Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2016, Vol. 7 Issue (9) : 638-650    https://doi.org/10.1007/s13238-016-0301-6
RESEARCH ARTICLE
Cellular model of neuronal atrophy induced by DYNC1I1 deficiency reveals protective roles of RAS-RAF-MEK signaling
Zhi-Dong Liu1,Su Zhang1,2,Jian-Jin Hao1,Tao-Rong Xie1,Jian-Sheng Kang1,2()
1. Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200231, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(2775 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Neuronal atrophy is a common pathological feature occurred in aging and neurodegenerative diseases. A variety of abnormalities including motor protein malfunction and mitochondrial dysfunction contribute to the loss of neuronal architecture; however, less is known about the intracellular signaling pathways that can protect against or delay this pathogenic process. Here, we show that the DYNC1I1 deficiency, a neuron-specific dynein intermediate chain, causes neuronal atrophy in primary hippocampal neurons. With this cellular model, we are able to find that activation of RAS-RAF-MEK signaling protects against neuronal atrophy induced by DYNC1I1 deficiency, which relies on MEK-dependent autophagy in neuron. Moreover, we further reveal that BRAF also protects against neuronal atrophy induced by mitochondrial impairment. These findings demonstrate protective roles of the RAS-RAF-MEK axis against neuronal atrophy, and imply a new therapeutic target for clinical intervention.

Keywords RAS-RAF-MEK pathway      atrophy      dynein intermediate chain      mitochondria      hippocampal neuron      autophagy     
Corresponding Author(s): Jian-Sheng Kang   
Issue Date: 27 September 2016
 Cite this article:   
Zhi-Dong Liu,Su Zhang,Jian-Jin Hao, et al. Cellular model of neuronal atrophy induced by DYNC1I1 deficiency reveals protective roles of RAS-RAF-MEK signaling[J]. Protein Cell, 2016, 7(9): 638-650.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-016-0301-6
https://academic.hep.com.cn/pac/EN/Y2016/V7/I9/638
1 Banks GT, Fisher EM (2008) Cytoplasmic dynein could be key to understanding neurodegeneration. Genome Biol 9:214
https://doi.org/10.1186/gb-2008-9-3-214
2 Becker RE, Greig NH, Giacobini E (2008) Why do so many drugs for Alzheimer’s disease fail in development?Time for new methods and new practices? J Alzheimers Dis 15:303–325
3 Boylan KLM, Hays TS (2002) The gene for the intermediate chain subunit of cytoplasmic dynein is essential in Drosophila. Genetics 162:1211–1220
4 Brunet A, Datta SR, Greenberg ME (2001) Transcription-dependent and-independent control of neuronal survival by the PI3K–Akt signaling pathway. Curr Opin Neurobiol 11:297–305
https://doi.org/10.1016/S0959-4388(00)00211-7
5 Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309
https://doi.org/10.1038/nrn1078
6 Chen X-J, Levedakou EN, Millen KJ, Wollmann RL, Soliven B, Popko B(2007) Proprioceptive sensory neuropathyin mice witha mutation in the cytoplasmic dynein heavy chain 1 gene. J Neurosci 27:14515–14524
https://doi.org/10.1523/JNEUROSCI.4338-07.2007
7 Chin PC, Liu L, Morrison BE, Siddiq A, Ratan RR, Bottiglieri T, D’Mello SR (2004) The c-Raf inhibitor GW5074 provides neuroprotection in vitro and in an animal model of neurodegeneration through a MEK-ERK and Akt-independent mechanism. J Neurochem 90:595–608
https://doi.org/10.1111/j.1471-4159.2004.02530.x
8 Craig LA, Hong NS, McDonald RJ (2011) Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev 35:1397–1409
https://doi.org/10.1016/j.neubiorev.2011.03.001
9 Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity byhippocampal neuronsin culture. JNeurosci 8:1454–1468
10 Eschbach J, Dupuis L (2011) Cytoplasmic dynein in neurodegeneration. Pharmacol Ther 130:348–363
https://doi.org/10.1016/j.pharmthera.2011.03.004
11 Fiordalisi JJ, Johnson RL II, Ülkü AS, Der CJ, Cox AD (2001) Mammalian expression vectors for Ras family proteins: generation and use of expression constructs to analyze Ras family function. In: Der CJ, Balch WE(eds) Methods in enzymology. Academic Press, San Diego, pp3–36
https://doi.org/10.1016/s0076-6879(01)32189-4
12 Fox NC, Schott JM (2004) Imaging cerebral atrophy: normal ageing to Alzheimer’s disease. Lancet 363:392–394
https://doi.org/10.1016/S0140-6736(04)15441-X
13 Freeman SH, Kandel R, Cruz L, Rozkalne A, Newell K, Frosch MP, Hedley-Whyte ET, Locascio JJ, Lipsitz L, Hyman BT (2008) Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease. J Neuropathol Exp Neurol 67:1205–1212
https://doi.org/10.1097/NEN.0b013e31818fc72f
14 Galabova-Kovacs G, Kolbus A, Matzen D, Meissl K, Piazzolla D, Rubiolo C, Steinitz K, Baccarini M (2006) ERK and beyond: insights from B-Raf and Raf-1 conditional knockouts. Cell Cycle Georget. Tex 5:1514–1518
https://doi.org/10.4161/cc.5.14.2981
15 Ha J, Lo KW-H, Myers KR, Carr TM, Humsi MK, Rasoul BA, Segal RA, Pfister KK (2008) A neuron-specific cytoplasmic dynein isoform preferentially transports TrkB signaling endosomes. J Cell Biol 181:1027–1039
https://doi.org/10.1083/jcb.200803150
16 Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S, Lalli G, Witherden AS, Hummerich H, Nicholson S (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300:808–812
https://doi.org/10.1126/science.1083129
17 Heumann R, Goemans C, Bartsch D, Lingenhöhl K,Waldmeier PC, Hengerer B, Allegrini PR, Schellander K, Wagner EF, Arendt T (2000) Transgenic activation of Ras in neurons promotes hypertrophy and protects from lesion-induced degeneration. J Cell Biol 151:1537–1548
https://doi.org/10.1083/jcb.151.7.1537
18 Holzbaur ELF, Vallee RB (1994) Dyneins: molecular structure and cellular function. Annu Rev Cell Biol 10:339–372
https://doi.org/10.1146/annurev.cb.10.110194.002011
19 Kapitein LC, Schlager MA, Kuijpers M, Wulf PS, van Spronsen M, MacKintosh FC, Hoogenraad CC (2010) Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr Biol 20:290–299
https://doi.org/10.1016/j.cub.2009.12.052
20 Karran E, Mercken M, Strooper BD (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10:698–712
https://doi.org/10.1038/nrd3505
21 Kimura S, Noda T, Yoshimori T (2008) Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct 33:109–122
https://doi.org/10.1247/csf.08005
22 Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544
https://doi.org/10.4161/auto.19496
23 Kumar V, Zhang M-X, Swank MW, Kunz J, Wu G-Y (2005) Regulation of dendritic morphogenesis by Ras–PI3K–Akt–mTOR and Ras–MAPK signalingpathways. JNeurosci 25:11288–11299
https://doi.org/10.1523/JNEUROSCI.2284-05.2005
24 Lalli G (2014) Regulation of neuronal polarity. Exp Cell Res 328:267–275
https://doi.org/10.1016/j.yexcr.2014.07.033
25 Lipka J, Kuijpers M, Jaworski J, Hoogenraad CC (2013) Mutations in cytoplasmic dynein and its regulators cause malformations of cortical development and neurodegenerative diseases. Biochem SocTrans 41:1605–1612
https://doi.org/10.1042/BST20130188
26 Maday S, Wallace KE, Holzbaur ELF (2012) Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 196:407–417
https://doi.org/10.1083/jcb.201106120
27 Mazzoni IE, Saïd FA, Aloyz R, Miller FD, Kaplan D (1999) Ras regulates sympathetic neuron survival by suppressing the p53mediated cell death pathway. J Neurosci 19:9716–9727
28 Mitchell DJ, Blasier KR, Jeffery ED, Ross MW, Pullikuth AK, Suo D,Park J, Smiley WR, Lo KW-H, Shabanowitz J (2012) Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylationand recruitscytoplasmicdyneintosignalingendosomes for retrograde axonaltransport. JNeurosci 32:15495–15510
https://doi.org/10.1523/JNEUROSCI.5599-11.2012
29 Moreira PI, Zhu X, Wang X, Lee H, Nunomura A, Petersen RB, Perry G, Smith MA (2010) Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta 1802:212–220
https://doi.org/10.1016/j.bbadis.2009.10.007
30 Myers KR, Lo KW-H, Lye RJ, Kogoy JM, Soura V, Hafezparast M, Pfister KK (2007) Intermediate chain subunit as a probe for cytoplasmic dynein function: biochemical analyses and live cell imaging in PC12 cells. J Neurosci Res 85:2640–2647
https://doi.org/10.1002/jnr.21213
31 Pakkenberg B, Pelvig D, Marner L, Bundgaard MJ, Gundersen HJG, Nyengaard JR, Regeur L(2003) Aging and the human neocortex. Exp Gerontol 38:95–99
https://doi.org/10.1016/S0531-5565(02)00151-1
32 Payne BAI, Chinnery PF (2015) Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim. Biophys. Acta BBA-Bioenerg. 1847:1347–1353
https://doi.org/10.1016/j.bbabio.2015.05.022
33 Pfister KK, Fisher EMC, Gibbons IR, Hays TS, Holzbaur ELF, McIntosh JR, Porter ME, Schroer TA, Vaughan KT, Witman GB (2005) Cytoplasmic dynein nomenclature. J Cell Biol 171:411–413
https://doi.org/10.1083/jcb.200508078
34 Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z,Vacher C, O’Kane CJ, Brown SDM, Rubinsztein DC (2005) Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet 37:771–776
https://doi.org/10.1038/ng1591
35 Regeur L, Badsberg Jensen G, Pakkenberg H, Evans SM, Pakkenberg B (1994) No global neocortical nerve cell loss in brains from patients with senile dementia of Alzheimer’s type. Neurobiol Aging 15:347–352
https://doi.org/10.1016/0197-4580(94)90030-2
36 Rosse C, Boeckeler K, Linch M, Radtke S, Frith D, Barnouin K, Morsi AS, Hafezparast M, Howell M, Parker PJ (2012) Binding of dynein intermediate chain 2 to paxillin controls focal adhesion dynamics and migration. J Cell Sci 125:3733–3738
https://doi.org/10.1242/jcs.089557
37 Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. BiophysJ 76:469–477
https://doi.org/10.1016/S0006-3495(99)77214-0
38 Schott JM, Fox NC, Frost C, Scahill RI, Janssen JC, Chan D, Jenkins R, Rossor MN (2003) Assessing the onset of structural change in familial Alzheimer’s disease. Ann Neurol 53:181–188
https://doi.org/10.1002/ana.10424
39 Slack C, Alic N, Foley A, Cabecinha M, Hoddinott MP, Partridge L (2015) The Ras-Erk-ETS-signaling pathway is a drug target for longevity. Cell 162:72–83
https://doi.org/10.1016/j.cell.2015.06.023
40 Song A, Wang D, Chen G, Li Y, Luo J, Duan S, Poo M (2009) A selective filter for cytoplasmic transport at the axon initial segment. Cell 136:1148–1160
https://doi.org/10.1016/j.cell.2009.01.016
41 Soo KY, Farg M, Atkin JD (2011) Molecular motor proteins and amyotrophic lateral sclerosis. IntJ Mol Sci 12:9057–9082
https://doi.org/10.3390/ijms12129057
42 Swaab DF, Hofman MA, Lucassen PJ, Salehi A, Uylings HBM (1994) Neuronal atrophy, not cell death, is the main hallmark of Alzheimer’s disease. Neurobiol Aging 15:369–371
https://doi.org/10.1016/0197-4580(94)90037-X
43 Vaughan PS, Leszyk JD, Vaughan KT (2001) Cytoplasmic dynein intermediate chain phosphorylation regulates binding to dynactin. J Biol Chem 276:26171–26179
https://doi.org/10.1074/jbc.M102649200
44 Wang J, Whiteman MW, Lian H, Wang G, Singh A, Huang D, Denmark T (2009) A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating beclin 1. J Biol Chem 284:21412–21424
https://doi.org/10.1074/jbc.M109.026013
45 Xie Y, Zhou B, Lin M-Y, Wang S, Foust KD, Sheng Z-H (2015) Endolysosomal deficits augment mitochondria pathology in spinal motor neurons of asymptomatic fALS mice. Neuron 87:355–370
https://doi.org/10.1016/j.neuron.2015.06.026
46 Yamaguchi T, Kakefuda R, Tajima N, Sowa Y, Sakai T (2011) Antitumor activities of JTP-74057 (GSK1120212), a novel MEK1/ 2inhibitor,on colorectalcancercell linesin vitroandin vivo. IntJ Oncol 39:23–31
47 Zheng Y, Wildonger J, Ye B, Zhang Y, Kita A, Younger SH, Zimmerman S, Jan LY, Jan YN (2008) Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat Cell Biol 10:1172–1180
https://doi.org/10.1038/ncb1777
48 Zhong J, Li X, McNamee C, Chen AP, Baccarini M, Snider WD (2007) Raf kinase signaling functions in sensory neuron differentiation and axon growth in vivo. Nat Neurosci 10:598–607
https://doi.org/10.1038/nn1898
[1] PAC-0638-16136-KJS_suppl_1 Download
[2] PAC-0638-16136-KJS_suppl_2 Download
[3] PAC-0638-16136-KJS_suppl_3 Download
[1] Ermin Li, Xiuya Li, Jie Huang, Chen Xu, Qianqian Liang, Kehan Ren, Aobing Bai, Chao Lu, Ruizhe Qian, Ning Sun. BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy[J]. Protein Cell, 2020, 11(9): 661-679.
[2] Kun Liu, Jiani Cao, Xingxing Shi, Liang Wang, Tongbiao Zhao. Cellular metabolism and homeostasis in pluripotency regulation[J]. Protein Cell, 2020, 11(9): 630-640.
[3] Qian Zheng, Peipei Liu, Ge Gao, Jiapei Yuan, Pengfeng Wang, Jinliang Huang, Leiming Xie, Xinping Lu, Fan Di, Tanjun Tong, Jun Chen, Zhi Lu, Jisong Guan, Geng Wang. Mitochondrion-processed TERC regulates senescence without affecting telomerase activities[J]. Protein Cell, 2019, 10(9): 631-648.
[4] Crystal A. Lee, Lih-Shen Chin, Lian Li. Hypertonia-linked protein Trak1 functions with mitofusins to promote mitochondrial tethering and fusion[J]. Protein Cell, 2018, 9(8): 693-716.
[5] Na Qu, Zhao Ma, Mengrao Zhang, Muaz N. Rushdi, Christopher J. Krueger, Antony K. Chen. Inhibition of retroviral Gag assembly by non-silencing miRNAs promotes autophagic viral degradation[J]. Protein Cell, 2018, 9(7): 640-651.
[6] Yi Yang, Han Wu, Xiangjin Kang, Yanhui Liang, Ting Lan, Tianjie Li, Tao Tan, Jiangyun Peng, Quanjun Zhang, Geng An, Yali Liu, Qian Yu, Zhenglai Ma, Ying Lian, Boon Seng Soh, Qingfeng Chen, Ping Liu, Yaoyong Chen, Xiaofang Sun, Rong Li, Xiumei Zhen, Ping Liu, Yang Yu, Xiaoping Li, Yong Fan. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs[J]. Protein Cell, 2018, 9(3): 283-297.
[7] Qianqian Li, Zewen Gao, Ye Chen, Min-Xin Guan. The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells[J]. Protein Cell, 2017, 8(6): 439-445.
[8] Peipei Liu, Jinliang Huang, Qian Zheng, Leiming Xie, Xinping Lu, Jie Jin, Geng Wang. Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2[J]. Protein Cell, 2017, 8(10): 735-749.
[9] Juan Feng,Silin Lü,Yanhong Ding,Ming Zheng,Xian Wang. Homocysteine activates T cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration[J]. Protein Cell, 2016, 7(6): 391-402.
[10] Jiaxiang Shao,Xiao Yang,Tengyuan Liu,Tingting Zhang,Qian Reuben Xie,Weiliang Xia. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage[J]. Protein Cell, 2016, 7(4): 281-290.
[11] Mengmeng Chen,Yang Li,Mengxue Yang,Xiaoping Chen,Yemeng Chen,Fan Yang,Sheng Lu,Shengyu Yao,Timothy Zhou,Jianghong Liu,Li Zhu,Sidan Du,Jane Y. Wu. A new method for quantifying mitochondrial axonal transport[J]. Protein Cell, 2016, 7(11): 804-819.
[12] Yan-Cheng Tang,Hong-Xia Tian,Tao Yi,Hu-Biao Chen. The critical roles of mitophagy in cerebral ischemia[J]. Protein Cell, 2016, 7(10): 699-713.
[13] Chunju Fang,Xiawei Wei,Yuquan Wei. Mitochondrial DNA in the regulation of innate immune responses[J]. Protein Cell, 2016, 07(1): 11-16.
[14] Xiaoying Chen,Kunshan Zhang,Liqiang Zhou,Xinpei Gao,Junbang Wang,Yinan Yao,Fei He,Yuping Luo,Yongchun Yu,Siguang Li,Liming Cheng,Yi E. Sun. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation[J]. Protein Cell, 2016, 07(03): 175-186.
[15] Wenzhi Feng,Tong Wu,Xiaoyu Dan,Yuling Chen,Lin Li,She Chen,Di Miao,Haiteng Deng,Xinqi Gong,Li Yu. Phosphorylation of Atg31 is required for autophagy[J]. Protein Cell, 2015, 6(4): 288-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed