Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2017, Vol. 8 Issue (12) : 878-895    https://doi.org/10.1007/s13238-017-0379-5
REVIEW
Guards at the gate: physiological and pathological roles of tissue-resident innate lymphoid cells in the lung
Hang Cheng1,2, Chengyan Jin3, Jing Wu1, Shan Zhu1, Yong-Jun Liu1,4(), Jingtao Chen1()
1. Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130061, China
2. Department of Pediatrics, The First Hospital, Jilin University, Changchun 130021, China
3. Department of Thoracic Surgery, The Second Hospital, Jilin University, Changchun 130041, China
4. Sanofi Research and Development, Cambridge, MA 02139, USA
 Download: PDF(1275 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The lung is an important open organ and the primary site of respiration. Many life-threatening diseases develop in the lung, e.g., pneumonia, asthma, chronic obstructive pulmonary diseases (COPDs), pulmonary fibrosis, and lung cancer. In the lung, innate immunity serves as the frontline in both anti-irritant response and anti-tumor defense and is also critical for mucosal homeostasis; thus, it plays an important role in containing these pulmonary diseases. Innate lymphoid cells (ILCs), characterized by their strict tissue residence and distinct function in the mucosa, are attracting increased attention in innate immunity. Upon sensing the danger signals from damaged epithelium, ILCs activate, proliferate, and release numerous cytokines with specific local functions; they also participate in mucosal immunesurveillance, immune-regulation, and homeostasis. However, when their functions become uncontrolled, ILCs can enhance pathological states and induce diseases. In this review, we discuss the physiological and pathological functions of ILC subsets 1 to 3 in the lung, and how the pathogenic environment affects the function and plasticity of ILCs.

Keywords lung      innate lymphoid cells      pulmonary diseases      regional immunity     
Corresponding Author(s): Yong-Jun Liu,Jingtao Chen   
Issue Date: 27 December 2017
 Cite this article:   
Hang Cheng,Chengyan Jin,Jing Wu, et al. Guards at the gate: physiological and pathological roles of tissue-resident innate lymphoid cells in the lung[J]. Protein Cell, 2017, 8(12): 878-895.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-017-0379-5
https://academic.hep.com.cn/pac/EN/Y2017/V8/I12/878
1 Abt MC, Lewis BB, Caballero S, Xiong H, Carter RA, Susac B, Ling L, Leiner I, Pamer EG (2015) Innate Immune Defenses Mediated by Two ILC Subsets Are Critical for Protection against Acute Clostridium difficile Infection. Cell Host Microbe 18:27–37
https://doi.org/10.1016/j.chom.2015.06.011
2 Bal SM, Bernink JH, Nagasawa M, Groot J, Shikhagaie MM, Golebski K, van Drunen CM, Lutter R, Jonkers RE, Hombrink Pet al. (2016) IL-1beta, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat Immunol 17:636–645
https://doi.org/10.1038/ni.3444
3 Bando JK, Liang HE, Locksley RM (2015) Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat Immunol 16:153–160
https://doi.org/10.1038/ni.3057
4 Barlow JL, Bellosi A, Hardman CS, Drynan LF, Wong SH, Cruickshank JP, McKenzie AN (2012) Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol 129(191–198):e191–e194
https://doi.org/10.1016/j.jaci.2011.09.041
5 Barnes PJ (2009) The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 41:631–638
https://doi.org/10.1165/rcmb.2009-0220TR
6 Barnig C, Cernadas M, Dutile S, Liu X, Perrella MA, Kazani S, Wechsler ME, Israel E, Levy BD (2013) Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci Transl Med 5:174ra126
https://doi.org/10.1126/scitranslmed.3004812
7 Bartemes KR, Iijima K, Kobayashi T, Kephart GM, McKenzie AN, Kita H (2012) IL-33-responsive lineage- CD25+ CD44(hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J Immunol 188:1503–1513
https://doi.org/10.4049/jimmunol.1102832
8 Bartemes KR, Kephart GM, Fox SJ, Kita H (2014) Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol 134(671–678):e674
https://doi.org/10.1016/j.jaci.2014.06.024
9 Bernink JH, Peters CP, Munneke M, te Velde AA, Meijer SL, Weijer K, Hreggvidsdottir HS, Heinsbroek SE, Legrand N, Buskens CJet al. (2013) Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 14:221–229
https://doi.org/10.1038/ni.2534
10 Bernink JH, Krabbendam L, Germar K, de Jong E, Gronke K, Kofoed-Nielsen M, Munneke JM, Hazenberg MD, Villaudy J, Buskens CJet al. (2015) Interleukin-12 and-23 CONTROL PLASTICITY of CD127(+) Group 1 and Group 3 Innate lymphoid cells in the intestinal lamina propria. Immunity 43:146–160
https://doi.org/10.1016/j.immuni.2015.06.019
11 Boyman O, Sprent J (2012) The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 12:180–190
https://doi.org/10.1038/nri3156
12 Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ,Powrie F (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464:1371–1375
https://doi.org/10.1038/nature08949
13 Carrega P,Loiacono F, Di Carlo E, Scaramuccia A, Mora M, Conte R, Benelli R, Spaggiari GM, Cantoni C, Campana Set al. (2015) NCR(+)ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures. Nat Commun 6:8280
https://doi.org/10.1038/ncomms9280
14 Cella M, Fuchs A,Vermi W, Facchetti F,Otero K, Lennerz JK, Doherty JM, Mills JC, Colonna M (2009) A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457:722–725
https://doi.org/10.1038/nature07537
15 Cella M, Otero K, Colonna M (2010) Expansion of human NK-22 cells with IL-7, IL-2, and IL-1beta reveals intrinsic functional plasticity. Proc Natl Acad Sci USA 107:10961–10966
https://doi.org/10.1073/pnas.1005641107
16 Chang YJ, Kim HY, Albacker LA, Baumgarth N, McKenzie AN, Smith DE, Dekruyff RH, Umetsu DT (2011) Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol 12:631–638
https://doi.org/10.1038/ni.2045
17 Crellin NK, Trifari S, Kaplan CD, Cupedo T, Spits H (2010) Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J Exp Med 207:281–290
https://doi.org/10.1084/jem.20091509
18 Cupedo T, Crellin NK, Papazian N, Rombouts EJ, Weijer K, Grogan JL, Fibbe WE, Cornelissen JJ, Spits H (2009) Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol 10:66–74
https://doi.org/10.1038/ni.1668
19 Dadi S, Chhangawala S, Whitlock BM, Franklin RA, Luo CT, Oh SA, Toure A, Pritykin Y, Huse M, Leslie CSet al. (2016) Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell 164:365–377
https://doi.org/10.1016/j.cell.2016.01.002
20 De Grove KC, Provoost S, Verhamme FM, Bracke KR, Joos GF, Maes T, Brusselle GG (2016) Characterization and quantification of innate lymphoid cell subsets in human lung. PLoS ONE 11: e0145961
https://doi.org/10.1371/journal.pone.0145961
21 Deckers J, Branco Madeira F, Hammad H (2013) Innate immune cells in asthma. Trends Immunol 34:540–547
https://doi.org/10.1016/j.it.2013.08.004
22 Denney L, Byrne AJ, Shea TJ,Buckley JS, Pease JE, Herledan GM, Walker SA, Gregory LG, Lloyd CM (2015) Pulmonary epithelial cell-derived cytokine TGF-beta1 is a critical cofactor for enhanced innate lymphoid cell function. Immunity 43:945–958
https://doi.org/10.1016/j.immuni.2015.10.012
23 Doherty TA, Khorram N, Lund S, Mehta AK, Croft M, Broide DH (2013) Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol 132:205–213
https://doi.org/10.1016/j.jaci.2013.03.048
24 Dolinay T, Kaminski N, Felgendreher M, Kim HP, Reynolds P, Watkins SC, Karp D, Uhlig S, Choi AM (2006) Gene expression profiling of target genes in ventilator-induced lung injury. Physiol Genom 26:68–75
https://doi.org/10.1152/physiolgenomics.00110.2005
25 Doorduijn DJ, Rooijakkers SH, van Schaik W, Bardoel BW (2016) Complement resistance mechanisms of Klebsiella pneumoniae. Immunobiology 221:1102–1109
https://doi.org/10.1016/j.imbio.2016.06.014
26 Drake LY, Kita H (2014) Group 2 innate lymphoid cells in the lung. Adv Immunol 124:1–16
https://doi.org/10.1016/B978-0-12-800147-9.00001-7
27 Drake LY,Iijima K, Kita H (2014) Group 2 innate lymphoid cells and CD4+ T cells cooperate to mediate type 2 immune response in mice. Allergy 69:1300–1307
https://doi.org/10.1111/all.12446
28 Drake LY,Iijima K, Bartemes K, Kita H (2016) Group 2 innate lymphoid cells promote an early antibody response to a respiratory antigen in mice. J Immunol 197:1335–1342
https://doi.org/10.4049/jimmunol.1502669
29 Dudakov JA, Hanash AM, van den Brink MR (2015) Interleukin-22: immunobiology and pathology. Annu Rev Immunol 33:747–785
https://doi.org/10.1146/annurev-immunol-032414-112123
30 Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR (2004) An essential function for the nuclear receptor RORgamma (t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 5:64–73
https://doi.org/10.1038/ni1022
31 Eberl G, Colonna M, Di Santo JP, McKenzie AN (2015) Innate lymphoid cells: a new paradigm in immunology. Science 348: aaa6566
https://doi.org/10.1126/science.aaa6566
32 Enomoto Y, Orihara K, Takamasu T, Matsuda A, Gon Y, Saito H, Ra C, Okayama Y (2009) Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack. J Allergy Clin Immunol 124(913–920):e911–e917
https://doi.org/10.1016/j.jaci.2009.08.044
33 Everaere L, Ait-Yahia S, Molendi-Coste O, Vorng H, Quemener S, LeVu P, Fleury S, Bouchaert E, Fan Y, Duez Cet al. (2016) Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity. J Allergy Clin Immunol 138(5):1309–1318
https://doi.org/10.1016/j.jaci.2016.03.019
34 Fan X, Rudensky AY (2016) Hallmarks of tissue-resident lymphocytes. Cell 164:1198–1211
https://doi.org/10.1016/j.cell.2016.02.048
35 Finke D (2005) Fate and function of lymphoid tissue inducer cells. Curr Opin Immunol 17:144–150
https://doi.org/10.1016/j.coi.2005.01.006
36 Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, Menon S, Clifford T, Hunte B, Lesley Ret al. (2001) IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15:985–995
https://doi.org/10.1016/S1074-7613(01)00243-6
37 Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD,Cella M, Colonna M (2013) Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFNgamma-producing cells. Immunity 38:769–781
https://doi.org/10.1016/j.immuni.2013.02.010
38 Fukumoto J, Harada C, Kawaguchi T,Suetsugu S, Maeyama T, Inoshima I,Hamada N, Kuwano K, Nakanishi Y (2010) Amphiregulin attenuates bleomycin-induced pneumopathy in mice. Am J Physiol Lung Cell Mol Physiol 298:L131–L138
https://doi.org/10.1152/ajplung.90576.2008
39 Gasteiger G, Fan X, Dikiy S, Lee SY, Rudensky AY (2015) Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 350:981–985
https://doi.org/10.1126/science.aac9593
40 Gentek R, Munneke JM, Helbig C, Blom B, Hazenberg MD, Spits H, Amsen D (2013) Modulation of signal strength switches notch from an inducer of Tcells to an inducer of ILC2. Front Immunol 4:334
https://doi.org/10.3389/fimmu.2013.00334
41 Gladiator A, Wangler N, Trautwein-Weidner K, LeibundGut-Landmann S (2013) Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol 190:521–525
https://doi.org/10.4049/jimmunol.1202924
42 Glatzer T, Killig M, Meisig J,Ommert I, Luetke-Eversloh M, Babic M, Paclik D, Bluthgen N, Seidl R, Seifarth Cet al.(2013) RORgammat(+) innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44. Immunity 38:1223–1235
https://doi.org/10.1016/j.immuni.2013.05.013
43 Gold MJ, Antignano F, Halim TY, Hirota JA, Blanchet MR, Zaph C, Takei F, McNagny KM (2014) Group 2 innate lymphoid cells facilitate sensitization to local, but not systemic, TH2-inducing allergen exposures. J Allergy Clin Immunol 133:1142–1148
https://doi.org/10.1016/j.jaci.2014.02.033
44 Grainger JR, Smith KA, Hewitson JP, Mcsorley HJ, Harcus Y, Filbey KJ, Finney CA, Greenwood EJ, Knox DP, Wilson MS (2010) Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. J Exp Med 207:2331–2341
https://doi.org/10.1084/jem.20101074
45 Halim TY, Krauss RH, Sun AC, Takei F (2012a) Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36:451–463
https://doi.org/10.1016/j.immuni.2011.12.020
46 Halim TY, MacLaren A, Romanish MT,Gold MJ, McNagny KM, Takei F (2012b) Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 37:463–474
https://doi.org/10.1016/j.immuni.2012.06.012
47 Halim TY, Steer CA, Matha L, Gold MJ, Martinez-Gonzalez I, McNagny KM, McKenzie AN, Takei F (2014) Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40:425–435
https://doi.org/10.1016/j.immuni.2014.01.011
48 Halim TY,Hwang YY, Scanlon ST, Zaghouani H, Garbi N, Fallon PG, McKenzie AN (2015) Group 2 innate lymphoid cells license dendritic cells to potentiate memory T2 cell responses. Nat Immunol 17:57–64
https://doi.org/10.1038/ni.3294
49 Hams E, Armstrong ME, Barlow JL, Saunders SP, Schwartz C,Cooke G,Fahy RJ, Crotty TB, Hirani N, Flynn RJet al. (2014) IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc Natl Acad Sci USA 111:367–372
https://doi.org/10.1073/pnas.1315854111
50 Hansen G, Berry G, DeKruyff RH, Umetsu DT (1999) Allergenspecific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. J Clin Invest 103:175–183
https://doi.org/10.1172/JCI5155
51 Held W, Kijima M, Angelov G, Bessoles S (2011) The function of natural killer cells: education, reminders and some good memories. Curr Opin Immunol 23:228–233
https://doi.org/10.1016/j.coi.2010.11.008
52 Hesslein DG, Lanier LL (2011) Transcriptional control of natural killer cell development and function. Adv Immunol 109:45–85
https://doi.org/10.1016/B978-0-12-387664-5.00002-9
53 Holt PG, Strickland DH, Wikstrom ME, Jahnsen FL (2008) Regulation of immunological homeostasis in the respiratory tract. Nat Rev Immunol 8:142–152
https://doi.org/10.1038/nri2236
54 Hong JY, Bentley JK, Chung Y, Lei J, Steenrod JM, Chen Q, Sajjan US, Hershenson MB (2014) Neonatal rhinovirus induces mucous metaplasia and airways hyperresponsiveness through IL-25 and type 2 innate lymphoid cells. J Allergy Clin Immunol 134:429–439
https://doi.org/10.1016/j.jaci.2014.04.020
55 Hoorweg K, Peters CP, Cornelissen F, Aparicio-Domingo P, Papazian N,Kazemier G, Mjosberg JM, Spits H, Cupedo T (2012) Functional differences between human NKp44(-) and NKp44(+) RORC(+) innate lymphoid cells. Front Immunol 3:72
https://doi.org/10.3389/fimmu.2012.00072
56 Huang Y, Guo L, Qiu J, Chen X, Hu-Li J, Siebenlist U, Williamson PR, Urban JF Jr,Paul WE (2015) IL-25-responsive, lineagenegative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat Immunol 16:161–169
https://doi.org/10.1038/ni.3078
57 Hughes T, Briercheck EL, Freud AG,Trotta R, McClory S, Scoville SD, Keller K, Deng Y, Cole J, Harrison Net al. (2014) The transcription Factor AHR prevents the differentiation of a stage 3 innate lymphoid cell subset to natural killer cells. Cell Rep 8:150–162
https://doi.org/10.1016/j.celrep.2014.05.042
58 Hutchinson J,Fogarty A, Hubbard R, McKeever T (2015) Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur Respir J 46:795–806
https://doi.org/10.1183/09031936.00185114
59 Iijima K, Kobayashi T, Hara K, Kephart GM,Ziegler SF, McKenzie AN, Kita H (2014) IL-33 and thymic stromal lymphopoietin mediate immune pathology in response to chronic airborne allergen exposure. J Immunol 193:1549–1559
https://doi.org/10.4049/jimmunol.1302984
60 Jia Y, Fang X, Zhu X, Bai C, Zhu L, Jin M, Wang X, Hu M, Tang R, Chen Z (2016) IL-13+ Type 2 innate lymphoid cells correlate with asthma control status and treatment response. Am J Respir Cell Mol Biol 55:675–683
https://doi.org/10.1165/rcmb.2016-0099OC
61 Kalomenidis I, Light RW (2003) Eosinophilic pleural effusions. Curr Opin Pulm Med 9:254–260
https://doi.org/10.1097/00063198-200307000-00002
62 Karta MR, Broide DH, Doherty TA (2016) Insights into Group 2 innate lymphoid cells in human airway disease. Curr Allergy Asthma Rep 16:8
https://doi.org/10.1007/s11882-015-0581-6
63 Kearley J,Silver JS, Sanden C, Liu Z, Berlin AA, White N, Mori M, Pham TH, Ward CK, Criner GJet al. (2015) Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity 42:566–579
https://doi.org/10.1016/j.immuni.2015.02.011
64 Kelly KA, Scollay R (1992) Seeding of neonatal lymph nodes by T cells and identification of a novel population of CD3-CD4+ cells. Eur J Immunol 22:329–334
https://doi.org/10.1002/eji.1830220207
65 Killig M, Glatzer T, Romagnani C (2014) Recognition strategies of group 3 innate lymphoid cells. Front Immunol 5:142
https://doi.org/10.3389/fimmu.2014.00142
66 Kim HY, Chang YJ, Subramanian S, Lee HH, Albacker LA,Matangkasombut P, Savage PB, McKenzie AN, Smith DE, Rottman JBet al. (2012) Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allergy Clin Immunol 129(216–227):e211–e216
https://doi.org/10.1016/j.jaci.2011.10.036
67 Kim BS, Siracusa MC, Saenz SA, Noti M, Monticelli LA, Sonnenberg GF,Hepworth MR, Van Voorhees AS, Comeau MR, Artis D (2013) TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med 5:170ra116
https://doi.org/10.1126/scitranslmed.3005374
68 Kim HY, Lee HJ, Chang YJ, Pichavant M, Shore SA, Fitzgerald KA, Iwakura Y, Israel E, Bolger K, Faul Jet al. (2014) Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med 20:54–61
https://doi.org/10.1038/nm.3423
69 Kim J,Kwon J, Kim M, Do J, Lee D, Han H (2016) IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Polym J 17:646–655
70 Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, Szabady RL, Harrison O, Powrie F (2013) Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med 210:917–931
https://doi.org/10.1084/jem.20122308
71 Klein Wolterink RG, Kleinjan A, van Nimwegen M, Bergen I, de Bruijn M, Levani Y,Hendriks RW (2012) Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur J Immunol 42:1106–1116
https://doi.org/10.1002/eji.201142018
72 KleinJan A, Klein Wolterink RG, Levani Y, de Bruijn MJ, Hoogsteden HC, van Nimwegen M, Hendriks RW (2014) Enforced expression of Gata3 in T cells and group 2 innate lymphoid cells increases susceptibility to allergic airway inflammation in mice. J Immunol 192:1385–1394
https://doi.org/10.4049/jimmunol.1301888
73 Klose CS, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, d’Hargues Y, Goppert N, Croxford AL, Waisman A, Tanriver Yet al. (2013) A T-bet gradient controls the fate and function of CCR6-RORgammat+innate lymphoid cells. Nature 494:261–265
https://doi.org/10.1038/nature11813
74 Klose CS,Flach M, Mohle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira Det al. (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157:340–356
https://doi.org/10.1016/j.cell.2014.03.030
75 Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J (2001) Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest 107:1529–1536
https://doi.org/10.1172/JCI12568
76 Kopf M, Schneider C, Nobs SP (2015) The development and function of lung-resident macrophages and dendritic cells. Nat Immunol 16:36–44
https://doi.org/10.1038/ni.3052
77 Kwon BI, Hong S, Shin K, Choi EH, Hwang JJ, Lee SH (2013) Innate type 2 immunity is associated with eosinophilic pleural effusion in primary spontaneous pneumothorax. Am J Respir Crit Care Med 188:577–585
https://doi.org/10.1164/rccm.201302-0295OC
78 Lai DM, Shu Q, Fan J (2016) The origin and role of innate lymphoid cells in the lung. Mil Med Res 3:25
https://doi.org/10.1186/s40779-016-0093-2
79 Li D, Guabiraba R, Besnard AG, Komai-Koma M, Jabir MS, Zhang L, Graham GJ, Kurowska-Stolarska M, Liew FY, McSharry Cet al. (2014) IL-33 promotes ST2-dependent lung fibrosis by the induction of alternatively activated macrophages and innate lymphoid cells in mice. J Allergy Clin Immunol 134(1422–1432):e1411
https://doi.org/10.1016/j.jaci.2014.05.011
80 Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279
https://doi.org/10.1084/jem.20061308
81 Licona-Limon P, Kim LK, Palm NW, Flavell RA (2013) TH2, allergy and group 2 innate lymphoid cells. Nat Immunol 14:536–542
https://doi.org/10.1038/ni.2617
82 Lim AI, Menegatti S, Bustamante J, Le Bourhis L, Allez M, Rogge L, Casanova JL, Yssel H, Di Santo JP (2016) IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J Exp Med 213:569–583
https://doi.org/10.1084/jem.20151750
83 Liu B, Lee JB, Chen CY, Hershey GK, Wang YH (2015a) Collaborative interactions between type 2 innate lymphoid cells and antigen-specific CD4+ Th2 cells exacerbate murine allergic airway diseases with prominent eosinophilia. J Immunol 194:3583–3593
https://doi.org/10.4049/jimmunol.1400951
84 Liu J, Wu J, Qi F, Zeng S, Xu L, Hu H,Wang D, Liu B (2015b) Natural helper cells contribute to pulmonary eosinophilia by producing IL-13 via IL-33/ST2 pathway in a murine model of respiratory syncytial virus infection. Int Immunopharmacol 28:337–343
https://doi.org/10.1016/j.intimp.2015.05.035
85 Luci C, Reynders A, Ivanov II, Cognet C, Chiche L, Chasson L, Hardwigsen J, Anguiano E, Banchereau J, Chaussabel Det al. (2009) Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat Immunol 10:75–82
https://doi.org/10.1038/ni.1681
86 Maizels RM, Hewitson JP,Smith KA (2012) Susceptibility and immunity to helminth parasites. Curr Opin Immunol 24:459–466
https://doi.org/10.1016/j.coi.2012.06.003
87 Martinez-Gonzalez I, Matha L, Steer CA, Ghaedi M, Poon GF, Takei F (2016) Allergen-experienced Group 2 innate lymphoid cells acquire memory-like properties and enhance allergic lung inflammation. Immunity 45:198–208
https://doi.org/10.1016/j.immuni.2016.06.017
88 Massacand JC, Stettler RC, Meier R, Humphreys NE, Grencis RK, Marsland BJ, Harris NL(2009) Helminth products bypass the need for TSLP in Th2 immune responses by directly modulating dendritic cell function. Proc Natl Acad Sci USA 106:13968–13973
https://doi.org/10.1073/pnas.0906367106
89 McAleer JP, Kolls JK (2014) Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense. Immunol Rev 260:129–144
https://doi.org/10.1111/imr.12183
90 McHedlidze T, Kindermann M, Neves AT, Voehringer D, Neurath MF, Wirtz S(2016) IL-27 suppresses type 2 immune responses in vivo via direct effects on group 2 innate lymphoid cells. Mucosal Immunol 3:1384–1394
https://doi.org/10.1038/mi.2016.20
91 McSorley HJ, Maizels RM (2012) Helminth infections and host immune regulation. Clin Microbiol Rev 25:585–608
https://doi.org/10.1128/CMR.05040-11
92 McSorley HJ, Blair NF, Smith KA, McKenzie AN, Maizels RM (2014) Blockade of IL-33 release and suppression of type 2 innate lymphoid cell responses by helminth secreted products in airway allergy. Mucosal Immunol 7:1068–1078
https://doi.org/10.1038/mi.2013.123
93 McSorley HJ, Blair NF, Robertson E, Maizels RM (2015) Suppression of OVA-alum induced allergy by Heligmosomoides polygyrus products is MyD88-, TRIF-, regulatory T- and B cell-independent, but is associated with reduced innate lymphoid cell activation. Exp Parasitol 158:8–17
https://doi.org/10.1016/j.exppara.2015.02.009
94 Mebius RE,Rennert P,Weissman IL (1997) Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7:493–504
https://doi.org/10.1016/S1074-7613(00)80371-4
95 Meylan F, Hawley ET, Barron L, Barlow JL, Penumetcha P, Pelletier M, Sciume G, Richard AC, Hayes ET, Gomez-Rodriguez Jet al. (2014) The TNF-family cytokine TL1A promotes allergic immunopathology through group 2 innate lymphoid cells. Mucosal Immunol 7:958–968
96 Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, Fokkens WJ, Cupedo T, Spits H (2011) Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12:1055–1062
https://doi.org/10.1038/ni.2104
97 Mjosberg J, Bernink J, Golebski K, Karrich JJ,Peters CP, Blom B, te Velde AA, Fokkens WJ, van Drunen CM, Spits H (2012) The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37:649–659
https://doi.org/10.1016/j.immuni.2012.08.015
98 Mohapatra A, Van Dyken SJ,Schneider C,Nussbaum JC, Liang HE, Locksley RM (2016) Group 2 innate lymphoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis. Mucosal Immunol 9:275–286
https://doi.org/10.1038/mi.2015.59
99 Montaldo E, Teixeira-Alves LG, Glatzer T, Durek P, Stervbo U, Hamann W, Babic M, Paclik D, Stölzel K, Gröne J (2014) Human RORγt(+)CD34(+) cells are lineage-specified progenitors of group 3 RORγt(+) innate lymphoid cells. Immunity 41:988–1000
https://doi.org/10.1016/j.immuni.2014.11.010
100 Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, Angelosanto JM, Laidlaw BJ, Yang CY, Sathaliyawala Tet al. (2011) Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 12:1045–1054
https://doi.org/10.1038/ni.2131
101 Monticelli LA, Buck MD, Flamar AL, Saenz SA, Tait Wojno ED, Yudanin NA, Osborne LC, Hepworth MR, Tran SV, Rodewald HRet al. (2016) Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nat Immunol 17:656–665
https://doi.org/10.1038/ni.3421
102 Moro K (2010) Innate production of TH2 cytokines by adipose tissueassociated c-kit+Sca-1+ lymphoid cells. Nature 463:540–544
https://doi.org/10.1038/nature08636
103 Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T,Kawamoto H, Furusawa J, Ohtani M, Fujii H, Koyasu S(2010) Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463:540–544
https://doi.org/10.1038/nature08636
104 Moro K, Kabata H, Tanabe M, Koga S, Takeno N, Mochizuki M, Fukunaga K, Asano K, Betsuyaku T, Koyasu S (2016) Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nat Immunol 17:76–86
https://doi.org/10.1038/ni.3309
105 Nagakumar P, Denney L, Fleming L, Bush A, Lloyd CM, Saglani S (2016) Type 2 innate lymphoid cells in induced sputum from children with severe asthma. J Allergy Clin Immunol 137(624–626):e626
https://doi.org/10.1016/j.jaci.2015.06.038
106 Neill DR, Wong SH, Bellosi A, Flynn RJ,Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R et al (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367–1370
https://doi.org/10.1038/nature08900
107 Paul WE, Zhu J (2010) How are T(H)2-type immune responses initiated and amplified? Nat Rev Immunol 10:225–235
https://doi.org/10.1038/nri2735
108 Philip NH, Artis D (2013) New friendships and old feuds: relationships between innate lymphoid cells and microbial communities. Immunol Cell Biol 91:225–231
https://doi.org/10.1038/icb.2013.2
109 Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ, Locksley RM (2010) Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci USA 107:11489–11494
https://doi.org/10.1073/pnas.1003988107
110 Rankin LC, Groom JR,Chopin M, Herold MJ, Walker JA, Mielke LA, McKenzie AN, Carotta S,Nutt SL, Belz GT (2013) The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat Immunol 14:389–395
https://doi.org/10.1038/ni.2545
111 Rankin LC, Girard-Madoux MJ, Seillet C, Mielke LA, Kerdiles Y, Fenis A, Wieduwild E, Putoczki T, Mondot S, Lantz Oet al. (2016) Complementarity and redundancy of IL-22-producing innate lymphoid cells. Nat Immunol 17:179–186
https://doi.org/10.1038/ni.3332
112 Renauld JC (2001) New insights into the role of cytokines in asthma. J Clin Pathol 54:577–589
https://doi.org/10.1136/jcp.54.8.577
113 Salimi M, Ogg G (2014) Innate lymphoid cells and the skin. BMC Dermatol 14:18
https://doi.org/10.1186/1471-5945-14-18
114 Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C, Diefenbach A (2009) RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 10:83–91
https://doi.org/10.1038/ni.1684
115 Sawa S, Cherrier M, Lochner M, Satohtakayama N, Fehling HJ, Langa F,Santo JPD, Eberl G (2010) Lineage relationship analysis of RORγt+ innate lymphoid cells. Science 330:665–669
https://doi.org/10.1126/science.1194597
116 Scanlon ST, McKenzie AN (2012) Type 2 innate lymphoid cells: new players in asthma and allergy. Curr Opin Immunol 24:707–712
https://doi.org/10.1016/j.coi.2012.08.009
117 Serafini N, Klein Wolterink RG, Satoh-Takayama N, Xu W, Vosshenrich CA, Hendriks RW, Di Santo JP (2014) Gata3 drives development of RORgammat+ group 3 innate lymphoid cells. J Exp Med 211:199–208
https://doi.org/10.1084/jem.20131038
118 Silver JS, Kearley J, Copenhaver AM, Sanden C, Mori M, Yu L, Pritchard GH, Berlin AA, Hunter CA, Bowler Ret al. (2016a) Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat Immunol 17:626–635
https://doi.org/10.1038/ni.3443
119 Silver JS, Kearley J, Copenhaver AM, Sanden C, Mori M, Yu L, Pritchard GH, Berlin AA, Hunter CA, Bowler Ret al. (2016b) Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat Immunol 17:626–635
https://doi.org/10.1038/ni.3443
120 Smith SG, Chen R, Kjarsgaard M, Huang C, Oliveria JP, O’Byrne PM, Gauvreau GM, Boulet LP,Lemiere C, Martin Jet al. (2016) Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J Allergy Clin Immunol 137(75–86):e78
https://doi.org/10.1016/j.jaci.2015.05.037
121 Song C, Lee JS, Gilfillan S, Robinette ML, Newberry RD, Stappenbeck TS, Mack M, Cella M, Colonna M (2015) Unique and redundant functions of NKp46+ ILC3s in models of intestinal inflammation. J Exp Med 212:1869–1882
https://doi.org/10.1084/jem.20151403
122 Spits H, Cupedo T (2012) Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol 30:647–675
https://doi.org/10.1146/annurev-immunol-020711-075053
123 Spits H, Di Santo JP(2011) The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 12:21–27
https://doi.org/10.1038/ni.1962
124 Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius REet al. (2013) Innate lymphoid cells–a proposal for uniform nomenclature. Nat Rev Immunol 13:145–149
https://doi.org/10.1038/nri3365
125 Spooner CJ, Lesch J, Yan D, Khan AA, Abbas A, Ramirez-Carrozzi V, Zhou M, Soriano R, Eastham-Anderson J, Diehl Let al. (2013) Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat Immunol 14:1229–1236
https://doi.org/10.1038/ni.2743
126 Stier MT,Bloodworth MH, Toki S, Newcomb DC, Goleniewska K, Boyd KL, Quitalig M, Hotard AL, Moore ML, Hartert TVet al. (2016) Respiratory syncytial virus infection activates IL-13-producing group 2 innate lymphoid cells through thymic stromal lymphopoietin. J Allergy Clin Immunol 138:814–824
https://doi.org/10.1016/j.jaci.2016.01.050
127 Sutherland ER, Lehman EB, Teodorescu M, Wechsler ME, National Heart, Lung and Blood Institute’s Asthma Clinical Research Network (2009) Body mass index and phenotype in subjects with mild-to-moderate persistent asthma. J Allergy Clin Immunol 123:1328–1334
https://doi.org/10.1016/j.jaci.2009.04.005
128 Tait Wojno ED, Monticelli LA, Tran SV, Alenghat T, Osborne LC, Thome JJ, Willis C, Budelsky A, Farber DL, Artis D (2015) The prostaglandin D2 receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol 8:1313–1323
https://doi.org/10.1038/mi.2015.21
129 Takatori H, Kanno Y, Watford WT, Tato CM, Weiss G, Ivanov II, Littman DR, O’Shea JJ(2009) Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 206:35–41
https://doi.org/10.1084/jem.20072713
130 Taniguchi A, Miyahara N, Waseda K, Kurimoto E, Fujii U, Tanimoto Y, Kataoka M, Yamamoto Y, Gelfand EW, Yamamoto Het al. (2015) Contrasting roles for the receptor for advanced glycation end-products on structural cells in allergic airway inflammation vs. airway hyperresponsiveness. Am J Physiol Lung Cell Mol Physiol 309:L789–L800
131 Taube C, Tertilt C, Gyulveszi G, Dehzad N, Kreymborg K, Schneeweiss K, Michel E, Reuter S, Renauld JC, Arnold-Schild Det al. (2011) IL-22 is produced by innate lymphoid cells and limits inflammation in allergic airway disease. PLoS ONE 6:e21799
https://doi.org/10.1371/journal.pone.0021799
132 Thawer S, Auret J, Schnoeller C, Chetty A, Smith K, Darby M, Roberts L, Mackay RM, Whitwell HJ, Timms JFet al. (2016) Surfactant protein-D is essential for immunity to helminth infection. PLoS Pathog 12:e1005461
https://doi.org/10.1371/journal.ppat.1005461
133 Turner JE, Morrison PJ, Wilhelm C, Wilson M, Ahlfors H, Renauld JC, Panzer U, Helmby H, Stockinger B (2013) IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J Exp Med 210:2951–2965
https://doi.org/10.1084/jem.20130071
134 Van Maele L,Carnoy C, Cayet D, Songhet P, Dumoutier L, Ferrero I,Janot L, Erard F, Bertout J, Leger Het al. (2010) TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg) CD127+ immune cells in spleen and mucosa. J Immunol 185:1177–1185
https://doi.org/10.4049/jimmunol.1000115
135 Van Maele L, Carnoy C, Cayet D, Ivanov S, Porte R, Deruy E, Chabalgoity JA, Renauld JC, Eberl G,Benecke AGet al. (2014) Activation of Type 3 innate lymphoid cells and interleukin 22 secretion in the lungs during Streptococcus pneumoniae infection. J Infect Dis 210:493–503
https://doi.org/10.1093/infdis/jiu106
136 Vonarbourg C, Mortha A, Bui VL, Hernandez PP,Kiss EA, Hoyler T, Flach M, Bengsch B, Thimme R, Holscher Cet al. (2010a) Progressive loss of RORγt expression confers distinct functional fates to natural killer cell receptor-expressing RORγt+ innate lymphocytes. Immunity 33:736–751
https://doi.org/10.1016/j.immuni.2010.10.017
137 Vonarbourg C, Mortha A, Bui VL, Hernandez PP, Kiss EA, Hoyler T, Flach M, Bengsch B, Thimme R, Holscher Cet al. (2010b) Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 33:736–751
https://doi.org/10.1016/j.immuni.2010.10.017
138 Vosshenrich CA, Ranson T, Samson SI, Corcuff E, Colucci F, Rosmaraki EE, Di SJ (2005) Roles for common cytokine receptor gamma-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo. J Immunol 174:1213–1221
https://doi.org/10.4049/jimmunol.174.3.1213
139 Walker JA,Oliphant CJ,Englezakis A,Yu Y,Clare S,Rodewald HR, Belz G, Liu P, Fallon PG,McKenzie AN(2015)Bcl11b is essential for group 2 innate lymphoid cell development. J Exp Med 212:875–882
https://doi.org/10.1084/jem.20142224
140 Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741
https://doi.org/10.1158/1078-0432.CCR-07-4843
141 Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M, Lahl K, Sparwasser T, Helmby H, Stockinger B (2011) An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol 12:1071–1077
https://doi.org/10.1038/ni.2133
142 Wohlfahrt T, Usherenko S, Englbrecht M, Dees C, Weber S, Beyer C, Gelse K, Distler O, Schett G, Distler JHet al. (2016) Type 2 innate lymphoid cell counts are increased in patients with systemic sclerosis and correlate with the extent of fibrosis. Ann Rheum Dis 75:623–626
https://doi.org/10.1136/annrheumdis-2015-207388
143 Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208:1339–1350
https://doi.org/10.1084/jem.20110551
144 Xiong H, Keith JW, Samilo DW,Carter RA, Leiner IM, Pamer EG (2016) Innate lymphocyte/Ly6C(hi) Monocyte crosstalk promotes Klebsiella pneumoniaeclearance. Cell 165:679–689
https://doi.org/10.1016/j.cell.2016.03.017
145 Xu X, Weiss ID, Zhang HH, Singh SP, Wynn TA, Wilson MS, Farber JM (2014) Conventional NK cells can produce IL-22 and promote host defense in Klebsiella pneumoniae pneumonia. J Immunol 192:1778–1786
https://doi.org/10.4049/jimmunol.1300039
146 Yasuda K,Muto T, Kawagoe T, Matsumoto M, Sasaki Y, Matsushita K, Taki Y, Futatsugi-Yumikura S, Tsutsui H, Ishii KJet al. (2012) Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc Natl Acad Sci U S A 109:3451–3456
https://doi.org/10.1073/pnas.1201042109
147 Ying X, Su Z, Bie Q, Zhang P, Yang H, Wu Y, Xu Y, Wu J, Zhang M, Wang Set al. (2016) Synergistically increased ILC2 and Th9 cells in lung tissue jointly promote the pathological process of asthma in mice. Mol Med Rep 13:5230–5240
https://doi.org/10.3892/mmr.2016.5174
148 Yoshida H, Honda K, Shinkura R, Adachi S, Nishikawa S, Maki K, Ikuta K, Nishikawa SI (1999) IL-7 receptor alpha+ CD3(-) cells in the embryonic intestine induces the organizing center of Peyer’s patches. Int Immunol 11:643–655
https://doi.org/10.1093/intimm/11.5.643
149 Yu X, Pappu R, Ramirez-Carrozzi V, Ota N, Caplazi P, Zhang J, Yan D, Xu M, Lee WP,Grogan JL (2014) TNF superfamily member TL1A elicits type 2 innate lymphoid cells at mucosal barriers. Mucosal Immunol 7:730–740
https://doi.org/10.1038/mi.2013.92
150 Yu Y,Wang C,Clare S, Wang J, Lee SC, Brandt C, Burke S, Lu L, He D, Jenkins NAet al. (2015) The transcription factor Bcl11b is specifically expressed in group 2 innate lymphoid cells and is essential for their development. J Exp Med 212:865–874
https://doi.org/10.1084/jem.20142318
151 ZhouW, Toki S,Zhang J, Goleniewksa K, Newcomb DC, Cephus JY, Dulek DE, Bloodworth MH,Stier MT, Polosuhkin Vet al. (2016) Prostaglandin I2 Signaling and Inhibition of Group 2 Innate Lymphoid Cell Responses. Am J Respir Crit Care Med 193:31–42
https://doi.org/10.1164/rccm.201410-1793OC
152 Zook EC, Ramirez K, Guo X, van der Voort G, Sigvardsson M, Svensson EC, Fu YX, Kee BL (2016) The ETS1 transcription factor is required for the development and cytokine-induced expansion of ILC2. J Exp Med 213:687–696
https://doi.org/10.1084/jem.20150851
[1] Xianwei Wang, Zhigang Tian, Hui Peng. Tissue-resident memory-like ILCs: innate counterparts of TRM cells[J]. Protein Cell, 2020, 11(2): 85-96.
[2] Weiwei Jiang, Fangfang Cai, Huangru Xu, Yanyan Lu, Jia Chen, Jia Liu, Nini Cao, Xiangyu Zhang, Xiao Chen, Qilai Huang, Hongqin Zhuang, Zi-Chun Hua. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner[J]. Protein Cell, 2020, 11(11): 825-845.
[3] Wei Shao, Shasha Li, Lu Li, Kequan Lin, Xinhong Liu, Haiyan Wang, Huili Wang, Dong Wang. Chemical genomics reveals inhibition of breast cancer lung metastasis by Ponatinib via c-Jun[J]. Protein Cell, 2019, 10(3): 161-177.
[4] Qiwang Ma, Yu Ma, Xiaotian Dai, Tao Ren, Yingjie Fu, Wenbin Liu, Yufei Han, Yingchuan Wu, Yu Cheng, Ting Zhang, Wei Zuo. Regeneration of functional alveoli by adult human SOX9+ airway basal cell transplantation[J]. Protein Cell, 2018, 9(3): 267-282.
[5] Jie Yang, Luming Zhao, Ming Xu, Na Xiong. Establishment and function of tissue-resident innate lymphoid cells in the skin[J]. Protein Cell, 2017, 8(7): 489-500.
[6] Yuanyuan Gu, Shuoxin Liu, Xiaodan Zhang, Guimin Chen, Hongwei Liang, Mengchao Yu, Zhicong Liao, Yong Zhou, Chen-Yu Zhang, Tao Wang, Chen Wang, Junfeng Zhang, Xi Chen. Oncogenic miR-19a and miR-19b co-regulate tumor suppressor MTUS1 to promote cell proliferation and migration in lung cancer[J]. Protein Cell, 2017, 8(6): 455-466.
[7] Yingjiao Xue,Shenda Hou,Hongbin Ji,Xiangkun Han. Evolution from genetics to phenotype: reinterpretation of NSCLC plasticity, heterogeneity, and drug resistance[J]. Protein Cell, 2017, 8(3): 178-190.
[8] He Cheng,Aodi Wang,Jiao Meng,Yong Zhang,Dahai Zhu. Enhanced metastasis in RNF13 knockout mice is mediated by a reduction in GM-CSF levels[J]. Protein Cell, 2015, 6(10): 746-756.
[9] Pushuai Wen,Ruirui Kong,Jianghong Liu,Li Zhu,Xiaoping Chen,Xiaofei Li,Yongzhan Nie,Kaichun Wu,Jane Y. Wu. USP33, a new player in lung cancer, mediates Slit-Robo signaling[J]. Protein Cell, 2014, 5(9): 704-713.
[10] Yijun Gao, Gaoxiang Ge, Hongbin Ji. LKB1 in lung cancerigenesis: a serine/threonine kinase as tumor suppressor[J]. Prot Cell, 2011, 2(2): 99-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed