Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2015, Vol. 6 Issue (11) : 804-813    https://doi.org/10.1007/s13238-015-0204-y
REVIEW
Role of transcription factor acetylation in the regulation of metabolic homeostasis
Joo-Man Park1,Seong-Ho Jo1,Mi-Young Kim1,Tae-Hyun Kim1,Yong-Ho Ahn1,2()
1. Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea
2. Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea
 Download: PDF(780 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Post-translational modifications (PTMs) of transcription factors play a crucial role in regulating metabolic homeostasis. These modifications include phosphorylation, methylation, acetylation, ubiquitination, SUMOylation, and O-GlcNAcylation. Recent studies have shed light on the importance of lysine acetylation at nonhistone proteins including transcription factors. Acetylation of transcription factors affects subcellular distribution, DNA affinity, stability, transcriptional activity, and current investigations are aiming to further expand our understanding of the role of lysine acetylation of transcription factors. In this review, we summarize recent studies that provide new insights into the role of protein lysine-acetylation in the transcriptional regulation of metabolic homeostasis.

Keywords metabolic homeostasis      transcription factor      post-translational modification      type 2 diabetes mellitus     
Issue Date: 04 November 2015
 Cite this article:   
Joo-Man Park,Seong-Ho Jo,Mi-Young Kim, et al. Role of transcription factor acetylation in the regulation of metabolic homeostasis[J]. Protein Cell, 2015, 6(11): 804-813.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-015-0204-y
https://academic.hep.com.cn/pac/EN/Y2015/V6/I11/804
1 Abdou HS, Atlas E, Hache RJ(2011) Liver-enriched inhibitory protein (LIP) actively inhibits preadipocyte differentiation through histone deacetylase 1 (HDAC1). J Biol Chem 286: 21488−21499
https://doi.org/10.1074/jbc.M110.211540
2 Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007) New nomenclature for chromatin-modifying enzymes. Cell 131: 633−636
https://doi.org/10.1016/j.cell.2007.10.039
3 Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12: 141−151
https://doi.org/10.1038/nrm3072
4 Banerjee A, Meyer K, Mazumdar B, Ray RB, Ray R (2010) Hepatitis C virus differentially modulates activation of forkhead transcription factors and insulin-induced metabolic gene expression. J Virol 84: 5936−5946
https://doi.org/10.1128/JVI.02344-09
5 Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, Gu W, Accili D (2008) SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 8: 333−341
https://doi.org/10.1016/j.cmet.2008.08.014
6 Bedford DC, Kasper LH, Wang R, Chang Y, Green DR, Brindle PK(2011) Disrupting the CH1 domain structure in the acetyltransferases CBP and p300 results in lean mice with increased metabolic control. Cell Metab 14: 219−230
https://doi.org/10.1016/j.cmet.2011.06.010
7 Bricambert J, Miranda J, Benhamed F, Girard J, Postic C, Dentin R (2010) Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest 120: 4316−4331
https://doi.org/10.1172/JCI41624
8 Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27: 2276−2288
https://doi.org/10.1038/onc.2008.21
9 Carrozza MJ, Utley RT, Workman JL, Cote J (2003) The diverse functions of histone acetyltransferase complexes. Trends Genet 19: 321−329
https://doi.org/10.1016/S0168-9525(03)00115-X
10 Cesena TI, Cardinaux JR, Kwok R, Schwartz J (2007) CCAAT/ enhancer-binding protein (C/EBP) beta is acetylated at multiple lysines: acetylation of C/EBPbeta at lysine 39 modulates its ability to activate transcription. J Biol Chem 282: 956−967
https://doi.org/10.1074/jbc.M511451200
11 Cesena TI, Cui TX, Subramanian L, Fulton CT, Iniguez-Lluhi JA, Kwok RP, Schwartz J (2008) Acetylation and deacetylation regulate CCAAT/enhancer binding protein beta at K39 in mediating gene transcription. Mol Cell Endocrinol 289: 94−101
https://doi.org/10.1016/j.mce.2008.03.009
12 Chalkiadaki A, Guarente L (2012) High-fat diet triggers inflammationinduced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab 16: 180−188
https://doi.org/10.1016/j.cmet.2012.07.003
13 Chang HC, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25: 138−145
https://doi.org/10.1016/j.tem.2013.12.001
14 Chen S, Feng B, George B, Chakrabarti R, Chen M, Chakrabarti S (2010) Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am J Physiol Endocrinol Metab 298: E127−137
https://doi.org/10.1152/ajpendo.00432.2009
15 Chen L, Magliano DJ, Zimmet PZ (2012) The worldwide epidemiology of type 2 diabetes mellitus−present and future perspectives. Nat Rev Endocrinol 8: 228−236
https://doi.org/10.1038/nrendo.2011.183
16 Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15: 536−550
https://doi.org/10.1038/nrm3841
17 Eijkelenboom A, Burgering BM(2013) FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14: 83−97
https://doi.org/10.1038/nrm3507
18 Erion DM, Ignatova ID, Yonemitsu S, Nagai Y, Chatterjee P, Weismann D, Hsiao JJ, Zhang D, Iwasaki T, Stark R, Flannery C, Kahn M, Carmean CM, Yu XX, Murray SF, Bhanot S, Monia BP, Cline GW, Samuel VT, Shulman GI(2009) Prevention of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein. Cell Metab 10: 499−506
https://doi.org/10.1016/j.cmet.2009.10.007
19 Filhoulaud G, Guilmeau S, Dentin R, Girard J, Postic C (2013) Novel insights into ChREBP regulation and function. Trends Endocrinol Metab 24: 257−268
https://doi.org/10.1016/j.tem.2013.01.003
20 Francis GA, Fayard E, Picard F, Auwerx J (2003) Nuclear receptors and the control of metabolism. Annu Rev Physiol 65: 261−311
https://doi.org/10.1146/annurev.physiol.65.092101.142528
21 Frescas D, Valenti L, Accili D (2005) Nuclear trapping of the forkhead transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 280: 20589−20595
https://doi.org/10.1074/jbc.M412357200
22 Gabay O, Zaal KJ, Sanchez C, Dvir-Ginzberg M, Gagarina V, Song Y, He XH, McBurney MW (2013) Sirt1-deficient mice exhibit an altered cartilage phenotype. Joint Bone Spine 80: 613−620
https://doi.org/10.1016/j.jbspin.2013.01.001
23 Ganjam GK, Dimova EY, Unterman TG, Kietzmann T (2009) FoxO1 and HNF-4 are involved in regulation of hepatic glucokinase gene expression by resveratrol. J Biol Chem 284: 30783−30797
https://doi.org/10.1074/jbc.M109.045260
24 Giandomenico V, Simonsson M, Gronroos E, Ericsson J (2003) Coactivator-dependent acetylation stabilizes members of the SREBP family of transcription factors. Mol Cell Biol 23: 2587−2599
https://doi.org/10.1128/MCB.23.7.2587-2599.2003
25 Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363: 15−23
https://doi.org/10.1016/j.gene.2005.09.010
26 Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L, Martinato F, Sardella D, Verrecchia A, Bennett S, Confalonieri S, Cesaroni M, Marchesi F, Gasco M, Scanziani E, Capra M, Mai S, Nuciforo P, Crook T, Lough J, Amati B (2007) Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448: 1063−1067
https://doi.org/10.1038/nature06055
27 Gross DN, Wan M, Birnbaum MJ (2009) The role of FOXO in the regulation of metabolism. Curr Diab Rep 9: 208−214
https://doi.org/10.1007/s11892-009-0034-5
28 Guan KL, Xiong Y (2011) Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 36: 108−116
https://doi.org/10.1016/j.tibs.2010.09.003
29 Guinez C, Filhoulaud G, Rayah-Benhamed F, Marmier S, Dubuquoy C, Dentin R, Moldes M, Burnol AF, Yang X, Lefebvre T, Girard J, Postic C (2011) O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 60: 1399−1413
https://doi.org/10.2337/db10-0452
30 Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5: 253−295
https://doi.org/10.1146/annurev.pathol.4.110807.092250
31 He L, Naik K, Meng S, Cao J, Sidhaye AR, Ma A, Radovick S, Wondisford FE(2012) Transcriptional co-activator p300 maintains basal hepatic gluconeogenesis. J Biol Chem 287: 32069−32077
https://doi.org/10.1074/jbc.M112.385864
32 He L, Cao J, Meng S, Ma A, Radovick S, Wondisford FE(2013) Activation of basal gluconeogenesis by coactivator p300 maintains hepatic glycogen storage. Mol Endocrinol 27: 1322−1332
https://doi.org/10.1210/me.2012-1413
33 Howell JJ, Stoffel M (2009) Nuclear export-independent inhibition of Foxa2 by insulin. J Biol Chem 284: 24816−24824
https://doi.org/10.1074/jbc.M109.042135
34 Huang H, Tindall DJ(2007) Dynamic FoxO transcription factors. J Cell Sci 120: 2479−2487
https://doi.org/10.1242/jcs.001222
35 Imai S, Guarente L (2014) NAD+ and sirtuins in aging and disease. Trends Cell Biol 24: 464−471
https://doi.org/10.1016/j.tcb.2014.04.002
36 Jeon TI, Osborne TF (2012) SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab 23: 65−72
https://doi.org/10.1016/j.tem.2011.10.004
37 Jing E, Gesta S, Kahn CR(2007) SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab 6: 105−114
https://doi.org/10.1016/j.cmet.2007.07.003
38 Kahn SE, Hull RL, Utzschneider KM(2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444: 840−846
https://doi.org/10.1038/nature05482
39 Khan O, La Thangue NB (2012) HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol Cell Biol 90: 85−94
https://doi.org/10.1038/icb.2011.100
40 Kim SY, Kim HI, Kim TH, Im SS, Park SK, Lee IK, Kim KS, Ahn YH(2004) SREBP-1c mediates the insulin-dependent hepatic glucokinase expression. J Biol Chem 279: 30823−30829
https://doi.org/10.1074/jbc.M313223200
41 Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23: 607−618
https://doi.org/10.1016/j.molcel.2006.06.026
42 Kimura A, Matsubara K, Horikoshi M (2005) A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J Biochem 138: 647−662
https://doi.org/10.1093/jb/mvi184
43 Knutson SK, Chyla BJ, Amann JM, Bhaskara S, Huppert SS, Hiebert SW(2008) Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J 27: 1017−1028
https://doi.org/10.1038/emboj.2008.51
44 Lagger G, O’Carroll D, Rembold M, Khier H, Tischler J, Weitzer G, Schuettengruber B, Hauser C, Brunmeir R, Jenuwein T, Seiser C (2002) Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21: 2672−2681
https://doi.org/10.1093/emboj/21.11.2672
45 Lalmansingh AS, Karmakar S, Jin Y, Nagaich AK (2012) Multiple modes of chromatin remodeling by Forkhead box proteins. Biochim Biophys Acta 1819: 707−715
https://doi.org/10.1016/j.bbagrm.2012.02.018
46 Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8: 284−295
https://doi.org/10.1038/nrm2145
47 Li Y, Xu S, Giles A, Nakamura K, Lee JW, Hou X, Donmez G, Li J, Luo Z, Walsh K, Guarente L, Zang M (2011) Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J 25: 1664−1679
https://doi.org/10.1096/fj.10-173492
48 Li Y, Varala K, Coruzzi GM(2015) From milliseconds to lifetimes: tracking the dynamic behavior of transcription factors in gene networks. Trends Genet
https://doi.org/10.1016/j.tig.2015.05.005
49 Lu Q, Hutchins AE, Doyle CM, Lundblad JR, Kwok RP (2003) Acetylation of cAMP-responsive element-binding protein (CREB) by CREB-binding protein enhances CREB-dependent transcription. J Biol Chem 278: 15727−15734
https://doi.org/10.1074/jbc.M300546200
50 Ma L, Robinson LN, Towle HC(2006) ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver. J Biol Chem 281: 28721−28730
https://doi.org/10.1074/jbc.M601576200
51 Maiese K, Chong ZZ, Shang YC(2008) OutFOXOing disease and disability: the therapeutic potential of targeting FoxO proteins. Trends Mol Med 14: 219−227
https://doi.org/10.1016/j.molmed.2008.03.002
52 Marmier S, Dentin R, Daujat-Chavanieu M, Guillou H, Bertrand- Michel J, Gerbal-Chaloin S, Girard J, Lotersztajn S, Postic C (2015) Novel role for carbohydrate responsive element binding protein in the control of ethanol metabolism and susceptibility to binge drinking. Hepatology
https://doi.org/10.1002/hep.27778
53 Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D (2007) Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab 6: 208−216
https://doi.org/10.1016/j.cmet.2007.08.006
54 Matsuzaki H, Daitoku H, Hatta M, Aoyama H, Yoshimochi K, Fukamizu A (2005) Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci U S A 102: 11278−11283
https://doi.org/10.1073/pnas.0502738102
55 Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1: a000950
https://doi.org/10.1101/cshperspect.a000950
56 Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M, Shaw RJ(2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145: 607−621
https://doi.org/10.1016/j.cell.2011.03.043
57 Montgomery RL, Potthoff MJ, Haberland M, Qi X, Matsuzaki S, Humphries KM, Richardson JA, Bassel-Duby R, Olson EN(2008) Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest 118: 3588−3597
https://doi.org/10.1172/JCI35847
58 Nakae J, Cao Y, Daitoku H, Fukamizu A, Ogawa W, Yano Y, Hayashi Y (2006) The LXXLL motif of murine forkhead transcription factor FoxO1 mediates Sirt1-dependent transcriptional activity. J Clin Invest 116: 2473−2483
https://doi.org/10.1172/jci25518
59 Nakae J, Cao Y, Oki M, Orba Y, Sawa H, Kiyonari H, Iskandar K, Suga K, Lombes M, Hayashi Y (2008) Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure. Diabetes 57: 563−576
https://doi.org/10.2337/db07-0698
60 Nerlov C (2007) The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol 17: 318−324
https://doi.org/10.1016/j.tcb.2007.07.004
61 Nerlov C (2008) C/EBPs: recipients of extracellular signals through proteome modulation. Curr Opin Cell Biol 20: 180−185
https://doi.org/10.1016/j.ceb.2008.02.002
62 Park BH, Qiang L, Farmer SR (2004) Phosphorylation of C/EBPbeta at a consensus extracellular signal-regulated kinase/glycogen synthase kinase 3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes. Mol Cell Biol 24: 8671−8680
https://doi.org/10.1128/MCB.24.19.8671-8680.2004
63 Park JM, Kim TH, Bae JS, Kim MY, Kim KS, Ahn YH (2010) Role of resveratrol in FOXO1-mediated gluconeogenic gene expression in the liver. Biochem Biophys Res Commun 403: 329−334
https://doi.org/10.1016/j.bbrc.2010.11.028
64 Paz JC, Park S, Phillips N, Matsumura S, Tsai WW, Kasper L, Brindle PK, Zhang G, Zhou MM, Wright PE, Montminy M (2014) Combinatorial regulation of a signal-dependent activator by phosphorylation and acetylation. Proc Natl Acad Sci U S A 111: 17116−17121
https://doi.org/10.1073/pnas.1420389111
65 Perrot V, Rechler MM(2005) The coactivator p300 directly acetylates the forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol Endocrinol 19: 2283−2298
https://doi.org/10.1210/me.2004-0292
66 Perry RJ, Samuel VT, Petersen KF, Shulman GI(2014) The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510: 84−91
https://doi.org/10.1038/nature13478
67 Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M, Wu SY, Chiang CM, Veenstra TD, Kemper JK (2010) SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 285: 33959−33970
https://doi.org/10.1074/jbc.M110.122978
68 Postic C, Dentin R, Denechaud PD, Girard J (2007) ChREBP, a transcriptional regulator of glucose and lipid metabolism. Annu Rev Nutr 27: 179−192
https://doi.org/10.1146/annurev.nutr.27.061406.093618
69 Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9: 327−338
https://doi.org/10.1016/j.cmet.2009.02.006
70 Ravnskjaer K, Hogan MF, Lackey D, Tora L, Dent SY, Olefsky J, Montminy M (2013) Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects. J Clin Invest 123: 4318−4328
https://doi.org/10.1172/JCI69035
71 Rebel VI, Kung AL, Tanner EA, Yang H, Bronson RT, Livingston DM(2002) Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci U S A 99: 14789−14794
https://doi.org/10.1073/pnas.232568499
72 Schrem H, Klempnauer J, Borlak J (2004) Liver-enriched transcription factors in liver function and development. Part II: the C/EBPs and D site-binding protein in cell cycle control, carcinogenesis, circadian gene regulation, liver regeneration, apoptosis, and liverspecific gene regulation. Pharmacol Rev 56: 291−330
https://doi.org/10.1124/pr.56.2.5
73 Shao W, Espenshade PJ (2012) Expanding roles for SREBP in metabolism. Cell Metab 16: 414−419
https://doi.org/10.1016/j.cmet.2012.09.002
74 Shimano H (2009) SREBPs: physiology and pathophysiology of the SREBP family. FEBS J 276: 616−621
https://doi.org/10.1111/j.1742-4658.2008.06806.x
75 Shirakawa K, Chavez L, Hakre S, Calvanese V, Verdin E (2013) Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol 21: 277−285
https://doi.org/10.1016/j.tim.2013.02.005
76 Soyal SM, Nofziger C, Dossena S, Paulmichl M, Patsch W (2015) Targeting SREBPs for treatment of the metabolic syndrome. Trends Pharmacol Sci 36: 406−416
https://doi.org/10.1016/j.tips.2015.04.010
77 Sun Z, Miller RA, Patel RT, Chen J, Dhir R, Wang H, Zhang D, Graham MJ, Unterman TG, Shulman GI, Sztalryd C, Bennett MJ, Ahima RS, Birnbaum MJ, Lazar MA(2012) Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat Med 18: 934−942
https://doi.org/10.1038/nm.2744
78 Sundqvist A, Ericsson J (2003) Transcription-dependent degradation controls the stability of the SREBP family of transcription factors. Proc Natl Acad Sci U S A 100: 13833−13838
https://doi.org/10.1073/pnas.2335135100
79 Vahid F, Zand H, Nosrat-Mirshekarlou E, Najafi R, Hekmatdoost A (2015) The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Gene 562: 8−15
https://doi.org/10.1016/j.gene.2015.02.045
80 van der Heide LP, Smidt MP (2005) Regulation of FoxO activity by CBP/p300-mediated acetylation. Trends Biochem Sci 30: 81−86
https://doi.org/10.1016/j.tibs.2004.12.002
81 van der Horst A, Burgering BM (2007) Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol 8: 440−450
https://doi.org/10.1038/nrm2190
82 van Gent R, Di Sanza C, van den Broek NJ, Fleskens V, Veenstra A, Stout GJ, Brenkman AB(2014) SIRT1 mediates FOXA2 breakdown by deacetylation in a nutrient-dependent manner. PloS One 9: e98438
https://doi.org/10.1371/journal.pone.0098438
83 von Meyenn F, Porstmann T, Gasser E, Selevsek N, Schmidt A, Aebersold R, Stoffel M (2013) Glucagon-induced acetylation of Foxa2 regulates hepatic lipid metabolism. Cell Metab 17: 436−447
https://doi.org/10.1016/j.cmet.2013.01.014
84 Walker AK, Yang F, Jiang K, Ji JY, Watts JL, Purushotham A, Boss O, Hirsch ML, Ribich S, Smith JJ, Israelian K, Westphal CH, Rodgers JT, Shioda T, Elson SL, Mulligan P, Najafi-Shoushtari H, Black JC, Thakur JK, Kadyk LC, Whetstine JR, Mostoslavsky R, Puigserver P, Li X, Dyson NJ, Hart AC, Naar AM (2010) Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 24: 1403−1417
https://doi.org/10.1101/gad.1901210
85 Wang F, Tong Q (2009) SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARgamma. Mol Biol Cell 20: 801−808
https://doi.org/10.1091/mbc.E08-06-0647
86 Wang C, Tian L, Popov VM, Pestell RG(2011) Acetylation and nuclear receptor action. J Steroid Biochem Mol Biol 123: 91−100
https://doi.org/10.1016/j.jsbmb.2010.12.003
87 Wiper-Bergeron N, Salem HA, Tomlinson JJ, Wu D, Hache RJ (2007) Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBPbeta by GCN5. Proc Natl Acad Sci U S A 104: 2703−2708
https://doi.org/10.1073/pnas.0607378104
88 Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M (2004) Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 432: 1027−1032
https://doi.org/10.1038/nature03047
89 Xu F, Gao Z, Zhang J, Rivera CA, Yin J, Weng J, Ye J (2010) Lack of SIRT1 (Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: a role of lipid mobilization and inflammation. Endocrinology 151: 2504−2514
https://doi.org/10.1210/en.2009-1013
90 Yamauchi T, Oike Y, Kamon J, Waki H, Komeda K, Tsuchida A, Date Y, Li MX, Miki H, Akanuma Y, Nagai R, Kimura S, Saheki T, Nakazato M, Naitoh T, Yamamura K, Kadowaki T (2002) Increased insulin sensitivity despite lipodystrophy in Crebbp heterozygous mice. Nat Genet 30: 221−226
https://doi.org/10.1038/ng829
91 Zhao Y, Wang Y, Zhu WG(2011) Applications of post-translational modifications of FoxO family proteins in biological functions. J Mol Cell Biol 3: 276−282
https://doi.org/10.1093/jmcb/mjr013
92 Zivkovic AM, German JB, Sanyal AJ (2007) Comparative review of diets for the metabolic syndrome: implications for nonalcoholic fatty liver disease. Am J Clin Nutr 86: 285−300
[1] Mona Teng, Stanley Zhou, Changmeng Cai, Mathieu Lupien, Housheng Hansen He. Pioneer of prostate cancer: past, present and the future of FOXA1[J]. Protein Cell, 2021, 12(1): 29-38.
[2] Chao Zhong, Jinfang Zhu. Transcriptional regulators dictate innate lymphoid cell fates[J]. Protein Cell, 2017, 8(4): 242-254.
[3] Donglu Wu, Yong Cai, Jingji Jin. Potential coordination role between O-GlcNAcylation and epigenetics[J]. Protein Cell, 2017, 8(10): 713-723.
[4] Qianqian Liang,Chen Xu,Xinyun Chen,Xiuya Li,Chao Lu,Ping Zhou,Lianhua Yin,Ruizhe Qian,Sifeng Chen,Zhendong Ling,Ning Sun. The roles of Mesp family proteins: functional diversity and redundancy in differentiation of pluripotent stem cells and mammalian mesodermal development[J]. Protein Cell, 2015, 6(8): 553-561.
[5] Ping Wang,Chang Sun,Tingting Zhu,Yanhui Xu. Structural insight into mechanisms for dynamic regulation of PKM2[J]. Protein Cell, 2015, 6(4): 275-287.
[6] Elizabeth B. Sawyer, Paul D. Barker. Continued surprises in the cytochrome c biogenesis story[J]. Prot Cell, 2012, 3(6): 405-409.
[7] Jigang Li, William Terzaghi, Xing Wang Deng. Genomic basis for light control of plant development[J]. Prot Cell, 2012, 3(2): 106-116.
[8] Priyanka Sathe, Li Wu. The network of cytokines, receptors and transcription factors governing the development of dendritic cell subsets[J]. Prot Cell, 2011, 2(8): 620-630.
[9] Chao Xu, Jinrong Min. Structure and function of WD40 domain proteins[J]. Prot Cell, 2011, 2(3): 202-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed