Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2015, Vol. 6 Issue (11) : 784-791    https://doi.org/10.1007/s13238-015-0217-6
VANTAGE POINTS
How does transmembrane electrochemical potential drive the rotation of Fo motor in an ATP synthase?
Xuejun C. Zhang(),Min Liu,Yan Zhao
National Laboratory of Macromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
 Download: PDF(387 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Xuejun C. Zhang   
Issue Date: 04 November 2015
 Cite this article:   
Xuejun C. Zhang,Min Liu,Yan Zhao. How does transmembrane electrochemical potential drive the rotation of Fo motor in an ATP synthase?[J]. Protein Cell, 2015, 6(11): 784-791.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-015-0217-6
https://academic.hep.com.cn/pac/EN/Y2015/V6/I11/784
1 Abrahams JP (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370(6491): 621−628
https://doi.org/10.1038/370621a0
2 Boyer PD (1988) Bioenergetic coupling to protonmotive force: should we be considering hydronium ion coordination and not group protonation? Trends Biochem Sci 13(1): 5−7
https://doi.org/10.1016/0968-0004(88)90005-9
3 Boyer PD (1993) The binding change mechanism for ATP synthase−some probabilities and possibilities. Biochim Biophys Acta 1140(3): 215−250
https://doi.org/10.1016/0005-2728(93)90063-L
4 Dimroth P (2003) Electrical power fuels rotary ATP synthase. Structure 11(12): 1469−1473
https://doi.org/10.1016/j.str.2003.11.011
5 Fillingame RH, Steed PR (2014) Half channels mediating H(+) transport and the mechanism of gating in the Fo sector of Escherichia coli F1Fo ATP synthase. Biochim Biophys Acta 1837(7): 1063−1068
https://doi.org/10.1016/j.bbabio.2014.03.005
6 Gruber G (2014) ATP synthases from archaea: the beauty of a molecular motor. Biochim Biophys Acta 1837(6): 940−952
https://doi.org/10.1016/j.bbabio.2014.03.004
7 Holliday LS (2000) The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J Biol Chem 275(41): 32331−32337
https://doi.org/10.1074/jbc.M004795200
8 Junge W, Lill H, Engelbrecht S (1997) ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci 22(11): 420−423
https://doi.org/10.1016/S0968-0004(97)01129-8
9 Lau WC, Rubinstein JL (2012) Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 481(7380): 214−218
https://doi.org/10.1038/nature10699
10 Lightowlers RN (1987) The proton pore in the Escherichia coli F0F1-ATPase: a requirement for arginine at position 210 of the a-subunit. Biochim Biophys Acta 894(3): 399−406
https://doi.org/10.1016/0005-2728(87)90118-6
11 Liu X (2009) Crystal structure of the hexamer of human heat shock factor binding protein 1. Proteins 75(1): 1−11
https://doi.org/10.1002/prot.22216
12 Miller MJ, Oldenburg M, Fillingame RH (1990) The essential carboxyl group in subunit c of the F1F0 ATP synthase can be moved and H(+)-translocating function retained. Proc Natl Acad Sci U S A 87(13): 4900−4904
https://doi.org/10.1073/pnas.87.13.4900
13 Minagawa Y (2013) Basic properties of rotary dynamics of the molecular motor Enterococcus hirae<?Pub Caret?>V1-ATPase. J Biol Chem 288(45): 32700−32707
https://doi.org/10.1074/jbc.M113.506329
14 Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK (2008) The rotary mechanism of the ATP synthase. Arch Biochem Biophys 476(1): 43−50
https://doi.org/10.1016/j.abb.2008.05.004
15 Nakano T (2006) A new solution structure of ATP synthase subunit c from thermophilic Bacillus PS3, suggesting a local conformational change for H+-translocation. J Mol Biol 358(1): 132−144
https://doi.org/10.1016/j.jmb.2006.01.011
16 Noji H (1997) Direct observation of the rotation of F1-ATPase. Nature 386(6622): 299−302
https://doi.org/10.1038/386299a0
17 Pogoryelov D (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 16(10): 1068−1073
https://doi.org/10.1038/nsmb.1678
18 Silverstein TP (2014) An exploration of how the thermodynamic efficiency of bioenergetic membrane systems varies with c-subunit stoichiometry of F(1)F(0) ATP synthases. J Bioenerg Biomembr 46(3): 229−241
https://doi.org/10.1007/s10863-014-9547-y
19 Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286(5445): 1700−1705
https://doi.org/10.1126/science.286.5445.1700
20 Symersky J (2012) Structure of the c(10) ring of the yeast mitochondrial ATP synthase in the open conformation. Nat Struct Mol Biol 19(5): 485−491 S1
21 Valiyaveetil FI, Fillingame RH (1997) On the role of Arg-210 and Glu- 219 of subunit a in proton translocation by the Escherichia coli F0F1-ATP synthase. J Biol Chem 272(51): 32635−32641
https://doi.org/10.1074/jbc.272.51.32635
22 von Ballmoos C, Dimroth P (2007) Two distinct proton binding sites in the ATP synthase family. Biochemistry 46(42): 11800−11809
https://doi.org/10.1021/bi701083v
23 Zhang XC (2014) Proton transfer-mediated GPCR activation. Protein Cell 6(1): 13−17
24 Zhang XC (2015a) Energy coupling mechanisms of MFS transporters. Protein Sci 24(10): 1560−1579
https://doi.org/10.1002/pro.2759
25 Zhang XC, Han L, Zhao Y (2015b) Thermodynamics of ABC transporters. . Protein Cell
https://doi.org/10.1007/s13238-015-0211-z
26 Zhao J, Benlekbir S, Rubinstein JL (2015) Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521(7551): 241−245
https://doi.org/10.1038/nature14365
27 Zhu G (2007) Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5. EMBO J 26(14): 3484−3493
https://doi.org/10.1038/sj.emboj.7601771
[1] PAC-0784-15167-ZK_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed