Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2016, Vol. 7 Issue (11) : 833-838    https://doi.org/10.1007/s13238-016-0315-0
LETTER
The role of endosomal cholesterol trafficking protein, StAR-related lipid transfer domain 3 (StarD3/MLN64), in BRIN-BD11 insulinoma cells
Joana Borges Pinto1,2,Annette Graham1()
1. Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
2. Present address WolfsonWohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden, Glasgow G61 1QH, UK
 Download: PDF(538 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Annette Graham   
Issue Date: 28 November 2016
 Cite this article:   
Joana Borges Pinto,Annette Graham. The role of endosomal cholesterol trafficking protein, StAR-related lipid transfer domain 3 (StarD3/MLN64), in BRIN-BD11 insulinoma cells[J]. Protein Cell, 2016, 7(11): 833-838.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-016-0315-0
https://academic.hep.com.cn/pac/EN/Y2016/V7/I11/833
1 Alpy F, Rousseau A, Schwab Y, Legueux F, Stoll I, Wendling C, Spiegelhalter C, Kessler P, Mathelin C, Rio MC, Levine TP, Tomasetto C (2013) STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER. J Cell Sci 126:5500–5512
https://doi.org/10.1242/jcs.139295
2 Borthwick F, Taylor JM, Bartholomew C, Graham A (2009) Differential regulation of the STARD1 subfamily of START lipid trafficking proteins in human (THP-1) macrophages. FEBS Lett 583:1147–1153
https://doi.org/10.1016/j.febslet.2009.02.042
3 Borthwick F, Allen AM, Taylor JM, Graham A (2010) Over-expression of STARD3 in human monocyte-macrophages induces an antiatherogenic lipid phenotype. Clin Sci (Lond) 119:265–272
https://doi.org/10.1042/CS20100266
4 Charman M, Kennedy BE, Osborne N, Karten B (2010) MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick Type C1 protein. J Lipid Res 51:1023–1034
https://doi.org/10.1194/jlr.M002345
5 Holtta-Vuori M, Alpy F, Tanhaunapaa K, Jokitalo E, Mutka AL, Ikonen E (2005) MLN64 is involved in actin-mediated dynamics of late endocytic organelles. Mol Biol Cell 16:3873–3886
https://doi.org/10.1091/mbc.E04-12-1105
6 Kijlstra A, Tian Y, Kelly ER, Berendschot TT (2012) Lutein: more than just a filter for blue light. Prog Retin Eye Res 31:303–315
https://doi.org/10.1016/j.preteyeres.2012.03.002
7 Kishida T, Kostetskii I, Zhang Z, Martinez F, Liu P, Walkley SU, Dwyer NK, Blanchette-Mackie EJ, Radice GL, Strauss JF 3rd (2004) Targeted mutation of the MLN64 START domain causes only modest alterations in cellular sterol metabolism. J Biol Chem 279:19276–19285
https://doi.org/10.1074/jbc.M400717200
8 Kruit JK, Wijesekara N, Westwell-Roper C, Vanmierlo T, de Haan W, Bhattacharjee A, Tang R, Welling CL, LutJohann D, Johnson KD, Brunham LR, Verchere CB, Hayden MR (2012) Loss of both ABCA1 and ABCG1 results in increased disturbances in islet sterol homeostasis, inflammation and impaired β-cell function. Diabetes 61:659–664
https://doi.org/10.2337/db11-1341
9 Li B, Vachali P, Frederick JM, Bernstein PS (2011) Identification of StARD3 as a lutein-binding protein in the macula of the primate retina. Biochemistry 50:2541–2549
https://doi.org/10.1021/bi101906y
10 Rutti S, Ehses JA, Sibler RA, Prazak R, Rohrer L, Georgopoulos S, Meier DT, Niclauss N, Berney T, Donath MY, von Eckardstein A (2009) Low- and high-density lipoproteins modulate function, apoptosis and proliferation of primary human and murine pancreatic beta-cells. Endocrinology 150:4521–4530
https://doi.org/10.1210/en.2009-0252
11 Soffientini U, Caridis A-M, Dolan S, Graham A (2014) Intracellular cholesterol transporters and modulation of hepatic lipid metabolism: implications for diabetic dyslipidaemia and steatosis. Biochim Biophys Acta 1841:1372–1382
https://doi.org/10.1016/j.bbalip.2014.07.002
12 Souza JC, Vanzela EC, Ribeiro RA, Rezende LF, de Oliveira CA, Carneiro EM, Oliveira HC, Boschero AC (2013) Cholesterol reduction ameliorates glucose-induced calcium handling and insulin secretion in islets from low-density lipoprotein receptor knockout mice. Biochim Biophys Acta 1831:769–775
https://doi.org/10.1016/j.bbalip.2012.12.013
13 Tsuchiya M, Hosaka M, Moriguchi T, Zhang S, Suda M, Yokota-Hashimoto H, Shinozuka K, Takeuchi T (2010) Cholesterol biosynthesis pathway intermediates and inhibitors regulate glucose-stimulated insulin secretion and secretory granule formation in pancreatic beta cells. Endocrinology 151:4705–4716
https://doi.org/10.1210/en.2010-0623
14 van der Kant R, Zondervan I, Jansse L, Neefjes J (2013) Cholesterol-binding molecules MLN64 and ORP1L mark distinct late endosomes with transporters ABCA3 and NPC1. J Lipid Res 54:2153–2165
https://doi.org/10.1194/jlr.M037325
15 Zuniga-Hertz JP, Rebelato E, Kassan A, Khalifa AM, Ali SS, Patel HH, Abdulkader F (2015) Distinct pathways of cholesterol biosynthesis impact on insulin secretion. J Endocrinol 224: 75–84
https://doi.org/10.1530/JOE-14-0348
[1] PAC-0833-16137-GA_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed