Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2017, Vol. 8 Issue (5) : 379-393    https://doi.org/10.1007/s13238-016-0360-8
RESEARCH ARTICLE
An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells
Jianying Guo1, Dacheng Ma2, Rujin Huang1, Jia Ming1, Min Ye1, Kehkooi Kee1, Zhen Xie2, Jie Na1()
1. Department of Basic Medical Sciences, School of Medicine, Center for Stem Cell Biology, Tsinghua University, Beijing 100084, China
2. MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
 Download: PDF(4980 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Human pluripotent stem cells (hPSCs) are an important system to study early human development, model human diseases, and develop cell replacement therapies. However, genetic manipulation of hPSCs is challenging and a method to simultaneously activate multiple genomic sites in a controllable manner is sorely needed. Here, we constructed a CRISPR-ON system to efficiently upregulate endogenous genes in hPSCs. A doxycycline (Dox) inducible dCas9-VP64-p65-Rta (dCas9-VPR) transcription activator and a reverse Tet transactivator (rtTA) expression cassette were knocked into the two alleles of the AAVS1 locus to generate an iVPR hESC line. We showed that the dCas9-VPR level could be precisely and reversibly controlled by the addition and withdrawal of Dox. Upon transfection of multiplexed gRNA plasmid targeting the NANOG promoter and Dox induction, we were able to control NANOG gene expression from its endogenous locus. Interestingly, an elevated NANOG level promoted naïve pluripotent gene expression, enhanced cell survival and clonogenicity, and enabled hESCs to integrate with the inner cell mass (ICM) of mouse blastocysts in vitro. Thus, iVPR cells provide a convenient platform for gene function studies as well as high-throughput screens in hPSCs.

Keywords CRISPR      transcription activation      human pluripotent stem cells      NANOG      pluripotency     
Corresponding Author(s): Jie Na   
Issue Date: 12 June 2017
 Cite this article:   
Jianying Guo,Dacheng Ma,Rujin Huang, et al. An inducible CRISPR-ON system for controllable gene activation in human pluripotent stem cells[J]. Protein Cell, 2017, 8(5): 379-393.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-016-0360-8
https://academic.hep.com.cn/pac/EN/Y2017/V8/I5/379
1 BakerDEC, HarrisonNJ, MaltbyE, SmithK, MooreHD, ShawPJ, HeathPR, HoldenH, AndrewsPW (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol25:207–215
https://doi.org/10.1038/nbt1285
2 BalboaD, WeltnerJ, EurolaS, TrokovicR, WartiovaaraK, OtonkoskiT (2015) Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Rep5:448–459
https://doi.org/10.1016/j.stemcr.2015.08.001
3 BedzhovI, Zernicka-GoetzM (2014) Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell156:1032–1044
https://doi.org/10.1016/j.cell.2014.01.023
4 BoyerLA, LeeTI, ColeMF, JohnstoneSE, LevineSS, ZuckerJP, GuentherMG, KumarRM, MurrayHL, JennerRG (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122:947–956
https://doi.org/10.1016/j.cell.2005.08.020
5 BronsIGM, SmithersLE, TrotterMWB, Rugg-GunnP, SunB, de Sousa LopesSMC, HowlettSK, ClarksonA, Ahrlund-RichterL, PedersenRA (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature448:191–195
https://doi.org/10.1038/nature05950
6 BurridgePW, HolmströmA, and WuJC (2015). Chemically defined culture and cardiomyocyte differentiation of human pluripotent stem cells. Curr Protoc Hum Genet: 21.23. 21–21.23. 15
https://doi.org/10.1002/0471142905.hg2103s87
7 ChambersI, SilvaJ, ColbyD, NicholsJ, NijmeijerB, RobertsonM, VranaJ, JonesK, GrotewoldL, SmithA (2007) Nanog safeguards pluripotency and mediates germline development. Nature450:1230–1234
https://doi.org/10.1038/nature06403
8 ChangM-Y, RheeY-H, YiS-H, LeeS-J, KimR-K, KimH, ParkC-H, LeeS-H (2014) Doxycycline enhances survival and self-renewal of human pluripotent stem cells. Stem Cell Rep3:353–364
https://doi.org/10.1016/j.stemcr.2014.06.013
9 ChavezA, ScheimanJ, VoraS, PruittBW, TuttleM, IyerEPR, LinS, KianiS, GuzmanCD, WiegandDJ (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods12:326–328
https://doi.org/10.1038/nmeth.3312
10 ChenY, NiuY, LiY, AiZ, KangY, ShiH, XiangZ, YangZ, TanT, SiW (2015) Generation of cynomolgus monkey chimeric fetuses using embryonic stem cells. Cell Stem Cell17:116–124
https://doi.org/10.1016/j.stem.2015.06.004
11 DeglincertiA, CroftGF, PietilaLN, Zernicka-GoetzM, SiggiaED, BrivanlouAH (2016) Self-organization of the in vitro attached human embryo. Nature533:251–254
https://doi.org/10.1038/nature17948
12 DeKelverRC, ChoiVM, MoehleEA, PaschonDE, HockemeyerD, MeijsingSH, SancakY, CuiX, SteineEJ, MillerJC (2010) Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res20:1133–1142
https://doi.org/10.1101/gr.106773.110
13 DuggalG, WarrierS, GhimireS, BroekaertD, Van der JeughtM, LiermanS, DerooT, PeelmanL, Van SoomA, CornelissenR (2015) Alternative routes to induce naive pluripotency in human embryonic stem cells. Stem Cells33:2686–2698
https://doi.org/10.1002/stem.2071
14 GafniO, WeinbergerL, MansourAA, ManorYS, ChomskyE, Ben-YosefD, KalmaY, ViukovS, MazaI, ZviranA (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature504:282–286
https://doi.org/10.1038/nature12745
15 GengaRM, KearnsNA, MaehrR (2016) Controlling transcription in human pluripotent stem cells using CRISPR-effectors. Methods101:36–42
https://doi.org/10.1016/j.ymeth.2015.10.014
16 GilbertLA, HorlbeckMA, AdamsonB, VillaltaJE, ChenY, WhiteheadEH, GuimaraesC, PanningB, PloeghHL, BassikMC (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell159:647–661
https://doi.org/10.1016/j.cell.2014.09.029
17 GongS, LiQ, JeterCR, FanQ, TangDG, LiuB (2015) Regulation of NANOG in cancer cells. Mol Carcinog54:679–687
https://doi.org/10.1002/mc.22340
18 GonzálezF, ZhuZ, ShiZ-D, LelliK, VermaN, LiQV, HuangfuD (2014) An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell15:215–226
https://doi.org/10.1016/j.stem.2014.05.018
19 HannaJ, SahaK, PandoB, Van ZonJ, LengnerCJ, CreyghtonMP, van OudenaardenA, JaenischR (2009) Direct cell reprogramming is a stochastic process amenable to acceleration. Nature462:595–601
https://doi.org/10.1038/nature08592
20 HannaJ, ChengAW, SahaK, KimJ, LengnerCJ, SoldnerF, CassadyJP, MuffatJ, CareyBW, JaenischR (2010) Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Natl Acad Sci107:9222–9227
https://doi.org/10.1073/pnas.1004584107
21 HiltonIB, D’IppolitoAM, VockleyCM, ThakorePI, CrawfordGE, ReddyTE, GersbachCA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol33:510–517
https://doi.org/10.1038/nbt.3199
22 HockemeyerD, SoldnerF, BeardC, GaoQ, MitalipovaM, DeKelverRC, KatibahGE, AmoraR, BoydstonEA, ZeitlerB (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol27:851–857
https://doi.org/10.1038/nbt.1562
23 HoganB, CostantiniF, LacyE (1986) Manipulating the mouse embryo: a laboratory manual, vol 34. Cold spring harbor laboratory, Cold Spring Harbor, NY
24 HsuPD, LanderES, ZhangF (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell157:1262–1278
https://doi.org/10.1016/j.cell.2014.05.010
25 KearnsNA, GengaRMJ, EnuamehMS, GarberM, WolfeSA, MaehrR (2014) Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development141:219–223
https://doi.org/10.1242/dev.103341
26 KonermannS, BrighamMD, TrevinoAE, JoungJ, AbudayyehOO, BarcenaC, HsuPD, HabibN, GootenbergJS, NishimasuH (2014) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature517:583–588
https://doi.org/10.1038/nature14136
27 LombardoA, CesanaD, GenoveseP, Di StefanoB, ProvasiE, ColomboDF, NeriM, MagnaniZ, CantoreA, RisoPL (2011) Sitespecific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods8:861–869
https://doi.org/10.1038/nmeth.1674
28 MaederML, LinderSJ, CascioVM, FuY, HoQH, JoungJK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods10:977–979
https://doi.org/10.1038/nmeth.2598
29 MandegarMA, HuebschN, FrolovEB, ShinE, TruongA, OlveraMP, ChanAH, MiyaokaY, HolmesK, SpencerCI (2016) CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell18:541–553
https://doi.org/10.1016/j.stem.2016.01.022
30 MitsuiK, TokuzawaY, ItohH, SegawaK, MurakamiM, TakahashiK, MaruyamaM, MaedaM, YamanakaS (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell113:631–642
https://doi.org/10.1016/S0092-8674(03)00393-3
31 OrdovásL, BoonR, PistoniM, ChenY,,WolfsE, GuoW, SambathkumarR, Bobis-WozowiczS, HelsenN, VanhoveJ (2015) Efficient recombinase-mediated cassette exchange in hPSCs to study the hepatocyte lineage reveals AAVS1 locusmediated transgene inhibition. Stem cell Rep5:918–931
https://doi.org/10.1016/j.stemcr.2015.09.004
32 QianK, HuangCL, ChenH, BlackbournLW, ChenY, CaoJ, YaoL, SauveyC, DuZ, ZhangSC (2014) A simple and efficient system for regulating gene expression in human pluripotent stem cells and derivatives. Stem Cells32:1230–1238
https://doi.org/10.1002/stem.1653
33 ShahbaziMN, JedrusikA, VuoristoS, RecherG, HupalowskaA, BoltonV, FogartyNME, CampbellA, DevitoLG, IlicD (2016) Selforganization of the human embryo in the absence of maternal tissues. Nature cell Biol18:700–708
https://doi.org/10.1038/ncb3347
34 SilvaJ, NicholsJ, TheunissenTW, GuoG, van OostenAL, BarrandonO, WrayJ, YamanakaS, ChambersI, SmithA (2009) Nanog is the gateway to the pluripotent ground state. Cell138:722–737
https://doi.org/10.1016/j.cell.2009.07.039
35 SmithJR, MaguireS, DavisLA, AlexanderM, YangF, ChandranS, PedersenRA(2008) Robust, persistent transgene expression in human embryonic stem cells is achieved with AAVS1-targeted integration. Stem Cells26:496–504
https://doi.org/10.1634/stemcells.2007-0039
36 TaapkenSM, NislerBS, NewtonMA, Sampsell-BarronTL, LeonhardKA, McIntireEM, MontgomeryKD (2011) Karyotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotechnol29:313–314
https://doi.org/10.1038/nbt.1835
37 TakashimaY, GuoG, LoosR, NicholsJ, FiczG, KruegerF, OxleyD, SantosF, ClarkeJ, MansfieldW (2014) Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell158:1254–1269
https://doi.org/10.1016/j.cell.2014.08.029
38 TanenbaumME, GilbertLA, QiLS, WeissmanJS, ValeRD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell159:635–646
https://doi.org/10.1016/j.cell.2014.09.039
39 TesarPJ, ChenowethJG, BrookFA, DaviesTJ, EvansEP, MackDL, GardnerRL, McKayRDG (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature448:196–199
https://doi.org/10.1038/nature05972
40 TheunissenTW, PowellBE, WangH, MitalipovaM, FaddahDA, ReddyJ, FanZP, MaetzelD, GanzK, ShiL (2014) Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell15:471–487
https://doi.org/10.1016/j.stem.2014.07.002
41 WareCB, NelsonAM, MechamB, HessonJ, ZhouW, JonlinEC, Jimenez-CalianiAJ, DengX, CavanaughC, CookS (2014) Derivation of naive human embryonic stem cells. Proc Natl Acad Sci111:4484–4489
https://doi.org/10.1073/pnas.1319738111
42 WiedenheftB, SternbergSH, DoudnaJA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature482:331–338
https://doi.org/10.1038/nature10886
43 XuX, TaoY, GaoX, ZhangL, LiX, ZouW, RuanK, WangF, G-lXu, HuR (2016) A CRISPR-based approach for targeted DNA demethylation. Cell Discov2:16009
https://doi.org/10.1038/celldisc.2016.9
44 ZhuZ, GonzálezF, HuangfuD (2014) The iCRISPR platform for rapid genome editing in human pluripotent stem cells. Methods Enzymol546:215
https://doi.org/10.1016/B978-0-12-801185-0.00011-8
45 ZhuZ, VermaN, GonzálezF, ShiZ-D, HuangfuD (2015) A CRISPR/Cas-mediated selection-free knockin strategy in human embryonic stem cells. Stem Cell Rep4:1103–1111
https://doi.org/10.1016/j.stemcr.2015.04.016
[1] PAC-0379-16200-NJ_suppl_1 Download
[1] Bingzhou Han, Yage Zhang, Xuetong Bi, Yang Zhou, Christopher J. Krueger, Xinli Hu, Zuoyan Zhu, Xiangjun Tong, Bo Zhang. Bi-FoRe: an efficient bidirectional knockin strategy to generate pairwise conditional alleles with fluorescent indicators[J]. Protein Cell, 2021, 12(1): 39-56.
[2] Bohong Chen, Shengcheng Deng, Tianyu Ge, Miaoman Ye, Jianping Yu, Song Lin, Wenbin Ma, Zhou Songyang. Live cell imaging and proteomic profiling of endogenous NEAT1 lncRNA by CRISPR/Cas9-mediated knock-in[J]. Protein Cell, 2020, 11(9): 641-660.
[3] Si Wang, Zheying Min, Qianzhao Ji, Lingling Geng, Yao Su, Zunpeng Liu, Huifang Hu, Lixia Wang, Weiqi Zhang, Keiichiro Suzuiki, Yu Huang, Puyao Zhang, Tie-Shan Tang, Jing Qu, Yang Yu, Guang-Hui Liu, Jie Qiao. Rescue of premature aging defects in Cockayne syndrome stem cells by CRISPR/Cas9-mediated gene correction[J]. Protein Cell, 2020, 11(1): 1-22.
[4] Lili Yu, Kai-yuan Ji, Jian Zhang, Yanxia Xu, Yue Ying, Taoyi Mai, Shuxiang Xu, Qian-bing Zhang, Kai-tai Yao, Yang Xu. Core pluripotency factors promote glycolysis of human embryonic stem cells by activating GLUT1 enhancer[J]. Protein Cell, 2019, 10(9): 668-680.
[5] Xiaona Huang, Chao Wei, Fenjie Li, Lumeng Jia, Pengguihang Zeng, Jiahe Li, Jin Tan, Tuanfeng Sun, Shaoshuai Jiang, Jia Wang, Xiuxiao Tang, Qingquan Zhao, Bin Liu, Limin Rong, Cheng Li, Junjun Ding. PCGF6 regulates stem cell pluripotency as a transcription activator via super-enhancer dependent chromatin interactions[J]. Protein Cell, 2019, 10(10): 709-725.
[6] Haibo Li, Chaoran Zhao, Jun Xu, Yaxing Xu, Chunmei Cheng, Yinan Liu, Ting Wang, Yaqin Du, Liangfu Xie, Jingru Zhao, Yanchuang Han, Xiaobao Wang, Yun Bai, Hongkui Deng. Rapid generation of gene-targeted EPS-derived mouse models through tetraploid complementation[J]. Protein Cell, 2019, 10(1): 20-30.
[7] Jiangtao Ren, Yangbing Zhao. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9[J]. Protein Cell, 2017, 8(9): 634-643.
[8] Lixia Wang, Fei Yi, Lina Fu, Jiping Yang, Si Wang, Zhaoxia Wang, Keiichiro Suzuki, Liang Sun, Xiuling Xu, Yang Yu, Jie Qiao, Juan Carlos Izpisua Belmonte, Ze Yang, Yun Yuan, Jing Qu, Guang-Hui Liu. CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs[J]. Protein Cell, 2017, 8(5): 365-378.
[9] Chao Lu,Yang Yang,Ran Zhao,Bingxuan Hua,Chen Xu,Zuoqin Yan,Ning Sun,Ruizhe Qian. Role of circadian gene Clock during differentiation of mouse pluripotent stem cells[J]. Protein Cell, 2016, 7(11): 820-832.
[10] Puping Liang,Yanwen Xu,Xiya Zhang,Chenhui Ding,Rui Huang,Zhen Zhang,Jie Lv,Xiaowei Xie,Yuxi Chen,Yujing Li,Ying Sun,Yaofu Bai,Zhou Songyang,Wenbin Ma,Canquan Zhou,Junjiu Huang. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J]. Protein Cell, 2015, 6(5): 363-372.
[11] Liping Deng,Ruotong Ren,Jun Wu,Keiichiro Suzuki,Juan Carlos Izpisua Belmote,Guang-Hui Liu. CRISPR/Cas9 and TALE: beyond cut and paste[J]. Protein Cell, 2015, 6(3): 157-159.
[12] Jie Na,Duncan Baker,Jing Zhang,Peter W. Andrews,Ivana Barbaric. Aneuploidy in pluripotent stem cells and implications for cancerous transformation[J]. Protein Cell, 2014, 5(8): 569-579.
[13] Wen-Ting Guo,Xi-Wen Wang,Yangming Wang. Micro-management of pluripotent stem cells[J]. Protein Cell, 2014, 5(1): 36-47.
[14] Jolene Ooi, Pentao Liu. Delineating nuclear reprogramming[J]. Prot Cell, 2012, 3(5): 329-345.
[15] Peizhe Wang, Jie Na. Mechanism and methods to induce pluripotency[J]. Prot Cell, 2011, 2(10): 792-799.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed