Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2017, Vol. 8 Issue (3) : 169-177    https://doi.org/10.1007/s13238-016-0353-7
REVIEW
Understand spiciness: mechanism of TRPV1 channel activation by capsaicin
Fan Yang,Jie Zheng()
Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA
 Download: PDF(791 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Capsaicin in chili peppers bestows the sensation of spiciness. Since the discovery of its receptor, transient receptor potential vanilloid 1 (TRPV1) ion channel, how capsaicin activates this channel has been under extensive investigation using a variety of experimental techniques including mutagenesis, patch-clamp recording, crystallography, cryo-electron microscopy, computational docking and molecular dynamic simulation. A framework of how capsaicin binds and activates TRPV1 has started to merge: capsaicin binds to a pocket formed by the channel’s transmembrane segments, where it takes a “tail-up, head-down” configuration. Binding is mediated by both hydrogen bonds and van der Waals interactions. Upon binding, capsaicin stabilizes the open state of TRPV1 by “pull-andcontact” with the S4-S5 linker. Understanding the ligand-host interaction will greatly facilitate pharmaceutical efforts to develop novel analgesics targeting TRPV1.

Keywords capsaicin      TRPV1      ligand gating      cryo-EM      computation      spiciness     
Corresponding Author(s): Jie Zheng   
Issue Date: 21 March 2017
 Cite this article:   
Fan Yang,Jie Zheng. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin[J]. Protein Cell, 2017, 8(3): 169-177.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-016-0353-7
https://academic.hep.com.cn/pac/EN/Y2017/V8/I3/169
1 Ahern GP, Brooks IM, Miyares RL, Wang XB (2005) Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J Neurosci Off J Soc Neurosci 25:5109–5116.
https://doi.org/10.1523/JNEUROSCI.0237-05.2005
2 Appendino G (2003) Halogenation of a capsaicin analogue leads to novel vanilloid TRPV1 receptor antagonists. Br J Pharmacol 139:1417–1424.
https://doi.org/10.1038/sj.bjp.0705387
3 Appendino G (2005) The taming of capsaicin. Reversal of the vanilloid activity of N-acylvanillamines by aromatic iodination. J Med Chem 48:4663–4669.
https://doi.org/10.1021/jm050139q
4 Barth P,Schonbrun J, Baker D(2007)Toward high-resolution prediction and design of transmembrane helical protein structures. Proc Natl Acad Sci USA 104:15682–15687.
https://doi.org/10.1073/pnas.0702515104
5 Bevan S, Szolcsanyi J (1990) Sensory neuron-specific actions of capsaicin: mechanisms and applications. Trends Pharm Sci 11:330–333
https://doi.org/10.1016/0165-6147(90)90237-3
6 Bhutani M (2007) Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation. Clin Cancer Res 13:3024–3032.
https://doi.org/10.1158/1078-0432.CCR-06-2575
7 Bohlen CJ (2010) A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 141:834–845.
https://doi.org/10.1016/j.cell.2010.03.052
8 Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504:113–118.
https://doi.org/10.1038/nature12823
9 Cao X, Ma L, Yang F, Wang K, Zheng J (2014) Divalent cations potentiate TRPV1 channel by lowering the heat activation threshold. J Gen Physiol 143:75–90.
https://doi.org/10.1085/jgp.201311025
10 Carnevale V, Rohacs T (2016) TRPV1: a target for rational drug design. Pharmaceuticals.
https://doi.org/10.3390/ph9030052
11 Caterina MJ (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824.
https://doi.org/10.1038/ 39807
12 Caterina MJ (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313
https://doi.org/10.1126/science.288.5464.306
13 Cheng W, Yang F, Takanishi CL, Zheng J(2007) Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. J Gen Physiol 129:191–207.
https://doi.org/10.1085/jgp.200709731
14 Cheng W, Sun C, Zheng J (2010) Heteromerization of TRP channel subunits: extending functional diversity. Protein & Cell 1(9):802–810
https://doi.org/10.1007/s13238-010-0108-9
15 Cheng W (2012) Heteromeric heat-sensitive transient receptor potential channels exhibit distinct temperature and chemical response. J Biol Chem 287:7279–7288.
https://doi.org/10.1074/jbc.M111. 305045
16 Cui Y (2012) Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations. J Gen Physiol 139:273–283.
https://doi.org/10.1085/jgp. 201110724
17 Darre L, Domene C (2015) Binding of capsaicin to the TRPV1 Ion Channel. Mol Pharm 12:4454–4465.
https://doi.org/10.1021/acs. molpharmaceut.5b00641
18 Diaz-Franulic I, Poblete H, Mino-Galaz G, Gonzalez C, Latorre R (2016) Allosterism and structure in thermally activated transient receptor potential channels. Ann Rev Biophys.
https://doi.org/10.1146/ annurev-biophys-062215-011034
19 Elokely K (2016) Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin. Proc Natl Acad Sci USA 113:E137–145.
https://doi.org/10.1073/pnas. 1517288113
20 Fernandez JA (2011) Voltage- and cold-dependent gating of single TRPM8 ion channels. J Gen Physiol 137:173–195.
https://doi.org/10. 1085/jgp.201010498
21 Fernandez-Ballester G, Ferrer-Montiel A (2008) Molecular modeling of the full-length human TRPV1 channel in closed and desensitized states. J Membr Biol 223:161–172.
https://doi.org/10.1007/s00232-008-9123-7
22 Ferrer-Montiel A (2004) Molecular architecture of the vanilloid receptor. Insights for drug design. Eur J Biochem 271:1820–1826.
https://doi.org/10.1111/j.1432-1033.2004.04083.x
23 Fischer MJ (2014) Direct evidence for functional TRPV1/TRPA1 heteromers. Pflugers Arch Eur J Physiol 466:2229–2241.
https://doi.org/10. 1007/s00424-014-1497-z
24 Gao Y, Cao E, Julius D, Cheng Y (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:347–351.
https://doi.org/10.1038/nature17964
25 Gavva NR (2004) Molecular determinants of vanilloid sensitivity in TRPV1. J Biol Chem 279:20283–20295.
https://doi.org/10.1074/jbc. M312577200
26 Grosman C, Zhou M, Auerbach A (2000) Mapping the conformational wave of acetylcholine receptor channel gating. Nature 403:773–776.
https://doi.org/10.1038/35001586
27 Hanson SM, Newstead S, Swartz KJ, Sansom MS (2015) Capsaicin interaction with TRPV1 channels in a lipid bilayer: molecular dynamics simulation. Biophys J 108:1425–1434.
https://doi.org/10.1016/j. bpj.2015.02.013
28 Hui K, Liu B, Qin F (2003) Capsaicin activation of the pain receptor, VR1: multiple open states from both partial and full binding. Biophys J 84:2957–2968.
https://doi.org/10.1016/S0006-3495(03)70022-8
29 Huynh KW (2016) Structure of the full-length TRPV2 channel by cryo-EM. Nat Commun 7:11130.
https://doi.org/10.1038/ncomms11130
30 Inada H, Procko E, Sotomayor M, Gaudet R(2012) Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry 51:6195–6206.
https://doi.org/10.1021/bi300279b
31 Jin X, Touhey J, Gaudet R (2006) Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. J Biol Chem 281:25006–25010.
https://doi.org/10.1074/jbc.C600153200
32 Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108:421–430
https://doi.org/10.1016/S0092-8674(02)00637-2
33 Julius D (2013) TRP channels and pain. Ann Rev Cell Dev Biol 29:355–384.
https://doi.org/doi:10.1146/annurev-cellbio-101011-155833
34 Lau SY, Procko E, Gaudet R (2012) Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. J Gen Physiol 140:541–555.
https://doi.org/10.1085/jgp. 201210810
35 Lazar J, Gharat L, Khairathkar-Joshi N, Blumberg PM, Szallasi A (2009) Screening TRPV1 antagonists for the treatment of pain: lessons learned over a decade. Expert Opin Drug Discov 4:159–180.
https://doi.org/10.1517/17460440802681300
36 Leaver-Fay A (2011)ROSETTA3: anobject-orientedsoftware suite for the simulation and design ofmacromolecules. MethodsEnzymol 487:545–574.
https://doi.org/10.1016/B978-0-12-381270-4.00019-6
37 Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107–112.
https://doi.org/10.1038/nature12822
38 Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54:905–918. <Date>2007.05.027</Date>
https://doi.org/10.1016/j.neuron.
39 Lu Z, Klem AM, Ramu Y (2002) Coupling between voltage sensors and activation gate in voltage-gated K+ channels. J Gen Physiol 120:663–676
https://doi.org/10.1085/jgp.20028696
40 Ma L, Yang F, Vu S, Zheng J (2016) Exploring functional roles of TRPV1 intracellular domains with unstructured peptide-insertion screening. Sci Rep 6:33827
https://doi.org/10.1038/srep33827
41 Matta JA, Ahern GP (2007) Voltage is a partial activator of rat thermosensitive TRP channels. J Physiol 585:469–482.
https://doi.org/10. 1113/jphysiol.2007.144287
42 McGann M (2012) FRED and HYBRID docking performance on standardized datasets. J Comput Aid Mol Des 26:897–906.
https://doi.org/10.1007/s10822-012-9584-8
43 Mio K (2007) The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. J Mol Biol 367:373–383.
https://doi.org/10.1016/j.jmb.2006.12.043
44 Moiseenkova-Bell VY, Stanciu LA, Serysheva II, Tobe BJ, Wensel TG (2008) Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci USA 105:7451–7455.
https://doi.org/10. 1073/pnas.0711835105
45 Montell C (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9:229–231
https://doi.org/10.1016/S1097-2765(02)00448-3
46 Moran MM, McAlexander MA, Biro T, Szallasi A (2011) Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 10:601–620.
https://doi.org/10.1038/nrd3456
47 Nelson EK, Dawson LE (1923) The constitution of capsaicin, the pungent principle of capsicum III. J Am Chem Soc 45:2179–2181.
https://doi.org/10.1021/ja01662a023
48 Nilius B, Appendino G (2013) Spices: the savory and beneficial science of pungency. Rev Physiol Biochem Pharmacol 164:1–76.
https://doi.org/10.1007/112_2013_11
49 Oh U, Hwang SW, Kim D (1996) Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J Neurosci Off J Soc Neurosci 16:1659–1667
50 Ohbuchi K (2016) Detailed analysis of the binding mode of vanilloids to transient receptor potential vanilloid type I (TRPV1) by a mutational and computational study. PloS ONE 11: e0162543.
https://doi.org/10.1371/journal.pone.0162543
51 Paulsen CE, Armache JP, Gao Y, Cheng Y, Julius D (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature.
https://doi.org/10.1038/nature14367
52 Phelps CB, Huang RJ, Lishko PV, Wang RR, Gaudet R (2008) Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47:2476–2484.
https://doi.org/10. 1021/bi702109w
53 Piskorowski R, Aldrich RW (2002) Calcium activation of BK(Ca) potassium channels lacking the calcium bowl and RCK domains. Nature 420:499–502.
https://doi.org/10.1038/nature01199
54 Puljung MC, DeBerg HA, Zagotta WN, Stoll S (2014) Double electron-electron resonance reveals cAMP-induced conformational change in HCN channels. Proc Natl Acad Sci USA 111:9816–9821.
https://doi.org/10.1073/pnas.1405371111
55 Purohit P, Mitra A, Auerbach A (2007) A stepwise mechanism for acetylcholine receptor channel gating. Nature 446:930–933.
https://doi.org/10.1038/nature05721
56 Ranganathan R, Lewis JH, MacKinnon R (1996) Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis. Neuron 16:131–139
https://doi.org/10.1016/S0896-6273(00)80030-6
57 Sakmann B, Neher E (2009) Single-channel recording, 2nd edn. Springer, New York
58 Salazar H (2009) Structural determinants of gating in the TRPV1 channel. Nat Struct Mol Biol 16:704–710.
https://doi.org/10.1038/ nsmb.1633
59 Saotome K, Singh AK, Yelshanskaya MV, Sobolevsky AI (2016) Crystal structure of the epithelial calcium channel TRPV6. Nature 534:506–511.
https://doi.org/10.1038/nature17975
60 Schreiber G, Fersht AR (1995) Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J Mol Biol 248:478–486
https://doi.org/10.1016/S0022-2836(95)80064-6
61 Scoville WL (1912) Note on capsicums. J Am Pharm Assoc 1:1.
https://doi.org/10.1002/jps.3080010520
62 Shi DJ, Ye S, Cao X, Zhang R, Wang K (2013) Crystal structure of the N-terminal ankyrin repeat domain of TRPV3 reveals unique conformation of finger 3 loop critical for channel function. Prot Cell 4:942–950.
https://doi.org/10.1007/s13238-013-3091-0
63 Shigematsu H, Sokabe T, Danev R, Tominaga M, Nagayama K (2010) A, 3.5-nm structure of rat TRPV4 cation channel revealed by Zernike phase-contrast cryoelectron microscopy. J Biol Chem 285:11210–11218.
https://doi.org/10.1074/jbc.M109.090712
64 Siemens J (2006) Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 444:208–212.
https://doi.org/10.1038/ nature05285
65 Sunderman ER, Zagotta WN (1999a) Sequence of events underlying the allosteric transition of rod cyclic nucleotide-gated channels. J Gen Physiol 113:621–640
https://doi.org/10.1085/jgp.113.5.621
66 Sunderman ER, Zagotta WN (1999b) Mechanism of allosteric modulation of rod cyclic nucleotide-gated channels. J Gen Physiol 113:601–620
https://doi.org/10.1085/jgp.113.5.601
67 Szallasi A (1994) The vanilloid (capsaicin) receptor: receptor types and species differences. Gen Pharmacol 25:223–243
https://doi.org/10.1016/0306-3623(94)90049-3
68 Szallasi A, Blumberg PM (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–212
69 Szolcsanyi J, Jancso-Gabor A (1975) Sensory effects of capsaicin congeners I. Relationship between chemical structure and painproducing potency of pungent agents. Arzneimittelforschung 25:1877–1881
70 Szolcsanyi J, Jancso-Gabor A (1976) Sensory effects of capsaicin congeners. Part II: Importance of chemical structure and pungency in desensitizing activity of capsaicin-type compounds. Arzneimittelforschung 26:33–37
71 Tekpinar M, Zheng W (2010) Predicting order of conformational changes during protein conformational transitions using an interpolated elastic network model. Proteins 78:2469–2481.
https://doi.org/10.1002/prot.22755
72 Thresh JC (1876) Isolation of capsaicin. Pharm J Trans 6:941–947
73 Tominaga M, Julius D (2000) Capsaicin receptor in the pain pathway. Jpn J Pharm 83:20–24
https://doi.org/10.1254/jjp.83.20
74 Tominaga M (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543
https://doi.org/10.1016/S0896-6273(00)80564-4
75 Yang F, Cui Y,Wang K, Zheng J (2010) Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc Natl Acad Sci USA 107:7083–7088.
https://doi.org/10.1073/pnas.1000357107
76 Yang F, Yarov-Yarovoy V, Zheng J (2013) Modeling temperaturedependent ion channel protein structural changes with rosetta. Biophys J 104:229a–230a.
https://doi.org/10.1016/j.bpj.2012.11.1295
77 Yang F, Ma L, Cao X, Wang K, Zheng J (2014) Divalent cations activate TRPV1 through promoting conformational change of the extracellular region. J Gen Physiol 143:91–103.
https://doi.org/10.1085/jgp. 201311024
78 Yang S (2015a) A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nat Commun 6:8297.
https://doi.org/10.1038/ncomms9297
79 Yang F (2015b) Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel. Nat Chem Biol 11:518–524.
https://doi.org/10.1038/nchembio.1835
80 Yang F, Vu S, Yarov-Yarovoy V, Zheng J (2016) Rational design and validation of a vanilloid-sensitive TRPV2 ion channel. Proc Natl Acad Sci USA.
https://doi.org/10.1073/pnas.1604180113
81 Yarov-Yarovoy V, Schonbrun J, Baker D (2006) Multipass membrane protein structure prediction using Rosetta. Proteins 62:1010–1025.
https://doi.org/10.1002/prot.20817
82 Yarov-Yarovoy V (2012) Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proc Natl Acad Sci USA 109:E93–102.
https://doi.org/10.1073/pnas.1118434109
83 Ye XY, Ling QZ, Chen SJ (2015) Identification of a potential target of capsaicin by computational target fishing. Evid Based Complement Altern Med 2015:983951.
https://doi.org/10.1155/2015/983951
84 Zagotta WN (2003) Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425:200–205.
https://doi.org/10.1038/nature01922
85 Zhang F (2016) Engineering vanilloid-sensitivity into the rat TRPV2 channel. eLife.
https://doi.org/10.7554/eLife.16409
86 Zheng J (2013) Molecular mechanism of TRP channels. Compr Physiol 3:221–242.
https://doi.org/10.1002/cphy.c120001
87 Zheng W, Auerbach A (2011) Decrypting the sequence of structural events during the gating transition of pentameric ligand-gated ion channels based on an interpolated elastic network model. PLoS Comput Biol 7:e1001046.
https://doi.org/10.1371/journal.pcbi.1001046
88 Zheng J, Ma L (2014) Structure and function of the thermoTRP channel pore. Curr Top Membr 74:233–257.
https://doi.org/10.1016/B978-0-12-800181-3.00009-9
89 Zheng J, Trudeau MC (2015) Handbook of ion channels. CRC Press, Boca Raton
https://doi.org/10.1201/b18027
90 Zubcevic L (2016) Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol 23:180–186.
https://doi.org/10. 1038/nsmb.3159
[1] Lu Zhang, Yao Zhao, Ruogu Gao, Jun Li, Xiuna Yang, Yan Gao, Wei Zhao, Sudagar S. Gurcha, Natacha Veerapen, Sarah M. Batt, Kajelle Kaur Besra, Wenqing Xu, Lijun Bi, Xian’en Zhang, Luke W. Guddat8, Haitao Yang, Quan Wang, Gurdyal S. Besra, Zihe Rao. Cryo-EM snapshots of mycobacterial arabinosyltransferase complex EmbB2-AcpM2[J]. Protein Cell, 2020, 11(7): 505-517.
[2] Meng Wu, Jinke Gu, Shuai Zong, Runyu Guo, Tianya Liu, Maojun Yang. Research journey of respirasome[J]. Protein Cell, 2020, 11(5): 318-338.
[3] Dejian Zhou, Xing Zhu, Sanduo Zheng, Dan Tan, Meng-Qiu Dong, Keqiong Ye. Cryo-EM structure of an early precursor of large ribosomal subunit reveals a half-assembled intermediate[J]. Protein Cell, 2019, 10(2): 120-130.
[4] Jie Yu, Bing Zhang, Yixiao Zhang, Cong-qiao Xu, Wei Zhuo, Jingpeng Ge, Jun Li, Ning Gao, Yang Li, Maojun Yang. A binding-block ion selective mechanism revealed by a Na/K selective channel[J]. Protein Cell, 2018, 9(7): 629-639.
[5] Chengying Ma,Kaige Yan,Dan Tan,Ningning Li,Yixiao Zhang,Yi Yuan,Zhifei Li,Meng-Qiu Dong,Jianlin Lei,Ning Gao. Structural dynamics of the yeast Shwachman-Diamond syndrome protein (Sdo1) on the ribosome and its implication in the 60S subunit maturation[J]. Protein Cell, 2016, 07(03): 187-200.
[6] Zhixiu Yang,Qiang Guo,Simon Goto,Yuling Chen,Ningning Li,Kaige Yan,Yixiao Zhang,Akira Muto,Haiteng Deng,Hyouta Himeno,Jianlin Lei,Ning Gao. Structural insights into the assembly of the 30S ribosomal subunit in vivo: functional role of S5 and location of the 17S rRNA precursor sequence[J]. Protein Cell, 2014, 5(5): 394-407.
[7] Yong Huang, Quan Zou, Haitai Song, Fei Song, Ligang Wang, Guozheng Zhang, Xingjia Shen. A study of miRNAs targets prediction and experimental validation[J]. Prot Cell, 2010, 1(11): 979-986.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed