Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2015, Vol. 6 Issue (9) : 654-666    https://doi.org/10.1007/s13238-015-0178-9
RESEARCH ARTICLE
NSC-640358 acts as RXRα ligand to promote TNFα-mediated apoptosis of cancer cell
Fan Chen1,2,Jiebo Chen1,Jiacheng Lin1,Anton V. Cheltsov3,Lin Xu1,Ya Chen4,Zhiping Zeng1,Liqun Chen1,Mingfeng Huang1,Mengjie Hu1,Xiaohong Ye1,Yuqi Zhou1,Guanghui Wang1,Ying Su1,4,Long Zhang5,Fangfang Zhou6,Xiao-kun Zhang1,4,*(),Hu Zhou1,*()
1. School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
2. School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
3. Q-MOL LLC, San Diego, CA 92105, USA
4. Cancer Center, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
5. Life Science Institute, Zhejiang University, Hangzhou 310058, China
6. Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
 Download: PDF(1946 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Retinoid X receptor α (RXRα) and its N-terminally truncated version tRXRα play important roles in tumorigenesis, while some RXRα ligands possess potent anticancer activities by targeting and modulating the tumorigenic effects of RXRα and tRXRα. Here we describe NSC-640358 (N-6), a thiazolyl-pyrazole derived compound, acts as a selective RXRα ligand to promote TNFα-mediated apoptosis of cancer cell. N-6 binds to RXRα and inhibits the transactivation of RXRα homodimer and RXRα/TR3 heterodimer. Using mutational analysis and computational study, we determine that Arg316 in RXRα, essential for 9-cis-retinoic acid binding and activating RXRα transactivation, is not required for antagonist effects of N-6, whereas Trp305 and Phe313 are crucial for N-6 binding to RXRα by forming extra π–π stacking interactions with N-6, indicating a distinct RXRα binding mode of N-6. N-6 inhibits TR3-stimulated transactivation of Gal4-DBD-RXRα-LBD by binding to the ligand binding pocket of RXRα-LBD, suggesting a strategy to regulate TR3 activity indirectly by using small molecules to target its interacting partner RXRα. For its physiological activities, we show that N-6 strongly inhibits tumor necrosis factor α (TNFα)-induced AKT activation and stimulates TNFα-mediated apoptosis in cancer cells in an RXRα/tRXRα dependent manner. The inhibition of TNFα-induced tRXRα/p85α complex formation by N-6 implies that N-6 targets tRXRα to inhibit TNFα-induced AKT activation and to induce cancer cell apoptosis. Together, our data illustrate a new RXRα ligand with a unique RXRα binding mode and the abilities to regulate TR3 activity indirectly and to induce TNFα-mediated cancer cell apoptosis by targeting RXRα/tRXRα.

Keywords NSC-640358      ligand      RXRα      tRXRα      TNFα      apoptosis     
Corresponding Author(s): Xiao-kun Zhang,Hu Zhou   
Issue Date: 11 September 2015
 Cite this article:   
Fan Chen,Jiebo Chen,Jiacheng Lin, et al. NSC-640358 acts as RXRα ligand to promote TNFα-mediated apoptosis of cancer cell[J]. Protein Cell, 2015, 6(9): 654-666.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-015-0178-9
https://academic.hep.com.cn/pac/EN/Y2015/V6/I9/654
1 Altucci L, Leibowitz MD, Ogilvie KM, de Lera AR, Gronemeyer H (2007) RAR and RXR modulation in cancer and metabolic disease. Nat Rev Drug Discov 6: 793―810
https://doi.org/10.1038/nrd2397
2 Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9: 361―371
https://doi.org/10.1038/nrc2628
3 Cao X, Liu W, Lin F, Li H, Kolluri SK, Lin B, Han YH, Dawson MI, Zhang XK (2004) Retinoid X receptor regulates Nur77/TR3- dependent apoptosis [corrected] by modulating its nuclear export and mitochondrial targeting. Mol Cell Biol 24: 9705―9725
https://doi.org/10.1128/MCB.24.22.9705-9725.2004
4 Casas F, Daury L, Grandemange S, Busson M, Seyer P, Hatier R, Carazo A, Cabello G, Wrutniak-Cabello C (2003) Endocrine regulation of mitochondrial activity: involvement of truncated RXRalpha and c-Erb Aalpha1 proteins. FASEB J 17: 426―436
https://doi.org/10.1096/fj.02-0732com
5 Dawson MI, Xia Z (2012) The retinoid X receptors and their ligands. Biochim Biophys Acta 1821: 21―56
https://doi.org/10.1016/j.bbalip.2011.09.014
6 Dawson MI, Hobbs PD, Peterson VJ, Leid M, Lange CW, Feng KC, Chen G, Gu J, Li H, Kolluri SK (2001) Apoptosis induction in cancer cells by a novel analogue of 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid lacking retinoid receptor transcriptional activation activity. Cancer Res 61: 4723―4730
7 de Lera AR, Bourguet W, Altucci L, Gronemeyer H (2007) Design of selective nuclear receptor modulators: RAR and RXR as a case study. Nat Rev Drug Discov 6: 811―820
https://doi.org/10.1038/nrd2398
8 Egea PF, Mitschler A, Rochel N, Ruff M, Chambon P, Moras D (2000) Crystal structure of the human RXRalpha ligand-binding domain bound to its natural ligand: 9-cis retinoic acid. EMBO J 19: 2592―2601
https://doi.org/10.1093/emboj/19.11.2592
9 Egea PF, Mitschler A, Moras D (2002) Molecular recognition of agonist ligands by RXRs. Mol Endocrinol 16: 987―997
https://doi.org/10.1210/mend.16.5.0823
10 Evans RM, Mangelsdorf DJ (2014) Nuclear receptors, RXR, and the big bang. Cell 157: 255―266
https://doi.org/10.1016/j.cell.2014.03.012
11 Gao W, Liu J, Hu M, Huang M, Cai S, Zeng Z, Lin B, Cao X, Chen J, Zeng JZ (2013) Regulation of proteolytic cleavage of retinoid X receptor-alpha by GSK-3beta. Carcinogenesis 34: 1208―1215
https://doi.org/10.1093/carcin/bgt043
12 Ghose R, Zimmerman TL, Thevananther S, Karpen SJ (2004) Endotoxin leads to rapid subcellular re-localization of hepatic RXRalpha: a novel mechanism for reduced hepatic gene expression in inflammation. Nucl Recept 2: 4
https://doi.org/10.1186/1478-1336-2-4
13 Gronemeyer H, Gustafsson JA, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3: 950―964
https://doi.org/10.1038/nrd1551
14 Huang J, Powell WC, Khodavirdi AC, Wu J, Makita T, Cardiff RD, Cohen MB, Sucov HM, Roy-Burman P (2002) Prostatic intraepithelial neoplasia in mice with conditional disruption of the retinoid X receptor alpha allele in the prostate epithelium. Cancer Res 62: 4812―4819
15 Jiang SY, Shen SR, Shyu RY, Yu JC, Harn HJ, Yeh MY, Lee MM, Chang YC (1999) Expression of nuclear retinoid receptors in normal, premalignant and malignant gastric tissues determined by in situ hybridization. Br J Cancer 80: 206―214
https://doi.org/10.1038/sj.bjc.6690340
16 Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118: 11225―11236
https://doi.org/10.1021/ja9621760
17 Katagiri Y, Takeda K, Yu ZX, Ferrans VJ, Ozato K, Guroff G (2000) Modulation of retinoid signalling through NGF-induced nuclear export of NGFI-B. Nat Cell Biol 2: 435―440
https://doi.org/10.1038/35017072
18 Kolluri SK, Bruey-Sedano N, Cao X, Lin B, Lin F, Han YH, Dawson MI, Zhang XK (2003) Mitogenic effect of orphan receptor TR3 and its regulation by MEKK1 in lung cancer cells. Mol Cell Biol 23: 8651―8667
https://doi.org/10.1128/MCB.23.23.8651-8667.2003
19 Lee SO, Li X, Khan S, Safe S (2011) Targeting NR4A1 (TR3) in cancer cells and tumors. Expert Opin Ther Targets 15: 195―206
https://doi.org/10.1517/14728222.2011.547481
20 Lefebvre P, Benomar Y, Staels B (2010) Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol Metab 21: 676―683
https://doi.org/10.1016/j.tem.2010.06.009
21 Li H, Kolluri SK, Gu J, Dawson MI, Cao X, Hobbs PD, Lin B, Chen G, Lu J, Lin F (2000a) Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 289: 1159―1164
https://doi.org/10.1126/science.289.5482.1159
22 Li M, Indra AK, Warot X, Brocard J, Messaddeq N, Kato S, Metzger D, Chambon P (2000b) Skin abnormalities generated by temporally controlled RXRalpha mutations in mouse epidermis. Nature 407: 633―636
https://doi.org/10.1038/35036595
23 Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK (2004) Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116: 527―540
https://doi.org/10.1016/S0092-8674(04)00162-X
24 Lotan Y, Xu XC, Shalev M, Lotan R, Williams R, Wheeler TM, Thompson TC, Kadmon D (2000) Differential expression of nuclear retinoid receptors in normal and malignant prostates. J Clin Oncol 18: 116―121
25 Matsushima-Nishiwaki R, Okuno M, Adachi S, Sano T, Akita K, Moriwaki H, Friedman SL, Kojima S (2001) Phosphorylation of retinoid X receptor alpha at serine 260 impairs its metabolism and function in human hepatocellular carcinoma. Cancer Res 61: 7675―7682
26 Mocellin S, Nitti D (2008) TNF and cancer: the two sides of the coin. Front Biosci 13: 2774―2783
https://doi.org/10.2741/2884
27 Moll UM, Marchenko N, Zhang XK (2006) p53 and Nur77/TR3: transcription factors that directly target mitochondria for cell death induction. Oncogene 25: 4725―4743
https://doi.org/10.1038/sj.onc.1209601
28 Nagaya T, Murata Y, Yamaguchi S, Nomura Y, Ohmori S, Fujieda M, Katunuma N, Yen PM, Chin WW, Seo H (1998) Intracellular proteolytic cleavage of 9-cis-retinoic acid receptor alpha by cathepsin L-type protease is a potential mechanism for modulating thyroid hormone action. J Biol Chem 273: 33166―33173
https://doi.org/10.1074/jbc.273.50.33166
29 Nomura Y, Nagaya T, Yamaguchi S, Katunuma N, Seo H (1999) Cleavage of RXRalpha by a lysosomal enzyme, cathepsin L-type protease. Biochem Biophys Res Commun 254: 388―394
https://doi.org/10.1006/bbrc.1998.9941
30 Perez E, Bourguet W, Gronemeyer H, de Lera AR (2012) Modulation of RXR function through ligand design. Biochim Biophys Acta 1821: 57―69
https://doi.org/10.1016/j.bbalip.2011.04.003
31 Remacle AG, Golubkov VS, Shiryaev SA, Dahl R, Stebbins JL, Chernov AV, Cheltsov AV, Pellecchia M, Strongin AY (2012) Novel MT1-MMP small-molecule inhibitors based on insights into hemopexin domain function in tumor growth. Cancer Res 72: 2339―2349
https://doi.org/10.1158/0008-5472.CAN-11-4149
32 Sato Y, Ramalanjaona N, Huet T, Potier N, Osz J, Antony P, Peluso-Iltis C, Poussin-Courmontagne P, Ennifar E, Mely Y (2010) The “Phantom Effect” of the Rexinoid LG100754: structural and functional insights. PLoS One 5: e15119
https://doi.org/10.1371/journal.pone.0015119
33 Shiryaev SA, Cheltsov AV, Gawlik K, Ratnikov BI, Strongin AY (2011) Virtual ligand screening of the National Cancer Institute (NCI) compound library leads to the allosteric inhibitory scaffolds of the West Nile Virus NS3 proteinase. Assay Drug Dev Technol 9: 69―78
https://doi.org/10.1089/adt.2010.0309
34 Shiryaev SA, Cheltsov AV, Strongin AY (2012) Probing of exosites leads to novel inhibitor scaffolds of HCV NS3/4A proteinase. PLoS One 7: e40029
https://doi.org/10.1371/journal.pone.0040029
35 Shulman AI, Mangelsdorf DJ (2005) Retinoid X receptor heterodimers in the metabolic syndrome. N Engl J Med 353: 604―615
https://doi.org/10.1056/NEJMra043590
36 Szanto A, Narkar V, Shen Q, Uray IP, Davies PJ, Nagy L (2004) Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ 11(Suppl 2): S126―S143
https://doi.org/10.1038/sj.cdd.4401533
37 Takiyama Y, Miyokawa N, Sugawara A, Kato S, Ito K, Sato K, Oikawa K, Kobayashi H, Kimura S, Tateno M (2004) Decreased expression of retinoid X receptor isoforms in human thyroid carcinomas. J Clin Endocrinol Metab 89: 5851―5861
https://doi.org/10.1210/jc.2003-032036
38 Tang XH, Gudas LJ (2011) Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol 6: 345―364
https://doi.org/10.1146/annurev-pathol-011110-130303
39 Thomas M, Sukhai MA, Kamel-Reid S (2012) An emerging role for retinoid X receptor alpha in malignant hematopoiesis. Leuk Res 36: 1075―1081
https://doi.org/10.1016/j.leukres.2012.05.022
40 Wang Z, Benoit G, Liu J, Prasad S, Aarnisalo P, Liu X, Xu H, Walker NP, Perlmann T (2003) Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423: 555―560
https://doi.org/10.1038/nature01645
41 Wang GH, Jiang FQ, Duan YH, Zeng ZP, Chen F, Dai Y, Chen JB, Liu JX, Liu J, Zhou H (2013) Targeting truncated retinoid X receptor-alpha by CF31 induces TNF-alpha-dependent apoptosis. Cancer Res 73: 307―318
https://doi.org/10.1158/0008-5472.CAN-12-2038
42 Wansa KD, Harris JM, Muscat GE (2002) The activation function-1 domain of Nur77/NR4A1 mediates trans-activation, cell specificity, and coactivator recruitment. J Biol Chem 277: 33001―33011
https://doi.org/10.1074/jbc.M203572200
43 Waters JP, Pober JS, Bradley JR (2013) Tumour necrosis factor and cancer. J Pathol 230: 241―248
https://doi.org/10.1002/path.4188
44 Zhang XK, Hoffmann B, Tran PB, Graupner G, Pfahl M (1992a) Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature 355: 441―446
https://doi.org/10.1038/355441a0
45 Zhang XK, Lehmann J, Hoffmann B, Dawson MI, Cameron J, Graupner G, Hermann T, Tran P, Pfahl M (1992b) Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid. Nature 358: 587―591
https://doi.org/10.1038/358587a0
46 Zhang H, Li L, Chen L, Hu L, Jiang H, Shen X (2011a) Structure basis of bigelovin as a selective RXR agonist with a distinct binding mode. J Mol Biol 407: 13―20
https://doi.org/10.1016/j.jmb.2011.01.032
47 Zhang H, Xu X, Chen L, Chen J, Hu L, Jiang H, Shen X (2011b) Molecular determinants of magnolol targeting both RXRalpha and PPARgamma. PLoS One 6: e28253
https://doi.org/10.1371/journal.pone.0028253
48 Zhang H, Zhou R, Li L, Chen J, Chen L, Li C, Ding H, Yu L, Hu L, Jiang H (2011c) Danthron functions as a retinoic X receptor antagonist by stabilizing tetramers of the receptor. J Biol Chem 286: 1868―1875
https://doi.org/10.1074/jbc.M110.166215
49 Zhou H, Liu W, Su Y, Wei Z, Liu J, Kolluri SK, Wu H, Cao Y, Chen J, Wu Y (2010) NSAID sulindac and its analog bind RXRalpha and inhibit RXRalpha-dependent AKT signaling. Cancer Cell 17: 560―573
https://doi.org/10.1016/j.ccr.2010.04.023
50 Zimmerman TL, Thevananther S, Ghose R, Burns AR, Karpen SJ (2006) Nuclear export of retinoid X receptor alpha in response to interleukin-1beta-mediated cell signaling: roles for JNK and SER260. J Biol Chem 281: 15434―15440
https://doi.org/10.1074/jbc.M508277200
[1] Xin Shao, Xiaoyan Lu, Jie Liao, Huajun Chen, Xiaohui Fan. New avenues for systematically inferring cellcell communication: through single-cell transcriptomics data[J]. Protein Cell, 2020, 11(12): 866-880.
[2] Qiang Hong, Cong Li, Ruhong Ying, Heming Lin, Jingqiu Li, Yu Zhao, Hanhua Cheng, Rongjia Zhou. Loss-of-function of sox3 causes follicle development retardation and reduces fecundity in zebrafish[J]. Protein Cell, 2019, 10(5): 347-364.
[3] Yuanlong Ge, Shu Wu, Zepeng Zhang, Xiaocui Li, Feng Li, Siyu Yan, Haiying Liu, Junjiu Huang, Yong Zhao. Inhibition of p53 and/or AKT as a new therapeutic approach specifically targeting ALT cancers[J]. Protein Cell, 2019, 10(11): 808-824.
[4] Ping Wang, Zunpeng Liu, Xiaoqian Zhang, Jingyi Li, Liang Sun, Zhenyu Ju, Jian Li, Piu Chan, Guang-Hui Liu, Weiqi Zhang, Moshi Song, Jing Qu. CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells[J]. Protein Cell, 2018, 9(11): 945-965.
[5] Xin Wang, Zhiqiang An, Wenxin Luo, Ningshao Xia, Qinjian Zhao. Molecular and functional analysis of monoclonal antibodies in support of biologics development[J]. Protein Cell, 2018, 9(1): 74-85.
[6] Fan Yang,Jie Zheng. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin[J]. Protein Cell, 2017, 8(3): 169-177.
[7] Haiyang Zhang,Jingjing Duan,Yanjun Qu,Ting Deng,Rui Liu,Le Zhang,Ming Bai,Jialu Li,Tao Ning,Shaohua Ge,Xia Wang,Zhenzhen Wang,Qian Fan,Hongli Li,Guoguang Ying,Dingzhi Huang,Yi Ba. Onco-miR-24 regulates cell growth and apoptosis by targeting BCL2L11 in gastric cancer[J]. Protein Cell, 2016, 7(2): 141-151.
[8] Qian Fan,Xiangrui Meng,Hongwei Liang,Huilai Zhang,Xianming Liu,Lanfang Li,Wei Li,Wu Sun,Haiyang Zhang,Ke Zen,Chen-Yu Zhang,Zhen Zhou,Xi Chen,Yi Ba. miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma[J]. Protein Cell, 2016, 7(12): 899-912.
[9] Chao Lu,Yang Yang,Ran Zhao,Bingxuan Hua,Chen Xu,Zuoqin Yan,Ning Sun,Ruizhe Qian. Role of circadian gene Clock during differentiation of mouse pluripotent stem cells[J]. Protein Cell, 2016, 7(11): 820-832.
[10] Xiangxuan Zhao,Yong Liu,Lei Du,Leya He,Biyun Ni,Junbo Hu,Dahai Zhu,Quan Chen. Threonine 32 (Thr32) of FoxO3 is critical for TGF-β-induced apoptosis via Bim in hepatocarcinoma cells[J]. Protein Cell, 2015, 6(2): 127-138.
[11] Anna Gortat,Mónica Sancho,Laura Mondragón,Àgel Messeguer,Enrique Pérez-Payá,Mar Orzáez. Apaf1 inhibition promotes cell recovery from apoptosis[J]. Protein Cell, 2015, 6(11): 833-843.
[12] Youguang Luo,Dengwen Li,Jie Ran,Bing Yan,Jie Chen,Xin Dong,Zhu Liu,Ruming Liu,Jun Zhou,Min Liu. End-binding protein 1 stimulates paclitaxel sensitivity in breast cancer by promoting its actions toward microtubule assembly and stability[J]. Protein Cell, 2014, 5(6): 469-479.
[13] Xiao-Xi Guo,Yang Li,Chao Sun,Dan Jiang,Ying-Jia Lin,Feng-Xie Jin,Seung-Ki Lee,Ying-Hua Jin. p53-dependent Fas expression is critical for Ginsenoside Rh2 triggered caspase-8 activation in HeLa cells[J]. Protein Cell, 2014, 5(3): 224-234.
[14] Guanghua Xu,Jing Wang,George Fu Gao,Cui Hua Liu. Insights into battles between Mycobacterium tuberculosis and macrophages[J]. Protein Cell, 2014, 5(10): 728-736.
[15] Yi Sun, Hua Li. Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase[J]. Prot Cell, 2013, 4(2): 103-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed