| 1 |
Abrahams JP (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 370(6491): 621−628
https://doi.org/10.1038/370621a0
|
| 2 |
Boyer PD (1988) Bioenergetic coupling to protonmotive force: should we be considering hydronium ion coordination and not group protonation? Trends Biochem Sci 13(1): 5−7
https://doi.org/10.1016/0968-0004(88)90005-9
|
| 3 |
Boyer PD (1993) The binding change mechanism for ATP synthase−some probabilities and possibilities. Biochim Biophys Acta 1140(3): 215−250
https://doi.org/10.1016/0005-2728(93)90063-L
|
| 4 |
Dimroth P (2003) Electrical power fuels rotary ATP synthase. Structure 11(12): 1469−1473
https://doi.org/10.1016/j.str.2003.11.011
|
| 5 |
Fillingame RH, Steed PR (2014) Half channels mediating H(+) transport and the mechanism of gating in the Fo sector of Escherichia coli F1Fo ATP synthase. Biochim Biophys Acta 1837(7): 1063−1068
https://doi.org/10.1016/j.bbabio.2014.03.005
|
| 6 |
Gruber G (2014) ATP synthases from archaea: the beauty of a molecular motor. Biochim Biophys Acta 1837(6): 940−952
https://doi.org/10.1016/j.bbabio.2014.03.004
|
| 7 |
Holliday LS (2000) The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J Biol Chem 275(41): 32331−32337
https://doi.org/10.1074/jbc.M004795200
|
| 8 |
Junge W, Lill H, Engelbrecht S (1997) ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem Sci 22(11): 420−423
https://doi.org/10.1016/S0968-0004(97)01129-8
|
| 9 |
Lau WC, Rubinstein JL (2012) Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase. Nature 481(7380): 214−218
https://doi.org/10.1038/nature10699
|
| 10 |
Lightowlers RN (1987) The proton pore in the Escherichia coli F0F1-ATPase: a requirement for arginine at position 210 of the a-subunit. Biochim Biophys Acta 894(3): 399−406
https://doi.org/10.1016/0005-2728(87)90118-6
|
| 11 |
Liu X (2009) Crystal structure of the hexamer of human heat shock factor binding protein 1. Proteins 75(1): 1−11
https://doi.org/10.1002/prot.22216
|
| 12 |
Miller MJ, Oldenburg M, Fillingame RH (1990) The essential carboxyl group in subunit c of the F1F0 ATP synthase can be moved and H(+)-translocating function retained. Proc Natl Acad Sci U S A 87(13): 4900−4904
https://doi.org/10.1073/pnas.87.13.4900
|
| 13 |
Minagawa Y (2013) Basic properties of rotary dynamics of the molecular motor Enterococcus hirae<?Pub Caret?>V1-ATPase. J Biol Chem 288(45): 32700−32707
https://doi.org/10.1074/jbc.M113.506329
|
| 14 |
Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK (2008) The rotary mechanism of the ATP synthase. Arch Biochem Biophys 476(1): 43−50
https://doi.org/10.1016/j.abb.2008.05.004
|
| 15 |
Nakano T (2006) A new solution structure of ATP synthase subunit c from thermophilic Bacillus PS3, suggesting a local conformational change for H+-translocation. J Mol Biol 358(1): 132−144
https://doi.org/10.1016/j.jmb.2006.01.011
|
| 16 |
Noji H (1997) Direct observation of the rotation of F1-ATPase. Nature 386(6622): 299−302
https://doi.org/10.1038/386299a0
|
| 17 |
Pogoryelov D (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 16(10): 1068−1073
https://doi.org/10.1038/nsmb.1678
|
| 18 |
Silverstein TP (2014) An exploration of how the thermodynamic efficiency of bioenergetic membrane systems varies with c-subunit stoichiometry of F(1)F(0) ATP synthases. J Bioenerg Biomembr 46(3): 229−241
https://doi.org/10.1007/s10863-014-9547-y
|
| 19 |
Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286(5445): 1700−1705
https://doi.org/10.1126/science.286.5445.1700
|
| 20 |
Symersky J (2012) Structure of the c(10) ring of the yeast mitochondrial ATP synthase in the open conformation. Nat Struct Mol Biol 19(5): 485−491 S1
|
| 21 |
Valiyaveetil FI, Fillingame RH (1997) On the role of Arg-210 and Glu- 219 of subunit a in proton translocation by the Escherichia coli F0F1-ATP synthase. J Biol Chem 272(51): 32635−32641
https://doi.org/10.1074/jbc.272.51.32635
|
| 22 |
von Ballmoos C, Dimroth P (2007) Two distinct proton binding sites in the ATP synthase family. Biochemistry 46(42): 11800−11809
https://doi.org/10.1021/bi701083v
|
| 23 |
Zhang XC (2014) Proton transfer-mediated GPCR activation. Protein Cell 6(1): 13−17
|
| 24 |
Zhang XC (2015a) Energy coupling mechanisms of MFS transporters. Protein Sci 24(10): 1560−1579
https://doi.org/10.1002/pro.2759
|
| 25 |
Zhang XC, Han L, Zhao Y (2015b) Thermodynamics of ABC transporters. . Protein Cell
https://doi.org/10.1007/s13238-015-0211-z
|
| 26 |
Zhao J, Benlekbir S, Rubinstein JL (2015) Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521(7551): 241−245
https://doi.org/10.1038/nature14365
|
| 27 |
Zhu G (2007) Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5. EMBO J 26(14): 3484−3493
https://doi.org/10.1038/sj.emboj.7601771
|