Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2017, Vol. 8 Issue (8) : 573-589    https://doi.org/10.1007/s13238-017-0411-9
REVIEW
Increasing the safety and efficacy of chimeric antigen receptor T cell therapy
Hua Li1,2, Yangbing Zhao1()
1. Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5156, USA
2. Cancer Center, Chengdu Military General Hospital, Chengdu 610083, China
 Download: PDF(1532 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chimeric antigen receptor (CAR) T cell therapy is a promising cancer treatment that has recently been undergoing rapid development. However, there are still some major challenges, including precise tumor targeting to avoid off-target or “on-target/off-tumor” toxicity, adequate T cell infiltration and migration to solid tumors and T cell proliferation and persistence across the physical and biochemical barriers of solid tumors. In this review, we focus on the primary challenges and strategies to design safe and effective CAR T cells, including using novel cutting-edge technologies for CAR and vector designs to increase both the safety and efficacy, further T cell modification to overcome the tumorassociated immune suppression, and using gene editing technologies to generate universal CAR T cells. All these efforts promote the development and evolution of CAR T cell therapy and move toward our ultimate goal—curing cancer with high safety, high efficacy, and low cost.

Keywords chimeric antigen receptors      cancer adoptive immunotherapy      T lymphocytes      gene therapy      gene editing     
Corresponding Author(s): Yangbing Zhao   
Issue Date: 23 August 2017
 Cite this article:   
Hua Li,Yangbing Zhao. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy[J]. Protein Cell, 2017, 8(8): 573-589.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-017-0411-9
https://academic.hep.com.cn/pac/EN/Y2017/V8/I8/573
1 AhmedN, BrawleyVS, HegdeM, RobertsonC, GhaziA, GerkenC, LiuE, DakhovaO, AshooriA, CorderAet al. (2015) Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma.J Clin Oncol33:1688–1696
https://doi.org/10.1200/JCO.2014.58.0225
2 Alvarez-RuedaN, DesselleA, CochonneauD, ChaumetteT, ClemenceauB, LeprieurS, BougrasG, SupiotS, MussiniJM, BarbetJet al. (2011) A monoclonal antibody to O-acetyl-GD2 ganglioside and not to GD2 shows potent anti-tumor activity without peripheral nervous system cross-reactivity.PloS one6:e25220
https://doi.org/10.1371/journal.pone.0025220
3 AnkriC, ShamalovK, Horovitz-FriedM, MauerS, CohenCJ (2013) Human T cells engineered to express a programmed death 1/28 costimulatory retargeting molecule display enhanced antitumor activity.J Immunol191:4121–4129
https://doi.org/10.4049/jimmunol.1203085
4 BarrettDM, TeacheyDT, GruppSA (2014) Toxicity management for patients receiving novel T-cell engaging therapies.Curr Opin Pediatr26:43–49
https://doi.org/10.1097/MOP.0000000000000043
5 BeaneJD, LeeG, ZhengZ, MendelM, Abate-DagaD, BharathanM, BlackM, GandhiN, YuZ, ChandranSet al. (2015) Clinical scale zinc finger nuclease-mediated gene editing of PD-1 in tumor infiltrating lymphocytes for the treatment of metastatic melanoma.Mol Ther23:1380–1390
https://doi.org/10.1038/mt.2015.71
6 BeattyGL, HaasAR, MausMV, TorigianDA, SoulenMC, PlesaG, ChewA, ZhaoY, LevineBL, AlbeldaSMet al. (2014) Mesothelinspecific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies.Cancer Immunol Res2:112–120
https://doi.org/10.1158/2326-6066.CIR-13-0170
7 BerdienB, MockU, AtanackovicD, FehseB (2014) TALENmediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer.Gene Ther21:539–548
https://doi.org/10.1038/gt.2014.26
8 BoniniC, FerrariG, VerzelettiS, ServidaP, ZapponeE, RuggieriL, PonzoniM, RossiniS, MavilioF, TraversariCet al.(1997) HSVTK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia.Science276:1719–1724
https://doi.org/10.1126/science.276.5319.1719
9 BrownCE, AlizadehD, StarrR, WengL, WagnerJR, NaranjoA, OstbergJR, BlanchardMS, KilpatrickJ, SimpsonJet al. (2016) Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy.N Engl J Med375:2561–2569
https://doi.org/10.1056/NEJMoa1610497
10 CarpenitoC, MiloneMC, HassanR, SimonetJC, LakhalM, SuhoskiMM, Varela-RohenaA, HainesKM, HeitjanDF,AlbeldaSMet al. (2009) Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains.Proc Natl Acad Sci USA106:3360–3365
https://doi.org/10.1073/pnas.0813101106
11 CarpenterRO, EvbuomwanMO, PittalugaS, RoseJJ, RaffeldM, YangS,GressREHakimFT, KochenderferJN (2013) B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma.Clin Cancer Res19:2048–2060
https://doi.org/10.1158/1078-0432.CCR-12-2422
12 CarusoHG, HurtonLV, NajjarA, RushworthD, AngS, OlivaresS, MiT, SwitzerK, SinghH, HulsHet al. (2015) Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity.Cancer Res75:3505–3518
https://doi.org/10.1158/0008-5472.CAN-15-0139
13 CherkasskyL, MorelloA, Villena-VargasJ, FengY, DimitrovDS, JonesDR, SadelainM, AdusumilliPS (2016) Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition.J Clin Investig126:3130–3144
https://doi.org/10.1172/JCI83092
14 ChinnasamyD, YuZ, TheoretMR, ZhaoY, ShrimaliRK, MorganRA, FeldmanSA, RestifoNP, RosenbergSA (2010) Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice.J Clin Investig120:3953–3968
https://doi.org/10.1172/JCI43490
15 ChmielewskiM, AbkenH (2015) TRUCKs: the fourth generation of CARs.Expert Opin Biol Ther15:1145–1154
https://doi.org/10.1517/14712598.2015.1046430
16 ChmielewskiM, HombachA, HeuserC, AdamsGP, AbkenH (2004) T cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity.J Immunol173:7647–7653
https://doi.org/10.4049/jimmunol.173.12.7647
17 ChmielewskiM, HombachAA, AbkenH (2014) Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma.Immunol Rev257:83–90
https://doi.org/10.1111/imr.12125
18 CiceriF, BoniniC, StanghelliniMT, BondanzaA, TraversariC, SalomoniM, TurchettoL, ColombiS, BernardiM, PeccatoriJet al. (2009) Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study.Lancet Oncol10:489–500
https://doi.org/10.1016/S1470-2045(09)70074-9
19 CongL, RanFA, CoxD, LinS, BarrettoR, HabibN, HsuPD, WuX, JiangW, MarraffiniLAet al. (2013) Multiplex genome engineering using CRISPR/Cas systems.Science339:819–823
https://doi.org/10.1126/science.1231143
20 CraddockJA, LuA, BearA, PuleM, BrennerMK, RooneyCM, FosterAE (2010) Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b.J Immunother33:780–788
https://doi.org/10.1097/CJI.0b013e3181ee6675
21 CurranMA, MontalvoW, YagitaH, AllisonJP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors.Proc Natl Acad Sci USA107:4275–4280
https://doi.org/10.1073/pnas.0915174107
22 EshharZ, WaksT, GrossG, SchindlerDG (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors.Proc Natl Acad Sci USA90:720–724
https://doi.org/10.1073/pnas.90.2.720
23 EyquemJ, Mansilla-SotoJ, GiavridisT, van der StegenSJ, HamiehM, CunananKM, OdakA, GonenM, SadelainM (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection.Nature543:113–117
https://doi.org/10.1038/nature21405
24 FaitschukE, HombachAA, FrenzelLP, WendtnerCM, AbkenH (2016) Chimeric antigen receptor T cells targeting Fc mu receptor selectively eliminate CLL cells while sparing healthy B cells.Blood128:1711–1722
https://doi.org/10.1182/blood-2016-01-692046
25 FengK, GuoY, DaiH, WangY, LiX, JiaH, HanW (2016) Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer.Sci China Life Sci59:468–479
https://doi.org/10.1007/s11427-016-5023-8
26 FinneyHM, LawsonAD, BebbingtonCR, WeirAN (1998) Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product.J Immunol161:2791–2797
27 FitzGeraldDJ, WayneAS, KreitmanRJ, PastanI (2011) Treatment of hematologic malignancies with immunotoxins and antibodydrug conjugates.Cancer Res71:6300–6309
https://doi.org/10.1158/0008-5472.CAN-11-1374
28 GruppSA, KalosM, BarrettD, AplencR, PorterDL, RheingoldSR, TeacheyDT, ChewA, HauckB, WrightJFet al. (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia.N Engl J Med368:1509–1518
https://doi.org/10.1056/NEJMoa1215134
29 GubinMM, ZhangX, SchusterH, CaronE, WardJP, NoguchiT, IvanovaY, HundalJ, ArthurCD, KrebberWJet al. (2014) Checkpoint blockade cancer immunotherapy targets tumourspecific mutant antigens.Nature515:577–581
https://doi.org/10.1038/nature13988
30 HasoW, LeeDW, ShahNN, Stetler-StevensonM, YuanCM, PastanIH, DimitrovDS, MorganRA, FitzGeraldDJ, BarrettDMet al. (2013) Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia.Blood121:1165–1174
https://doi.org/10.1182/blood-2012-06-438002
31 HongH, StastnyM, BrownC, ChangWC, OstbergJR, FormanSJ, JensenMC (2014) Diverse solid tumors expressing a restricted epitope of L1-CAM can be targeted by chimeric antigen receptor redirected T lymphocytes.J Immunother37:93–104
https://doi.org/10.1097/CJI.0000000000000018
32 HoyosV, SavoldoB, QuintarelliC, MahendravadaA, ZhangM, VeraJ, HeslopHE, RooneyCM, BrennerMK, DottiG (2010) Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety.Leukemia24:1160–1170
https://doi.org/10.1038/leu.2010.75
33 HudecekM, SchmittTM, BaskarS, Lupo-StanghelliniMT, NishidaT, YamamotoTN, BleakleyM, TurtleCJ, ChangWC, GreismanHAet al. (2010) The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor.Blood116:4532–4541
https://doi.org/10.1182/blood-2010-05-283309
34 HudecekM, Lupo-StanghelliniMT, KosasihPL, SommermeyerD, JensenMC, RaderC, RiddellSR (2013) Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor Tcells.Clin Cancer Res19:3153–3164
https://doi.org/10.1158/1078-0432.CCR-13-0330
35 JohnsonLA, SchollerJ, OhkuriT, KosakaA, PatelPR, McGettiganSE, NaceAK, DentchevT, ThekkatP, LoewAet al. (2015) Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma.Sci Transl Med7:275ra222
https://doi.org/10.1126/scitranslmed.aaa4963
36 KershawMH, WestwoodJA, ParkerLL, WangG, EshharZ, MavroukakisSA, WhiteDE, WunderlichJR, CanevariS, Rogers-FreezerLet al. (2006) A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer.Clinl Cancer Res12:6106–6115
https://doi.org/10.1158/1078-0432.CCR-06-1183
37 KlossCC, CondominesM, CartellieriM, BachmannM, SadelainM (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells.Nat Biotechnol31:71–75
https://doi.org/10.1038/nbt.2459
38 LamersCH, SleijferS, VultoAG, KruitWH, KliffenM, DebetsR, GratamaJW, StoterG, OosterwijkE (2006a) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience.J Clin Oncol24:e20–e22
https://doi.org/10.1200/JCO.2006.05.9964
39 LamersCH, van ElzakkerP, LangeveldSC, SleijferS, GratamaJW (2006b) Process validation and clinical evaluation of a protocol to generate gene-modified T lymphocytes for imunogene therapy for metastatic renal cell carcinoma: GMP-controlled transduction and expansion of patient’s T lymphocytes using a carboxy anhydrase IX-specific scFv transgene.Cytotherapy8:542–553
https://doi.org/10.1080/14653240601056396
40 LanitisE, PoussinM, KlattenhoffAW, SongD, SandaltzopoulosR, JuneCH, PowellDJ Jr (2013) Chimeric antigen receptor T Cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo.Cancer Immunol Res1:43–53
https://doi.org/10.1158/2326-6066.CIR-13-0008
41 LinetteGP, StadtmauerEA, MausMV, RapoportAP, LevineBL, EmeryL, LitzkyL, BaggA, CarrenoBM, CiminoPJet al. (2013) Cardiovascular toxicity and titin cross-reactivity of affinity enhanced Tcells in myeloma and melanoma.Blood122:863–871
https://doi.org/10.1182/blood-2013-03-490565
42 LiuX, JiangS, FangC, YangS, OlalereD, PequignotEC, CogdillAP, LiN, RamonesM, GrandaBet al. (2015) Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice.Cancer Res75:3596–3607
https://doi.org/10.1158/0008-5472.CAN-15-0159
43 LiuX, RanganathanR, JiangS, FangC, SunJ, KimS, NewickK, LoA, JuneCH, ZhaoYet al. (2016a) A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res76:1578–1590
https://doi.org/10.1158/0008-5472.CAN-15-2524
44 LiuX, ZhangY, ChengC, ChengAW, ZhangX, LiN, XiaC, WeiX, LiuX, WangH(2016b) CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells.Cell Res27:154–157
https://doi.org/10.1038/cr.2016.142
45 LouisCU, SavoldoB, DottiG, PuleM, YvonE, MyersGD, RossigC, RussellHV, DioufO, LiuEet al. (2011) Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma.Blood118:6050–6056
https://doi.org/10.1182/blood-2011-05-354449
46 LuYC, RobbinsPF (2016) Cancer immunotherapy targeting neoantigens.Semin Immunol28:22–27
https://doi.org/10.1016/j.smim.2015.11.002
47 MacLeodDT, AntonyJ, MartinAJ, MoserRJ, HekeleA, WetzelKJ, BrownAE, TriggianoMA, HuxJA, PhamCDet al. (2017) Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells.Mol Ther25:949–961
https://doi.org/10.1016/j.ymthe.2017.02.005
48 MaherJ, BrentjensRJ, GunsetG, RiviereI, SadelainM(2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor.Nat Biotechnol20:70–75
https://doi.org/10.1038/nbt0102-70
49 MardirosA, Dos SantosC, McDonaldT, BrownCE, WangX, BuddeLE, HoffmanL, AguilarB, ChangWC, BretzlaffWet al. (2013) T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia.Blood122:3138–3148
https://doi.org/10.1182/blood-2012-12-474056
50 MaudeSL, FreyN, ShawPA, AplencR, BarrettDM, BuninNJ, ChewA, GonzalezVE, ZhengZ, LaceySFet al. (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia.N Engl J Med371:1507–1517
https://doi.org/10.1056/NEJMoa1407222
51 MausMV, HaasAR, BeattyGL, AlbeldaSM, LevineBL, LiuX, ZhaoY, KalosM, JuneCH (2013) T cells expressing chimeric antigen receptors can cause anaphylaxis in humans.Cancer Immunol Res1:26–31
https://doi.org/10.1158/2326-6066.CIR-13-0006
52 MorganRA, YangJC, KitanoM, DudleyME, LaurencotCM, RosenbergSA (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2.Mol Ther18:843–851
https://doi.org/10.1038/mt.2010.24
53 MorganRA, ChinnasamyN, Abate-DagaD, GrosA, RobbinsPF, ZhengZ, DudleyME, FeldmanSA, YangJC, SherryRMet al. (2013) Cancer regression and neurological toxicity following Anti-MAGE-A3 TCR gene therapy.J Immunother36:133–151
https://doi.org/10.1097/CJI.0b013e3182829903
54 NewickK, O’BrienS, SunJ, KapoorV, MaceykoS, LoA, PureE, MoonE, AlbeldaSM (2016) Augmentation of CAR T-cell trafficking and antitumor efficacy by blocking protein kinase a localization.Cancer Immunol Res4:541–551
https://doi.org/10.1158/2326-6066.CIR-15-0263
55 OliveiraG, GrecoR, Lupo-StanghelliniMT, VagoL, BoniniC (2012) Use of TK-cells in haploidentical hematopoietic stem cell transplantation.Curr Opin Hematol19:427–433
https://doi.org/10.1097/MOH.0b013e32835822f5
56 OrenR, Hod-MarcoM, Haus-CohenM, ThomasS, BlatD, DuvshaniN, DenkbergG, ElbazY, BenchetritF, EshharZet al. (2014) Functional comparison of engineered T cells carrying a native TCR versus TCR-like antibody-based chimeric antigen receptors indicates affinity/avidity thresholds.J Immunol193:5733–5743
https://doi.org/10.4049/jimmunol.1301769
57 ParkJR, DigiustoDL, SlovakM, WrightC, NaranjoA, WagnerJ, MeechoovetHB, BautistaC, ChangWC, OstbergJRet al.(2007) Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma.Mol Ther15:825–833
https://doi.org/10.1038/sj.mt.6300104
58 ParkhurstMR, YangJC, LanganRC, DudleyME, NathanDA, FeldmanSA, DavisJL, MorganRA, MerinoMJ, SherryRMet al. (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis.Mol Ther19:620–626
https://doi.org/10.1038/mt.2010.272
59 PhilipB, KokalakiE, MekkaouiL, ThomasS, StraathofK, FlutterB, MarinV, MarafiotiT, ChakravertyR, LinchDet al. (2014) A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy.Blood124:1277–1287
https://doi.org/10.1182/blood-2014-01-545020
60 PorterDL, LevineBL, KalosM, BaggA, JuneCH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia.N Engl J Med365:725–733
https://doi.org/10.1056/NEJMoa1103849
61 PorterDL, HwangWT, FreyNV, LaceySF, ShawPA, LorenAW, BaggA, MarcucciKT, ShenA, GonzalezVet al.(2015) Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia.Sci Transl Med7:303ra139
https://doi.org/10.1126/scitranslmed.aac5415
62 PoseyAD Jr, SchwabRD, BoesteanuAC, SteentoftC, MandelU, EngelsB, StoneJD, MadsenTD, SchreiberK, HainesKMet al. (2016) Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma.Immunity44:1444–1454
https://doi.org/10.1016/j.immuni.2016.05.014
63 ProsserME, BrownCE, ShamiAF, FormanSJ, JensenMC (2012) Tumor PD-L1 co-stimulates primary human CD8(+) cytotoxic T cells modified to express a PD1:CD28 chimeric receptor.Mol Immunol51:263–272
https://doi.org/10.1016/j.molimm.2012.03.023
64 ProvasiE, GenoveseP, LombardoA, MagnaniZ, LiuPQ, ReikA, ChuV, PaschonDE, ZhangL, KuballJet al. (2012) Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer.Nat Med18:807–815
https://doi.org/10.1038/nm.2700
65 QasimW, ZhanH, SamarasingheS, AdamsS, AmroliaP, StaffordS, ButlerK, RivatC, WrightG, SomanaKet al. (2017) Molecular remission of infant B-ALL after infusion of universal TALEN geneedited CAR T cells.Sci Transl Med9:eaaj2013
66 RafiqS, PurdonTJ, DaniyanAF, KoneruM, DaoT, LiuC, ScheinbergDA, BrentjensRJ (2016) Optimized T-cell receptormimic (TCRm) chimeric antigen receptor T-cells directed towards the intracellular Wilms Tumor 1 antigen.Leukemia.
https://doi.org/10.1038/leu.2016.373
67 ReiterY, Di CarloA, FuggerL, EngbergJ, PastanI (1997) Peptidespecific killing of antigen-presenting cells by a recombinant antibody-toxin fusion protein targeted to major histocompatibility complex/peptide class I complexes with T cell receptor-like specificity.Proc Natl Acad Sci USA94:4631–4636
https://doi.org/10.1073/pnas.94.9.4631
68 RenJ, LiuX, FangC, JiangS, JuneCH, ZhaoY (2016) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition.Clin Cancer Res.
https://doi.org/10.1158/1078-0432.CCR-16-1300
69 RobbinsPF, LuYC, El-GamilM, LiYF, GrossC, GartnerJ, LinJC, TeerJK, CliftenP, TycksenEet al.(2013) Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells.Nat Med19:747–752
https://doi.org/10.1038/nm.3161
70 RobertC, LongGV, BradyB, DutriauxC, MaioM, MortierL, HasselJC, RutkowskiP, McNeilC, Kalinka-WarzochaEet al. (2015) Nivolumab in previously untreated melanoma without BRAF mutation.N Engl J Med372:320–330
https://doi.org/10.1056/NEJMoa1412082
71 RoybalKT, RuppLJ, MorsutL, WalkerWJ, McNallyKA, ParkJS, LimWA (2016a) Precision tumor recognition by T cells with combinatorial antigen-sensing circuits.Cell164:770–779
https://doi.org/10.1016/j.cell.2016.01.011
72 RoybalKT, WilliamsJZ, MorsutL, RuppLJ, KolinkoI, ChoeJH, WalkerWJ, McNallyKA, LimWA (2016b) Engineering Tcells with customized therapeutic response programs using synthetic notch receptors.Cell167(419–432):e416
73 SakemuraR, TerakuraS, WatanabeK, JulamaneeJ, TakagiE, MiyaoK, KoyamaD, GotoT, HanajiriR, NishidaTet al. (2016) A Tet-On inducible system for controlling CD19-Chimeric antigen receptor expression upon drug administration.Cancer Immunol Res4:658–668
https://doi.org/10.1158/2326-6066.CIR-16-0043
74 SakuishiK, ApetohL, SullivanJM, BlazarBR, KuchrooVK, AndersonAC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity.J Exp Med207:2187–2194
https://doi.org/10.1084/jem.20100643
75 SampsonJH, ChoiBD, Sanchez-PerezL, SuryadevaraCM, SnyderDJ, FloresCT, SchmittlingRJ, NairSK, ReapEA, NorbergPKet al. (2014) EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss.Clin Cancer Res20:972–984
https://doi.org/10.1158/1078-0432.CCR-13-0709
76 SchubertML, HuckelhovenA, HoffmannJM, SchmittA, WuchterP, SellnerL, HofmannS, HoAD, DregerP, SchmittM (2016) Chimeric antigen receptor T cell therapy targeting CD19-positive leukemia and lymphoma in the context of stem cell transplantation.Hum Gene Ther27(10):758–771
https://doi.org/10.1089/hum.2016.097
77 SchumacherTN, SchreiberRD (2015) Neoantigens in cancer immunotherapy.Science348:69–74
https://doi.org/10.1126/science.aaa4971
78 SinghJA, BegS, Lopez-OlivoMA (2011) Tocilizumab for rheumatoid arthritis: a Cochrane systematic review.J Rheumatol38:10–20
https://doi.org/10.3899/jrheum.100717
79 SinghN, LiuX, HulittJ, JiangS, JuneCH, GruppSA, BarrettDM, ZhaoY (2014) Nature of tumor control by permanently and transiently modified GD2 chimeric antigen receptor T cells in xenograft models of neuroblastoma.Cancer Immunol Res2:1059–1070
https://doi.org/10.1158/2326-6066.CIR-14-0051
80 SmithMR (2003) Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance.Oncogene22:7359–7368
https://doi.org/10.1038/sj.onc.1206939
81 SuzukiM, CheungNK (2015) Disialoganglioside GD2 as a therapeutic target for human diseases.Expert Opin Ther Targets19:349–362
https://doi.org/10.1517/14728222.2014.986459
82 TaubeJM, KleinA, BrahmerJR, XuH, PanX, KimJH, ChenL, PardollDM, TopalianSL, AndersRA (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy.Clin Cancer Res20:5064–5074
https://doi.org/10.1158/1078-0432.CCR-13-3271
83 TillBG, JensenMC, WangJ, ChenEY, WoodBL, GreismanHA, QianX, JamesSE, RaubitschekA, FormanSJet al. (2008) Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells.Blood112:2261–2271
https://doi.org/10.1182/blood-2007-12-128843
84 TillBG, JensenMC, WangJ, QianX, GopalAK, MaloneyDG, LindgrenCG, LinY, PagelJM, BuddeLEet al. (2012) CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results.Blood119:3940–3950
https://doi.org/10.1182/blood-2011-10-387969
85 TopalianSL, SznolM, McDermottDF, KlugerHM, CarvajalRD, SharfmanWH, BrahmerJR, LawrenceDP, AtkinsMB, PowderlyJDet al. (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab.J Clin Oncol32:1020–1030
https://doi.org/10.1200/JCO.2013.53.0105
86 TorikaiH, ReikA, SoldnerF, WarrenEH, YuenC, ZhouY, CrosslandDL, HulsH, LittmanN, ZhangZet al. (2013) Toward eliminating HLA class I expression to generate universal cells from allogeneic donors.Blood122:1341–1349
https://doi.org/10.1182/blood-2013-03-478255
87 TranE, TurcotteS, GrosA, RobbinsPF, LuYC, DudleyME, WunderlichJR, SomervilleRP, HoganK, HinrichsCSet al. (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer.Science344:641–645
https://doi.org/10.1126/science.1251102
88 TuguesS, BurkhardSH, OhsI, VrohlingsM, NussbaumK, Vom BergJ, KuligP, BecherB(2015) New insights into IL-12-mediated tumor suppression.Cell Death Differ22:237–246
https://doi.org/10.1038/cdd.2014.134
89 ValtonJ, GuyotV, MarechalA, FilholJM, JuilleratA, DuclertA, DuchateauP, PoirotL (2015) A Multidrug-resistant Engineered CAR T cell for allogeneic combination immunotherapy.Mol Ther23:1507–1518
https://doi.org/10.1038/mt.2015.104
90 VeraJ, SavoldoB, VigourouxS, BiagiE, PuleM, RossigC, WuJ, HeslopHE, RooneyCM, BrennerMKet al. (2006) T lymphocytes redirected against the kappa light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells.Blood108:3890–3897
https://doi.org/10.1182/blood-2006-04-017061
91 WangX, ChangWC, WongCW, ColcherD, ShermanM, OstbergJR, FormanSJ, RiddellSR, JensenMC (2011) A transgeneencoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells.Blood118:1255–1263
https://doi.org/10.1182/blood-2011-02-337360
92 WatanabeK, TerakuraS, MartensAC, van MeertenT, UchiyamaS, ImaiM, SakemuraR, GotoT, HanajiriR, ImahashiNet al. (2015) Target antigen density governs the efficacy of anti-CD20-CD28-CD3 zeta chimeric antigen receptor-modified effector CD8+ T cells.J Immunol194:911–920
https://doi.org/10.4049/jimmunol.1402346
93 WilkieS, van SchalkwykMC, HobbsS, DaviesDM, van der StegenSJ, PereiraAC, BurbridgeSE, BoxC, EcclesSA, MaherJ (2012) Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling.J Clin Immunol32:1059–1070
https://doi.org/10.1007/s10875-012-9689-9
94 WolchokJD, HodiFS, WeberJS, AllisonJP, UrbaWJ, RobertC, O’DaySJ, HoosA, HumphreyR, BermanDMet al. (2013) Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma.Ann N Y Acad Sci1291:1–13
https://doi.org/10.1111/nyas.12180
95 WuCY, RoybalKT, PuchnerEM, OnufferJ, LimWA (2015) Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.Science350:aab4077
https://doi.org/10.1126/science.aab4077
96 YarchoanM, JohnsonBA III, LutzER, LaheruDA, JaffeeEM (2017) Targeting neoantigens to augment antitumour immunity.Nat Rev Cancer17:209–222
https://doi.org/10.1038/nrc.2016.154
97 ZahE, LinMY, Silva-BenedictA, JensenMC, ChenYY (2016) Tcells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells.Cancer Immunol Res4:498–508
https://doi.org/10.1158/2326-6066.CIR-15-0231
98 ZhangL, KerkarSP, YuZ, ZhengZ, YangS, RestifoNP, RosenbergSA, MorganRA (2011) Improving adoptive T cell therapy by targeting and controlling IL-12 expression to the tumor environment.Mol Ther19:751–759
https://doi.org/10.1038/mt.2010.313
99 ZhangL, MorganRA, BeaneJD, ZhengZ, DudleyME, KassimSH, NahviAV, NgoLT, SherryRM, PhanGQet al. (2015) Tumorinfiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma.Clin Cancer Res21:2278–2288
https://doi.org/10.1158/1078-0432.CCR-14-2085
100 ZhangW-Y, WangY, GuoY-L, DaiH-R, YangQ-M, ZhangY-J, ZhangY, ChenM-X, WangC-M, FengK-Cet al. (2016) Treatment of CD20-directed chimeric antigen receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an early phase IIa trial report.Signal Transduct Target Ther1:16002
https://doi.org/10.1038/sigtrans.2016.2
101 ZhaoY, ZhengZ, CohenCJ, GattinoniL, PalmerDC, RestifoNP, RosenbergSA, MorganRA (2006) High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation.Mol Ther13:151–159
https://doi.org/10.1016/j.ymthe.2005.07.688
102 ZhaoY, WangQJ, YangS, KochenderferJN, ZhengZ, ZhongX, SadelainM, EshharZ, RosenbergSA, MorganRA (2009) A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity.J Immunol183:5563–5574
https://doi.org/10.4049/jimmunol.0900447
103 ZhaoY, MoonE, CarpenitoC, PaulosCM, LiuX, BrennanAL, ChewA, CarrollRG, SchollerJ, LevineBLet al. (2010) Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor.Cancer Res70:9053–9061
https://doi.org/10.1158/0008-5472.CAN-10-2880
104 ZhuX, PrasadS, GaedickeS, HettichM, FiratE, NiedermannG (2015) Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57.Oncotarget6:171–184
https://doi.org/10.18632/oncotarget.2767
[1] William R. Strohl. Current progress in innovative engineered antibodies[J]. Protein Cell, 2018, 9(1): 86-120.
[2] Jiangtao Ren, Yangbing Zhao. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9[J]. Protein Cell, 2017, 8(9): 634-643.
[3] Xiaojun Liu, Shuguang Jiang, Chongyun Fang, Hua Li, Xuhua Zhang, Fuqin Zhang, Carl H. June, Yangbing Zhao. Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation[J]. Protein Cell, 2017, 8(7): 514-526.
[4] Puping Liang,Yanwen Xu,Xiya Zhang,Chenhui Ding,Rui Huang,Zhen Zhang,Jie Lv,Xiaowei Xie,Yuxi Chen,Yujing Li,Ying Sun,Yaofu Bai,Zhou Songyang,Wenbin Ma,Canquan Zhou,Junjiu Huang. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J]. Protein Cell, 2015, 6(5): 363-372.
[5] Huize Pan, Weiqi Zhang, Weizhou Zhang, Guang-Hui Liu. Find and replace: editing human genome in pluripotent stem cells[J]. Prot Cell, 2011, 2(12): 950-956.
[6] Huibi Cao, Robert S. Molday, Jim Hu. Gene therapy: light is finally in the tunnel[J]. Prot Cell, 2011, 2(12): 973-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed