Chen,Lin Li,She Chen,Di Miao,Haiteng Deng,Xinqi Gong,Li Yu. Phosphorylation of Atg31 is required for autophagy[J]. Protein Cell, 2015, 6(4): 288-296.
[3] Derong Xu,Guifeng Wei,Ping Lu,Jianjun Luo,Xiaomin Chen,Geir Skogerb?,Runsheng Chen. Analysis of the p53/CEP-1 regulated non-coding transcriptome in C. elegans by an NSR-seq strategy[J]. Protein Cell, 2014, 5(10): 770-782.
[4] Rui Li, Ye Bai, Tongtong Liu, Xiaoqun Wang, Qian Wu. Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases[J]. Prot Cell, 2013, 4(6): 415-424.
[5] Mei Han, Hao Chang, Peng Zhang, Tao Chen, Yanhua Zhao, Yongdeng Zhang, Pingsheng Liu, Tao Xu, Pingyong Xu. C13C4.5/Spinster, an evolutionarily conserved protein that regulates fertility in C. elegans through a lysosome-mediated lipid metabolism process[J]. Prot Cell, 2013, 4(5): 364-372.
[6] Shaopeng Chen, Junkang Qiu, Chuan Chen, Chunchun Liu, Yuheng Liu, Lili An, Junying Jia, Jie Tang, Lijun Wu, Haiying Hang. Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells[J]. Prot Cell, 2012, 3(6): 460-469.
[7] Xiaoyu Su, Jun Huang. The Fanconi anemia pathway and DNA interstrand cross-link repair[J]. Prot Cell, 2011, 2(9): 704-711.
[8] Bing Yu, Petra Fey, Karen E. Kestin-Pilcher, Alexei Fedorov, Ashwin Prakash, Rex L. Chisholm, Jane Y. Wu. Spliceosomal genes in the D. discoideum genome: a comparison with those in H. sapiens, D. melanogaster, A. thaliana and S. cerevisiae[J]. Prot Cell, 2011, 2(5): 395-409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed