Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2018, Vol. 9 Issue (2) : 178-195    https://doi.org/10.1007/s13238-017-0437-z
REVIEW
Carboxylesterases in lipid metabolism: from mouse to human
Jihong Lian1,2(), Randal Nelson1,2, Richard Lehner1,2,3
1. Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
2. Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
3. Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
 Download: PDF(3493 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mammalian carboxylesterases hydrolyze a wide range of xenobiotic and endogenous compounds, including lipid esters. Physiological functions of carboxylesterases in lipid metabolism and energy homeostasis in vivo have been demonstrated by genetic manipulations and chemical inhibition in mice, and in vitro through (over)expression, knockdown of expression, and chemical inhibition in a variety of cells. Recent research advances have revealed the relevance of carboxylesterases to metabolic diseases such as obesity and fatty liver disease, suggesting these enzymes might be potential targets for treatment of metabolic disorders. In order to translate pre-clinical studies in cellular and mouse models to humans, differences and similarities of carboxylesterases between mice and human need to be elucidated. This review presents and discusses the research progress in structure and function of mouse and human carboxylesterases, and the role of these enzymes in lipid metabolism and metabolic disorders.

Keywords carboxylesterase      lipase      lipid      lipoprotein      liver      adipose      intestine     
Corresponding Author(s): Jihong Lian   
Issue Date: 22 March 2018
 Cite this article:   
Jihong Lian,Randal Nelson,Richard Lehner. Carboxylesterases in lipid metabolism: from mouse to human[J]. Protein Cell, 2018, 9(2): 178-195.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-017-0437-z
https://academic.hep.com.cn/pac/EN/Y2018/V9/I2/178
1 Aida K, Moore R, Negishi M (1993) Cloning and nucleotide sequence of a novel, male-predominant carboxylesterase in mouse liver . Biochim Biophys Acta 1174:72–74
https://doi.org/10.1016/0167-4781(93)90093-S
2 Aizawa Y, Seki N, Nagano T, Abe H (2015) Chronic hepatitis C virus infection and lipoprotein metabolism . World J Gastroenterol 21:10299–10313
https://doi.org/10.3748/wjg.v21.i36.10299
3 Alam M, Ho S, Vance DE, Lehner R (2002a) Heterologous expression, purification, and characterization of human triacylglycerol hydrolase . Protein Expr Purif 24:33–42
https://doi.org/10.1006/prep.2001.1553
4 Alam M, Vance DE, Lehner R (2002b) Structure-function analysis of human triacylglycerol hydrolase by site-directed mutagenesis: identification of the catalytic triad and a glycosylation site . Biochemistry 41:6679–6687
https://doi.org/10.1021/bi0255625
5 Alam M, Gilham D, Vance DE, Lehner R (2006) Mutation of F417 but not of L418 or L420 in the lipid binding domain decreases the activity of triacylglycerol hydrolase . J Lipid Res 47:375–383
https://doi.org/10.1194/jlr.M500344-JLR200
6 Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr, International Diabetes Federation Task Force on Epidemiology and Prevention, Hational Heart, Lung, and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity . Circulation 120:1640–1645
https://doi.org/10.1161/CIRCULATIONAHA.109.192644
7 Alexander CA, Hamilton RL, Havel RJ (1976) Subcellular localization of B apoprotein of plasma lipoproteins in rat liver . J Cell Biol 69:241–263
https://doi.org/10.1083/jcb.69.2.241
8 Alikhani N, Ferguson RD, Novosyadlyy R, Gallagher EJ, Scheinman EJ, Yakar S, LeRoith D (2013) Mammary tumor growth and pulmonary metastasis are enhanced in a hyperlipidemic mouse model . Oncogene 32:961–967
https://doi.org/10.1038/onc.2012.113
9 Bahar FG, Ohura K, Ogihara T, Imai T (2012) Species difference of esterase expression and hydrolase activity in plasma . J Pharm Sci 101:3979–3988
https://doi.org/10.1002/jps.23258
10 Bahitham W, Watts R, Nelson R, Lian J, Lehner R (2016) Liverspecific expression of carboxylesterase 1g/esterase-x reduces hepatic steatosis, counteracts dyslipidemia and improves insulin signaling . Biochim Biophys Acta 1861:482–490
https://doi.org/10.1016/j.bbalip.2016.03.009
11 Basen-Engquist K, Chang M (2011) Obesity and cancer risk: recent review and evidence . Curr Oncol Rep 13:71–76
https://doi.org/10.1007/s11912-010-0139-7
12 Beloribi-Djefaflia S, Vasseur S, Guillaumond F (2016) Lipid metabolic reprogramming in cancer cells . Oncogenesis 5:e189
https://doi.org/10.1038/oncsis.2015.49
13 Bencharit S, Morton CL, Howard-Williams EL, Danks MK, Potter PM, Redinbo MR (2002) Structural insights into CPT-11 activation by mammalian carboxylesterases . Nat Struct Biol 9:337–342
https://doi.org/10.1038/nsb790
14 Bencharit S, Morton CL, Hyatt JL, Kuhn P, Danks MK, Potter PM, Redinbo MR (2003a) Crystal structure of human carboxylesterase 1 complexed with the Alzheimer’s drug tacrine: from binding promiscuity to selective inhibition . Chem Biol 10:341–349
https://doi.org/10.1016/S1074-5521(03)00071-1
15 Bencharit S, Morton CL, Xue Y, Potter PM, Redinbo MR (2003b) Structural basis of heroin and cocaine metabolism by a promiscuous human drug-processing enzyme . Nat Struct Biol 10:349–356
https://doi.org/10.1038/nsb919
16 Bie J, Wang J, Marqueen KE, Osborne R, Kakiyama G, Korzun W, Ghosh SS, Ghosh S (2013) Liver-specific cholesteryl ester hydrolase deficiency attenuates sterol elimination in the feces and increases atherosclerosis in ldlr−/− mice . Arterioscler Thromb Vasc Biol 33:1795–1802
https://doi.org/10.1161/ATVBAHA.113.301634
17 Bilz S, Samuel V, Morino K, Savage D, Choi CS, Shulman GI (2006) Activation of the farnesoid X receptor improves lipid metabolism in combined hyperlipidemic hamsters . Am J Physiol Endocrinol Metab 290:E716–722
https://doi.org/10.1152/ajpendo.00355.2005
18 Birner-Gruenberger R, Susani-Etzerodt H, Waldhuber M, Riesenhuber G, Schmidinger H, Rechberger G, Kollroser M, Strauss JG, Lass A, Zimmermann R, Haemmerle G, Zechner R, Hermetter A (2005) The lipolytic proteome of mouse adipose tissue . Mol Cell Proteomics 4:1710–1717
https://doi.org/10.1074/mcp.M500062-MCP200
19 Blais DR, Lyn RK, Joyce MA, Rouleau Y, Steenbergen R, Barsby N, Zhu LF, Pegoraro AF, Stolow A, Tyrrell DL, Pezacki JP (2010) Activity-based protein profiling identifies a host enzyme, carboxylesterase 1, which is differentially active during hepatitis C virus replication . J Biol Chem 285:25602–25612
https://doi.org/10.1074/jbc.M110.135483
20 Brasaemle DL, Dolios G, Shapiro L, Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes . J Biol Chem 279:46835–46842
https://doi.org/10.1074/jbc.M409340200
21 Breitling J, Aebi M (2013) N-linked protein glycosylation in the endoplasmic reticulum . Cold Spring Harb Perspect Biol 5: a013359
https://doi.org/10.1101/cshperspect.a013359
22 Brenneman DE, Mathur SN, Spector AA (1975) Characterization of the hyperlipidemia in mice bearing the Ehrlich ascites tumor . Eur J Cancer 11:225–230
https://doi.org/10.1016/0014-2964(75)90002-X
23 Brocca S, Secundo F, Ossola M, Alberghina L, Carrea G, Lotti M (2003) Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes . Protein Sci 12:2312–2319
https://doi.org/10.1110/ps.0304003
24 Buchebner M, Pfeifer T, Rathke N, Chandak PG, Lass A, Schreiber R, Kratzer A, Zimmermann R, Sattler W, Koefeler H, Frohlich E, Kostner GM, Birner-Gruenberger R, Chiang KP, Haemmerle G, Zechner R, Levak-Frank S, Cravatt B, Kratky D (2010) Cholesteryl ester hydrolase activity is abolished in HSL−/−macrophages but unchanged in macrophages lacking KIAA1363 . J Lipid Res 51:2896–2908
https://doi.org/10.1194/jlr.M004259
25 Bulleid NJ (2012) Disulfide bond formation in the mammalian endoplasmic reticulum . Cold Spring Harb Perspect Biol 4: a013219
https://doi.org/10.1101/cshperspect.a013219
26 Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults . N Engl J Med 348:1625–1638
https://doi.org/10.1056/NEJMoa021423
27 Carr RM, Reid AE (2015) FXR agonists as therapeutic agents for non-alcoholic fatty liver disease . Curr Atheroscler Rep 17:500
https://doi.org/10.1007/s11883-015-0500-2
28 Carriere F, Withers-Martinez C, van Tilbeurgh H, Roussel A, Cambillau C, Verger R (1998) Structural basis for the substrate selectivity of pancreatic lipases and some related proteins . Biochim Biophys Acta 1376:417–432
https://doi.org/10.1016/S0304-4157(98)00016-1
29 Cohen JC, Horton JD, Hobbs HH (2011) Human fatty liver disease: old questions and new insights . Science 332:1519–1523
https://doi.org/10.1126/science.1204265
30 Crow JA, Herring KL, Xie S, Borazjani A, Potter PM, Ross MK (2010) Inhibition of carboxylesterase activity of THP1 monocytes/macrophages and recombinant human carboxylesterase 1 by oxysterols and fatty acids . Biochim Biophys Acta 1801:31–41
https://doi.org/10.1016/j.bbalip.2009.09.002
31 Deng X, Cagen LM, Wilcox HG, Park EA, Raghow R, Elam MB (2002) Regulation of the rat SREBP-1c promoter in primary rat hepatocytes . Biochem Biophys Res Commun 290:256–262
https://doi.org/10.1006/bbrc.2001.6148
32 Dolinsky VW, Sipione S, Lehner R, Vance DE (2001) The cloning and expression of a murine triacylglycerol hydrolase cDNA and the structure of its corresponding gene . Biochim Biophys Acta 1532:162–172
https://doi.org/10.1016/S1388-1981(01)00133-0
33 Dolinsky VW, Gilham D, Hatch GM, Agellon LB, Lehner R, Vance DE (2003) Regulation of triacylglycerol hydrolase expression by dietary fatty acids and peroxisomal proliferator-activated receptors . Biochim Biophys Acta 1635:20–28
https://doi.org/10.1016/j.bbalip.2003.09.007
34 Dolinsky VW, Gilham D, Alam M, Vance DE, Lehner R (2004) Triacylglycerol hydrolase: role in intracellular lipid metabolism . Cell Mol Life Sci 61:1633–1651
https://doi.org/10.1007/s00018-004-3426-3
35 Dominguez E, Galmozzi A, Chang JW, Hsu KL, Pawlak J, Li W, Godio C, Thomas J, Partida D, Niessen S, O’Brien PE, Russell AP, Watt MJ, Nomura DK, Cravatt BF, Saez E (2014) Integrated phenotypic and activity-based profiling links Ces3 to obesity and diabetes . Nat Chem Biol 10:113–121
https://doi.org/10.1038/nchembio.1429
36 Dugi KA, Dichek HL, Santamarina-Fojo S (1995) Human hepatic and lipoprotein lipase: the loop covering the catalytic site mediates lipase substrate specificity . J Biol Chem 270:25396–25401
https://doi.org/10.1074/jbc.270.43.25396
37 Ellinghaus P, Seedorf U, Assmann G (1998) Cloning and sequencing of a novel murine liver carboxylesterase cDNA . Biochim Biophys Acta 1397:175–179
https://doi.org/10.1016/S0167-4781(98)00023-2
38 Faulds MH, Dahlman-Wright K (2012) Metabolic diseases and cancer risk . Curr Opin Oncol 24:58–61
https://doi.org/10.1097/CCO.0b013e32834e0582
39 Fu ZD, Selwyn FP, Cui JY, Klaassen CD (2016) RNA sequencing quantification of xenobiotic-processing genes in various sections of the intestine in comparison to the liver of male mice . Drug Metab Dispos 44:842–856
https://doi.org/10.1124/dmd.115.068270
40 Fukami T, Kariya M, Kurokawa T, Iida A, Nakajima M (2015) Comparison of substrate specificity among human arylacetamide deacetylase and carboxylesterases . Eur J Pharm Sci 78:47–53
https://doi.org/10.1016/j.ejps.2015.07.006
41 Fulcher GR, Walker M, Catalano C, Agius L, Alberti KG (1992) Metabolic effects of suppression of nonesterified fatty acid levels with acipimox in obese NIDDM subjects . Diabetes 41:1400–1408
https://doi.org/10.2337/diab.41.11.1400
42 Furihata T, Hosokawa M, Nakata F, Satoh T, Chiba K (2003) Purification, molecular cloning, and functional expression of inducible liver acylcarnitine hydrolase in C57BL/6 mouse, belonging to the carboxylesterase multigene family . Arch Biochem Biophys 416:101–109
https://doi.org/10.1016/S0003-9861(03)00286-8
43 Furihata T, Hosokawa M, Koyano N, Nakamura T, Satoh T, Chiba K(2004) Identification of di-(2-ethylhexyl) phthalate-induced carboxylesterase 1 in C57BL/6 mouse liver microsomes: purification, cDNA cloning, and baculovirus-mediated expression . Drug Metab Dispos 32:1170–1177
https://doi.org/10.1124/dmd.104.000620
44 Gastaminza P, Cheng G, Wieland S, Zhong J, Liao W, Chisari FV (2008) Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion . J Virol 82:2120–2129
https://doi.org/10.1128/JVI.02053-07
45 Genetta TL, D’Eustachio P, Kadner SS, Finlay TH (1988) cDNA cloning of esterase 1, the major esterase activity in mouse plasma . Biochem Biophys Res Commun 151:1364–1370
https://doi.org/10.1016/S0006-291X(88)80513-8
46 Geshi E, Kimura T, Yoshimura M, Suzuki H, Koba S, Sakai T, Saito T, Koga A, Muramatsu M, Katagiri T (2005) A single nucleotide polymorphism in the carboxylesterase gene is associated with the responsiveness to imidapril medication and the promoter activity . Hypertens Res 28:719–725
https://doi.org/10.1291/hypres.28.719
47 Ghosh S (2000) Cholesteryl ester hydrolase in human monocyte/macrophage: cloning, sequencing, and expression of fulllength cDNA . Physiol Genomics 2:1–8
https://doi.org/10.1152/physiolgenomics.2000.2.1.1
48 Ghosh S, Mallonee DH, Hylemon PB, Grogan WM (1995) Molecular cloning and expression of rat hepatic neutral cholesteryl ester hydrolase . Biochim Biophys Acta 1259:305–312
https://doi.org/10.1016/0005-2760(95)00184-0
49 Ghosh S, St Clair RW, Rudel LL (2003) Mobilization of cytoplasmic CE droplets by overexpression of human macrophage cholesteryl ester hydrolase . J Lipid Res 44:1833–1840
https://doi.org/10.1194/jlr.M300162-JLR200
50 Gibbons GF, Wiggins D, Brown AM, Hebbachi AM (2004) Synthesis and function of hepatic very-low-density lipoprotein . Biochem Soc Trans 32:59–64
https://doi.org/10.1042/bst0320059
51 Gilham D, Ho S, Rasouli M, Martres P, Vance DE, Lehner R (2003) Inhibitors of hepatic microsomal triacylglycerol hydrolase decrease very low density lipoprotein secretion . FASEB J 17:1685–1687
https://doi.org/10.1096/fj.02-0728fje
52 Gilham D, Alam M, Gao W, Vance DE, Lehner R (2005) Triacylglycerol hydrolase is localized to the endoplasmic reticulum by an unusual retrieval sequence where it participates in VLDL assembly without utilizing VLDL lipids as substrates . Mol Biol Cell 16:984–996
https://doi.org/10.1091/mbc.E04-03-0224
53 Griffon N, Budreck EC, Long CJ, Broedl UC, Marchadier DH, Glick JM, Rader DJ (2006) Substrate specificity of lipoprotein lipase and endothelial lipase: studies of lid chimeras . J Lipid Res 47:1803–1811
https://doi.org/10.1194/jlr.M500552-JLR200
54 Grimble RF, Howell WM, O’Reilly G, Turner SJ, Markovic O, Hirrell S, East JM, Calder PC (2002) The ability of fish oil to suppress tumor necrosis factor alpha production by peripheral blood mononuclear cells in healthy men is associated with polymorphisms in genes that influence tumor necrosis factor alpha production . Am J Clin Nutr 76:454–459
https://doi.org/10.1093/ajcn/76.2.454
55 Harrison EH, Gad MZ, Ross AC (1995) Hepatic uptake and metabolism of chylomicron retinyl esters: probable role of plasma membrane/endosomal retinyl ester hydrolases . J Lipid Res 36:1498–1506
56 Hatfield MJ, Umans RA, Hyatt JL, Edwards CC, Wierdl M, Tsurkan L, Taylor MR, Potter PM(2016) Carboxylesterases: general detoxifying enzymes . Chem Biol Interact 259:327–331
https://doi.org/10.1016/j.cbi.2016.02.011
57 Ho SC, Rajagopalan S, Chaudhuri S, Shieh CC, Brenner MB, Pillai S (1999) Membrane anchoring of calnexin facilitates its interaction with its targets . Mol Immunol 36:1–12
https://doi.org/10.1016/S0161-5890(99)00018-8
58 Holmes RS, Cox LA, Vandeberg JL (2009a) A new class of mammalian carboxylesterase CES6 . Comp Biochem Physiol Part D Genomics Proteomics 4:209–217
https://doi.org/10.1016/j.cbd.2009.03.002
59 Holmes RS, Glenn JP, VandeBerg JL, Cox LA (2009b) Baboon carboxylesterases 1 and 2: sequences, structures and phylogenetic relationships with human and other primate carboxylesterases . J Med Primatol 38:27–38
https://doi.org/10.1111/j.1600-0684.2008.00315.x
60 Holmes RS, Wright MW, Laulederkind SJ, Cox LA, Hosokawa M, Imai T, Ishibashi S, Lehner R, Miyazaki M, Perkins EJ, Potter PM, Redinbo MR, Robert J, Satoh T, Yamashita T, Yan B, Yokoi T, Zechner R, Maltais LJ (2010a) Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins . Mamm Genome 21:427–441
https://doi.org/10.1007/s00335-010-9284-4
61 Holmes RS, Cox LA, VandeBerg JL (2010b) Mammalian carboxylesterase 3: comparative genomics and proteomics . Genetica 138:695–708
https://doi.org/10.1007/s10709-010-9438-z
62 Hosokawa M (2008) Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs . Molecules 13:412–431
https://doi.org/10.3390/molecules13020412
63 Hosokawa M, Maki T, Satoh T (1990) Characterization of molecular species of liver microsomal carboxylesterases of several animal species and humans . Arch Biochem Biophys 277:219–227
https://doi.org/10.1016/0003-9861(90)90572-G
64 Hosokawa M, Endo T, Fujisawa M, Hara S, Iwata N, Sato Y, Satoh T (1995) Interindividual variation in carboxylesterase levels in human liver microsomes. Drug Metab Dispos 23:1022–1027
65 Huang H, Sun F, Owen DM, Li W, Chen Y, Gale M Jr, Ye J (2007) Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins . Proc Natl Acad Sci USA 104:5848–5853
https://doi.org/10.1073/pnas.0700760104
66 Huang J, Li L, Lian J, Schauer S, Vesely PW, Kratky D, Hoefler G, Lehner R (2016) Tumor-induced hyperlipidemia contributes to tumor growth . Cell Rep 15:336–348
https://doi.org/10.1016/j.celrep.2016.03.020
67 Igarashi M, Osuga J, Uozaki H, Sekiya M, Nagashima S, Takahashi M, Takase S, Takanashi M, Li Y, Ohta K, Kumagai M, Nishi M, Hosokawa M, Fledelius C, Jacobsen P, Yagyu H, Fukayama M, Nagai R, Kadowaki T, Ohashi K, Ishibashi S (2010) The critical role of neutral cholesterol ester hydrolase 1 in cholesterol removal from human macrophages . Circ Res 107:1387–1395
https://doi.org/10.1161/CIRCRESAHA.110.226613
68 Imai T (2006) Human carboxylesterase isozymes: catalytic properties and rational drug design . Drug Metab Pharmacokinet 21:173–185
https://doi.org/10.2133/dmpk.21.173
69 Imai T, Taketani M, Shii M, Hosokawa M, Chiba K (2006) Substrate specificity of carboxylesterase isozymes and their contribution to hydrolase activity in human liver and small intestine . Drug Metab Dispos 34:1734–1741
https://doi.org/10.1124/dmd.106.009381
70 Innerarity TL, Boren J, Yamanaka S, Olofsson SO (1996) Biosynthesis of apolipoprotein B48-containing lipoproteins. Regulation by novel post-transcriptional mechanisms . J Biol Chem 271:2353–2356
https://doi.org/10.1074/jbc.271.5.2353
71 Jernas M, Olsson B, Arner P, Jacobson P, Sjostrom L, Walley A, Froguel P, McTernan PG, Hoffstedt J, Carlsson LM (2009) Regulation of carboxylesterase 1 (CES1) in human adipose tissue . Biochem Biophys Res Commun 383:63–67
https://doi.org/10.1016/j.bbrc.2009.03.120
72 Jones RD, Taylor AM, Tong EY, Repa JJ (2013) Carboxylesterases are uniquely expressed among tissues and regulated by nuclear hormone receptors in the mouse . Drug Metab Dispos 41:40–49
https://doi.org/10.1124/dmd.112.048397
73 Karpe F, Dickmann JR, Frayn KN (2011) Fatty acids, obesity, and insulin resistance: time for a reevaluation . Diabetes 60:2441–2449
https://doi.org/10.2337/db11-0425
74 Kim SR, Nakamura T, Saito Y, Sai K, Nakajima T, Saito H, Shirao K, Minami H, Ohtsu A, Yoshida T, Saijo N, Ozawa S, Sawada J (2003) Twelve novel single nucleotide polymorphisms in the CES2 gene encoding human carboxylesterase 2 (hCE-2) . Drug Metab Pharmacokinet 18:327–332
https://doi.org/10.2133/dmpk.18.327
75 Ko KW, Erickson B, Lehner R (2009) Es-x/Ces1 prevents triacylglycerol accumulation in McArdle-RH7777 hepatocytes . Biochim Biophys Acta 1791:1133–1143
https://doi.org/10.1016/j.bbalip.2009.07.006
76 Kroetz DL, McBride OW, Gonzalez FJ (1993) Glycosylation-dependent activity of baculovirus-expressed human liver carboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms . Biochemistry 32:11606–11617
https://doi.org/10.1021/bi00094a018
77 Kubo T, Kim SR, Sai K, Saito Y, Nakajima T, Matsumoto K, Saito H, Shirao K, Yamamoto N, Minami H, Ohtsu A, Yoshida T, Saijo N, Ohno Y, Ozawa S, Sawada J (2005) Functional characterization of three naturally occurring single nucleotide polymorphisms in the CES2 gene encoding carboxylesterase 2 (HCE-2) . Drug Metab Dispos 33:1482–1487
https://doi.org/10.1124/dmd.105.005587
78 Laizure SC, Herring V, Hu Z, Witbrodt K, Parker RB (2013) The role of human carboxylesterases in drug metabolism: have we overlooked their importance ? Pharmacotherapy 33:210–222
https://doi.org/10.1002/phar.1194
79 Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A (2004) Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms . Am J Clin Nutr 79:935–945
https://doi.org/10.1093/ajcn/79.6.935
80 Lee JN, Zhang X, Feramisco JD, Gong Y, Ye J (2008) Unsaturated fatty acids inhibit proteasomal degradation of Insig-1 at a postubiquitination step . J Biol Chem 283:33772–33783
https://doi.org/10.1074/jbc.M806108200
81 Lehner R, Vance DE (1999) Cloning and expression of a cDNA encoding a hepatic microsomal lipase that mobilizes stored triacylglycerol . Biochem J 343(Pt 1):1–10
https://doi.org/10.1042/bj3430001
82 Lehner R, Lian J, Quiroga AD (2012) Lumenal lipid metabolism: implications for lipoprotein assembly . Arterioscler Thromb Vasc Biol 32:1087–1093
https://doi.org/10.1161/ATVBAHA.111.241497
83 Li G, Janecka JE, Murphy WJ (2011) Accelerated evolution of CES7, a gene encoding a novel major urinary protein in the cat family . Mol Biol Evol 28:911–920
https://doi.org/10.1093/molbev/msq281
84 Li Y, Zalzala M, Jadhav K, Xu Y, Kasumov T, Yin L, Zhang Y (2016) Carboxylesterase 2 prevents liver steatosis by modulating lipolysis, endoplasmic reticulum stress, and lipogenesis and is regulated by hepatocyte nuclear factor 4 alpha in mice . Hepatology 63:1860–1874
https://doi.org/10.1002/hep.28472
85 Lian J, Wei E, Wang SP, Quiroga AD, Li L, Di Pardo A, van der Veen J, Sipione S, Mitchell GA, Lehner R (2012a) Liver specific inactivation of carboxylesterase 3/triacylglycerol hydrolase decreases blood lipids without causing severe steatosis in mice . Hepatology 56:2154–2162
https://doi.org/10.1002/hep.25881
86 Lian J, Quiroga AD, Li L, Lehner R (2012b) Ces3/TGH deficiency improves dyslipidemia and reduces atherosclerosis in Ldlr(−/−) mice . Circ Res 111:982–990
https://doi.org/10.1161/CIRCRESAHA.112.267468
87 Lian J, Wei E, Groenendyk J, Das SK, Hermansson M, Li L, Watts R, Thiesen A, Oudit GY, Michalak M, Lehner R (2016) Ces3/TGH deficiency attenuates steatohepatitis . Sci Rep 6:25747
https://doi.org/10.1038/srep25747
88 Lin X, Jia J, Du T, Li W, Wang X, Wei J, Lin X, Zeng H, Yao L, Chen X, Zhuang J, Weng J, Liu Y, Lin J, Wu Q, Wang W, Yao K, Xu K, Xiao D (2015) Overexpression of miR-155 in the liver of transgenic mice alters the expression profiling of hepatic genes associated with lipid metabolism . PLoS ONE 10:e0118417
https://doi.org/10.1371/journal.pone.0118417
89 Linke T, Dawson H, Harrison EH (2005) Isolation and characterization of a microsomal acid retinyl ester hydrolase . J Biol Chem 280:23287–23294
https://doi.org/10.1074/jbc.M413585200
90 Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RG (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic . J Biol Chem 279:3787–3792
https://doi.org/10.1074/jbc.M311945200
91 Lord CC, Ferguson D, Thomas G, Brown AL, Schugar RC, Burrows A, Gromovsky AD, Betters J, Neumann C, Sacks J, Marshall S, Watts R, Schweiger M, Lee RG, Crooke RM, Graham MJ, Lathia JD, Sakaguchi TF, Lehner R, Haemmerle G, Zechner R, Brown JM (2016) Regulation of hepatic triacylglycerol metabolism by CGI-58 does not require ATGL co-activation . Cell Rep 16:939–949
https://doi.org/10.1016/j.celrep.2016.06.049
92 Maki T, Hosokawa M, Satoh T, Sato K (1991) Changes in carboxylesterase isoenzymes of rat liver microsomes during hepatocarcinogenesis . Jpn J Cancer Res 82:800–806
https://doi.org/10.1111/j.1349-7006.1991.tb02705.x
93 Marrades MP, Gonzalez-Muniesa P, Martinez JA, Moreno-Aliaga MJ (2010) A dysregulation in CES1, APOE and other lipid metabolism-related genes is associated to cardiovascular risk factors linked to obesity . Obes Facts 3:312–318
https://doi.org/10.1159/000321451
94 Marsh S, Xiao M, Yu J, Ahluwalia R, Minton M, Freimuth RR, Kwok PY, McLeod HL (2004) Pharmacogenomic assessment of carboxylesterases 1 and 2 . Genomics 84:661–668
https://doi.org/10.1016/j.ygeno.2004.07.008
95 Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle . Nat Rev Mol Cell Biol 7:373–378
https://doi.org/10.1038/nrm1912
96 McQuaid SE, Hodson L, Neville MJ, Dennis AL, Cheeseman J, Humphreys SM, Ruge T, Gilbert M, Fielding BA, Frayn KN, Karpe F (2011) Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition ? Diabetes 60:47–55
https://doi.org/10.2337/db10-0867
97 Mentlein R, Heymann E (1987) Hydrolysis of retinyl esters by nonspecific carboxylesterases from rat liver endoplasmic reticulum . Biochem J 245:863–867
https://doi.org/10.1042/bj2450863
98 Mishra S, Khaddaj R, Cottier S, Stradalova V, Jacob C, Schneiter R (2016) Mature lipid droplets are accessible to ER luminal proteins . J Cell Sci 129:3803–3815
https://doi.org/10.1242/jcs.189191
99 Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K (2007) The lipid droplet is an important organelle for hepatitis C virus production . Nat Cell Biol 9:1089–1097
https://doi.org/10.1038/ncb1631
100 Miyazaki M, Yamashita T, Hosokawa M, Taira H, Suzuki A (2006) Species-, sex-, and age-dependent urinary excretion of cauxin, a mammalian carboxylesterase . Comp Biochem Physiol B 145:270–277
https://doi.org/10.1016/j.cbpb.2006.05.015
101 Morgan EW, Yan B, Greenway D, Parkinson A (1994) Regulation of two rat liver microsomal carboxylesterase isozymes: species differences, tissue distribution, and the effects of age, sex, and xenobiotic treatment of rats . Arch Biochem Biophys 315:513–526
https://doi.org/10.1006/abbi.1994.1532
102 Mori M, Hosokawa M, Ogasawara Y, Tsukada E, Chiba K (1999) cDNA cloning, characterization and stable expression of novel human brain carboxylesterase . FEBS Lett 458:17–22
https://doi.org/10.1016/S0014-5793(99)01111-4
103 Munro S, Pelham HR (1987) A C-terminal signal prevents secretion of luminal ER proteins . Cell 48:899–907
https://doi.org/10.1016/0092-8674(87)90086-9
104 Nagashima S, Yagyu H, Takahashi N, Kurashina T, Takahashi M, Tsuchita T, Tazoe F, Wang XL, Bayasgalan T, Sato N, Okada K, Nagasaka S, Gotoh T, Kojima M, Hyodo M, Horie H, Hosoya Y, Okada M, Yasuda Y, Fujiwara H, Ohwada M, Iwamoto S, Suzuki M, Nagai H, Ishibashi S (2011) Depot-specific expression of lipolytic genes in human adipose tissues-association among CES1 expression, triglyceride lipase activity and adiposity . J Atheroscler Thromb 18:190–199
https://doi.org/10.5551/jat.6478
105 Okazaki H, Igarashi M, Nishi M, Tajima M, Sekiya M, Okazaki S, Yahagi N, Ohashi K, Tsukamoto K, Amemiya-Kudo M, Matsuzaka T, Shimano H, Yamada N, Aoki J, Morikawa R, Takanezawa Y, Arai H, Nagai R, Kadowaki T, Osuga J, Ishibashi S (2006) Identification of a novel member of the carboxylesterase family that hydrolyzes triacylglycerol: a potential role in adipocyte lipolysis . Diabetes 55:2091–2097
https://doi.org/10.2337/db05-0585
106 Okazaki H, Igarashi M, Nishi M, Sekiya M, Tajima M, Takase S, Takanashi M, Ohta K, Tamura Y, Okazaki S, Yahagi N, Ohashi K, Amemiya-Kudo M, Nakagawa Y, Nagai R, Kadowaki T, Osuga J, Ishibashi S (2008) Identification of neutral cholesterol ester hydrolase, a key enzyme removing cholesterol from macrophages . J Biol Chem 283:33357–33364
https://doi.org/10.1074/jbc.M802686200
107 Olofsson SO, Stillemark-Billton P, Asp L (2000) Intracellular assembly of VLDL: two major steps in separate cell compartments . Trends Cardiovasc Med 10:338–345
https://doi.org/10.1016/S1050-1738(01)00071-8
108 Ovnic M, Swank RT, Fletcher C, Zhen L, Novak EK, Baumann H, Heintz N, Ganschow RE (1991) Characterization and functional expression of a cDNA encoding egasyn (esterase-22): the endoplasmic reticulum-targeting protein of beta-glucuronidase . Genomics 11:956–967
https://doi.org/10.1016/0888-7543(91)90020-F
109 Pelham HR (1991) Recycling of proteins between the endoplasmic reticulum and Golgi complex . Curr Opin Cell Biol 3:585–591
https://doi.org/10.1016/0955-0674(91)90027-V
110 Pindel EV, Kedishvili NY, Abraham TL, Brzezinski MR, Zhang J, Dean RA, Bosron WF (1997) Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin . J Biol Chem 272:14769–14775
https://doi.org/10.1074/jbc.272.23.14769
111 Potter PM, Wolverton JS, Morton CL, Wierdl M, Danks MK (1998) Cellular localization domains of a rabbit and a human carboxylesterase: influence on irinotecan (CPT-11) metabolism by the rabbit enzyme . Cancer Res 58:3627–3632
112 Quiroga AD, Li L, Trotzmuller M, Nelson R, Proctor SD, Kofeler H, Lehner R (2012a) Deficiency of carboxylesterase 1/esterase-x results in obesity, hepatic steatosis, and hyperlipidemia . Hepatology 56:2188–2198
https://doi.org/10.1002/hep.25961
113 Quiroga AD, Lian J, Lehner R (2012b) Carboxylesterase1/Esterasex regulates chylomicron production in mice . PLoS ONE 7:e49515
https://doi.org/10.1371/journal.pone.0049515
114 Quiroga AD, Ceballos MP, Parody JP, Comanzo CG, Lorenzetti F, Pisani GB, Ronco MT, Alvarez ML, Carrillo MC (2016) Hepatic carboxylesterase 3 (Ces3/Tgh) is downregulated in the early stages of liver cancer development in the rat . Biochim Biophys Acta 1862:2043–2053
https://doi.org/10.1016/j.bbadis.2016.08.006
115 Riddles PW, Richards LJ, Bowles MR, Pond SM (1991) Cloning and analysis of a cDNA encoding a human liver carboxylesterase . Gene 108:289–292
https://doi.org/10.1016/0378-1119(91)90448-K
116 Robbi M, Beaufay H (1991) The COOH terminus of several liver carboxylesterases targets these enzymes to the lumen of the endoplasmic reticulum . J Biol Chem 266:20498–20503
117 Robbi M, Beaufay H, Octave JN (1990) Nucleotide sequence of cDNA coding for rat liver pI 6.1 esterase (ES-10), a carboxylesterase located in the lumen of the endoplasmic reticulum . Biochem J 269:451–458
https://doi.org/10.1042/bj2690451
118 Ross MK, Borazjani A, Wang R, Crow JA, Xie S (2012) Examination of the carboxylesterase phenotype in human liver . Arch Biochem Biophys 522:44–56
https://doi.org/10.1016/j.abb.2012.04.010
119 Ruby MA, Massart J, Hunerdosse DM, Schonke M, Correia JC, Louie SM, Ruas JL, Naslund E, Nomura DK, Zierath JR (2017) Human carboxylesterase 2 reverses obesity-induced diacylglycerol accumulation and glucose intolerance . Cell Rep 18:636–646
https://doi.org/10.1016/j.celrep.2016.12.070
120 Saito S, Iida A, Sekine A, Kawauchi S, Higuchi S, Ogawa C, Nakamura Y (2003) Catalog of 680 variations among eight cytochrome p450 (CYP) genes, nine esterase genes, and two other genes in the Japanese population . J Hum Genet 48:249–270
https://doi.org/10.1007/s10038-003-0021-7
121 Sanghani SP, Davis WI, Dumaual NG, Mahrenholz A, Bosron WF (2002) Identification of microsomal rat liver carboxylesterases and their activity with retinyl palmitate . Eur J Biochem 269:4387–4398
https://doi.org/10.1046/j.1432-1033.2002.03121.x
122 Sanghani SP, Quinney SK, Fredenburg TB, Davis WI, Murry DJ, Bosron WF (2004) Hydrolysis of irinotecan and its oxidative metabolites, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino] carbonyloxycamptothecin and 7-ethyl-10-[4-(1-piperidino)-1-amino]-carbonyloxycamptothecin, by human carboxylesterases CES1A1, CES2, and a newly expressed carboxylesterase isoenzyme, CES3 . Drug Metab Dispos 32:505–511
https://doi.org/10.1124/dmd.32.5.505
123 Sanghani SP, Sanghani PC, Schiel MA, Bosron WF (2009) Human carboxylesterases: an update on CES1, CES2 and CES3 . Protein Pept Lett 16:1207–1214
https://doi.org/10.2174/092986609789071324
124 Satoh T, Taylor P, Bosron WF, Sanghani SP, Hosokawa M, La Du BN (2002) Current progress on esterases: from molecular structure to function . Drug Metab Dispos 30:488–493
https://doi.org/10.1124/dmd.30.5.488
125 Schreiber R, Taschler U, Wolinski H, Seper A, Tamegger SN, Graf M, Kohlwein SD, Haemmerle G, Zimmermann R, Zechner R, Lass A (2009) Esterase 22 and beta-glucuronidase hydrolyze retinoids in mouse liver . J Lipid Res 50:2514–2523
https://doi.org/10.1194/jlr.M000950
126 Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C, Jacobsen P, Tornqvist H, Zechner R, Zimmermann R (2006) Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism . J Biol Chem 281:40236–40241
https://doi.org/10.1074/jbc.M608048200
127 Schwer H, Langmann T, Daig R, Becker A, Aslanidis C, Schmitz G (1997) Molecular cloning and characterization of a novel putative carboxylesterase, present in human intestine and liver . Biochem Biophys Res Commun 233:117–120
https://doi.org/10.1006/bbrc.1997.6413
128 Shelness GS, Sellers JA (2001) Very-low-density lipoprotein assembly and secretion . Curr Opin Lipidol 12:151–157
https://doi.org/10.1097/00041433-200104000-00008
129 Shimizu M, Fukami T, Nakajima M, Yokoi T (2014) Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase . Drug Metab Dispos 42:1103–1109
https://doi.org/10.1124/dmd.114.056994
130 So JS, Hur KY, Tarrio M, Ruda V, Frank-Kamenetsky M, Fitzgerald K, Koteliansky V, Lichtman AH, Iwawaki T, Glimcher LH, Lee AH (2012) Silencing of lipid metabolism genes through IRE1alphamediated mRNA decay lowers plasma lipids in mice . Cell Metab 16:487–499
https://doi.org/10.1016/j.cmet.2012.09.004
131 Soni KG, Lehner R, Metalnikov P, O’Donnell P, Semache M, Gao W, Ashman K, Pshezhetsky AV, Mitchell GA (2004) Carboxylesterase 3 (EC 3.1.1.1) is a major adipocyte lipase . J Biol Chem 279:40683–40689
https://doi.org/10.1074/jbc.M400541200
132 Staudinger JL, Xu C, Cui YJ, Klaassen CD (2010) Nuclear receptormediated regulation of carboxylesterase expression and activity . Expert Opin Drug Metab Toxicol 6:261–271
https://doi.org/10.1517/17425250903483215
133 Steinberg GR, Kemp BE, Watt MJ (2007) Adipocyte triglyceride lipase expression in human obesity . Am J Physiol Endocrinol Metab 293:E958–964
https://doi.org/10.1152/ajpendo.00235.2007
134 Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madan A, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJ, Marra MA, Mammalian T (2002) Gene Collection Program, Generation and initial analysis of more than 15,000 fulllength human and mouse cDNA sequences . Proc Natl Acad Sci USA 99:16899–16903
https://doi.org/10.1073/pnas.242603899
135 Sun G, Alexson SE, Harrison EH (1997) Purification and characterization of a neutral, bile salt-independent retinyl ester hydrolase from rat liver microsomes. Relationship to rat carboxylesterase ES-2. J Biol Chem 272:24488–24493
https://doi.org/10.1074/jbc.272.39.24488
136 Szafran B, Borazjani A, Lee JH, Ross MK, Kaplan BL (2015) Lipopolysaccharide suppresses carboxylesterase 2g activity and 2-arachidonoylglycerol hydrolysis: a possible mechanism to regulate inflammation. Prostaglandins Other Lipid Mediat 121:199–206
https://doi.org/10.1016/j.prostaglandins.2015.09.005
137 Thomsen R, Rasmussen HB, Linnet K, Consortium I (2014) In vitro drug metabolism by human carboxylesterase 1: focus on angiotensin-converting enzyme inhibitors. Drug Metab Dispos 42:126–133
https://doi.org/10.1124/dmd.113.053512
138 Tiniakos DG, Vos MB, Brunt EM (2010) Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol 5:145–171
https://doi.org/10.1146/annurev-pathol-121808-102132
139 Townsley FM, Wilson DW, Pelham HR (1993) Mutational analysis of the human KDEL receptor: distinct structural requirements for Golgi retention, ligand binding and retrograde transport. EMBO J 12:2821–2829
140 Walther TC, Farese RV Jr (2009) The life of lipid droplets. Biochim Biophys Acta 1791:459–466
https://doi.org/10.1016/j.bbalip.2008.10.009
141 Walther TC, Farese RV Jr(2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81:687–714
https://doi.org/10.1146/annurev-biochem-061009-102430
142 Wang H, Gilham D, Lehner R (2007) Proteomic and lipid characterization of apolipoprotein B-free luminal lipid droplets from mouse liver microsomes: implications for very low density lipoprotein assembly. J Biol Chem 282:33218–33226
https://doi.org/10.1074/jbc.M706841200
143 Wang H, Wei E, Quiroga AD, Sun X, Touret N, Lehner R (2010) Altered lipid droplet dynamics in hepatocytes lacking triacylglycerol hydrolase expression. Mol Biol Cell 21:1991–2000
https://doi.org/10.1091/mbc.E09-05-0364
144 Wang R, Borazjani A, Matthews AT, Mangum LC, Edelmann MJ, Ross MK (2013) Identification of palmitoyl protein thioesterase 1 in human THP1 monocytes and macrophages and characterization of unique biochemical activities for this enzyme. Biochemistry 52:7559–7574
https://doi.org/10.1021/bi401138s
145 Wei E, Lehner R, Vance DE (2005) C/EBPalpha activates the transcription of triacylglycerol hydrolase in 3T3-L1 adipocytes. Biochem J 388:959–966
https://doi.org/10.1042/BJ20041442
146 Wei E, Alam M, Sun F, Agellon LB, Vance DE, Lehner R (2007a) Apolipoprotein B and triacylglycerol secretion in human triacylglycerol hydrolase transgenic mice. J Lipid Res 48:2597–2606
https://doi.org/10.1194/jlr.M700320-JLR200
147 Wei E, Gao W, Lehner R (2007b) Attenuation of adipocyte triacylglycerol hydrolase activity decreases basal fatty acid efflux. J Biol Chem 282:8027–8035
https://doi.org/10.1074/jbc.M605789200
148 Wei E, Ben Ali Y, Lyon J, Wang H, Nelson R, Dolinsky VW, Dyck JR, Mitchell G, Korbutt GS, Lehner R (2010) Loss of TGH/Ces3 in mice decreases blood lipids, improves glucose tolerance, and increases energy expenditure. Cell Metab 11:183–193
https://doi.org/10.1016/j.cmet.2010.02.005
149 Wiggins D, Gibbons GF (1992) The lipolysis/esterification cycle of hepatic triacylglycerol. Its role in the secretion of very-low-density lipoprotein and its response to hormones and sulphonylureas. Biochem J 284(Pt 2):457–462
https://doi.org/10.1042/bj2840457
150 Wilfling F, Thiam AR, Olarte MJ, Wang J, Beck R, Gould TJ, Allgeyer ES, Pincet F, Bewersdorf J, Farese RV Jr, Walther TC (2014) Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Elife 3:e01607
https://doi.org/10.7554/eLife.01607
151 Williams ET, Wang H, Wrighton SA, Qian YW, Perkins EJ (2010) Genomic analysis of the carboxylesterases: identification and classification of novel forms. Mol Phylogenet Evol 57:23–34
https://doi.org/10.1016/j.ympev.2010.05.018
152 Wu MH, Chen P, Wu X, Liu W, Strom S, Das S, Cook EH Jr, Rosner GL, Dolan ME (2004) Determination and analysis of single nucleotide polymorphisms and haplotype structure of the human carboxylesterase 2 gene. Pharmacogenetics 14:595–605
https://doi.org/10.1097/00008571-200409000-00004
153 Xie S, Borazjani A, Hatfield MJ, Edwards CC, Potter PM, Ross MK (2010) Inactivation of lipid glyceryl ester metabolism in human THP1 monocytes/macrophages by activated organophosphorus insecticides: role of carboxylesterases 1 and 2. Chem Res Toxicol 23:1890–1904
https://doi.org/10.1021/tx1002194
154 Xie C, Ding X, Gao J, Wang H, Hang Y, Zhang H, Zhang J, Jiang B, Miao L (2014) The effects of CES1A2 A(-816)C and CYP2C19 loss-of-function polymorphisms on clopidogrel response variability among Chinese patients with coronary heart disease. Pharmacogenet Genomics 24:204–210
https://doi.org/10.1097/FPC.0000000000000035
155 Xu J, Teran-Garcia M, Park JH, Nakamura MT, Clarke SD (2001) Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. J Biol Chem 276:9800–9807
https://doi.org/10.1074/jbc.M008973200
156 Xu J, Li Y, Chen WD, Xu Y, Yin L, Ge X, Jadhav K, Adorini L, Zhang Y (2014a) Hepatic carboxylesterase 1 is essential for both normal and farnesoid X receptor-controlled lipid homeostasis. Hepatology 59:1761–1771
https://doi.org/10.1002/hep.26714
157 Xu J, Yin L, Xu Y, Li Y, Zalzala M, Cheng G, Zhang Y (2014b) Hepatic carboxylesterase 1 is induced by glucose and regulates postprandial glucose levels. PLoS ONE 9:e109663
https://doi.org/10.1371/journal.pone.0109663
158 Xu J, Xu Y, Li Y, Jadhav K, You M, Yin L, Zhang Y (2016) Carboxylesterase 1 Is regulated by hepatocyte nuclear factor 4alpha and protects against alcohol- and MCD diet-induced liver injury. Sci Rep 6:24277
https://doi.org/10.1038/srep24277
159 Yamada S, Richardson K, Tang M, Halaschek-Wiener J, Cook VJ, Fitzgerald JM, Elwood K, Marra F, Brooks-Wilson A (2010) Genetic variation in carboxylesterase genes and susceptibility to isoniazid-induced hepatotoxicity. Pharmacogenomics J 10:524–536
https://doi.org/10.1038/tpj.2010.5
160 Yan B, Yang D, Bullock P, Parkinson A (1995) Rat serum carboxylesterase. Cloning, expression, regulation, and evidence of secretion from liver. J Biol Chem 270:19128–19134
https://doi.org/10.1074/jbc.270.32.19128
161 Yan B, Matoney L, Yang D (1999) Human carboxylesterases in term placentae: enzymatic characterization, molecular cloning and evidence for the existence of multiple forms. Placenta 20:599–607
https://doi.org/10.1053/plac.1999.0407
162 Young SG, Parthasarathy S (1994) Why are low-density lipoproteins atherogenic? West J Med 160:153–164
163 Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, Willson TM, Edwards PA (2006) Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA 103:1006–1011
https://doi.org/10.1073/pnas.0506982103
164 Zhao B, Fisher BJ, St Clair RW, Rudel LL, Ghosh S (2005) Redistribution of macrophage cholesteryl ester hydrolase from cytoplasm to lipid droplets upon lipid loading. J Lipid Res 46:2114–2121
https://doi.org/10.1194/jlr.M500207-JLR200
165 Zhao B, Song J, Chow WN, St Clair RW, Rudel LL, Ghosh S (2007) Macrophage-specific transgenic expression of cholesteryl ester hydrolase significantly reduces atherosclerosis and lesion necrosis in Ldlr mice. J Clin Invest 117:2983–2992
https://doi.org/10.1172/JCI30485
166 Zhu HJ, Patrick KS, Yuan HJ, Wang JS, Donovan JL, DeVane CL, Malcolm R, Johnson JA, Youngblood GL, Sweet DH, Langaee TY, Markowitz JS (2008) Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. Am J Hum Genet 82:1241–1248
https://doi.org/10.1016/j.ajhg.2008.04.015
[1] Kun Liu, Jiani Cao, Xingxing Shi, Liang Wang, Tongbiao Zhao. Cellular metabolism and homeostasis in pluripotency regulation[J]. Protein Cell, 2020, 11(9): 630-640.
[2] Ruo-Ran Wang, Ran Pan, Wenjing Zhang, Junfen Fu, Jiandie D. Lin, Zhuo-Xian Meng. The SWI/SNF chromatin-remodeling factors BAF60a, b, and c in nutrient signaling and metabolic control[J]. Protein Cell, 2018, 9(2): 207-215.
[3] Xu Zhang, Xuetao Ji, Qian Wang, John Zhong Li. New insight into inter-organ crosstalk contributing to the pathogenesis of nonalcoholic fatty liver disease (NAFLD)[J]. Protein Cell, 2018, 9(2): 164-177.
[4] John M. Dean, Irfan J. Lodhi. Structural and functional roles of ether lipids[J]. Protein Cell, 2018, 9(2): 196-206.
[5] Xuejiao Liu, Christopher Cervantes, Feng Liu. Common and distinct regulation of human and mouse brown and beige adipose tissues: a promising therapeutic target for obesity[J]. Protein Cell, 2017, 8(6): 446-454.
[6] Yuewen Tang, Lin Cheng. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury[J]. Protein Cell, 2017, 8(4): 273-283.
[7] Sensen Zhang, Ningning Li, Wenwen Zeng, Ning Gao, Maojun Yang. Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism[J]. Protein Cell, 2017, 8(11): 834-847.
[8] Congyan Zhang, Pingsheng Liu. The lipid droplet: A conserved cellular organelle[J]. Protein Cell, 2017, 8(11): 796-800.
[9] Xuelin Zhang,Yang Wang,Pingsheng Liu. Omic studies reveal the pathogenic lipid droplet proteins in non-alcoholic fatty liver disease[J]. Protein Cell, 2017, 8(1): 4-13.
[10] Zhan-Qi Cao,Xiu-Li Guo. The role of galectin-4 in physiology and diseases[J]. Protein Cell, 2016, 7(5): 314-324.
[11] Qun Zhang,Wenhua Zhang. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells[J]. Protein Cell, 2016, 7(2): 81-88.
[12] Chenxia Hu,Lanjuan Li. In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration[J]. Protein Cell, 2015, 6(8): 562-574.
[13] Shujing Wang,Huiqin Liu,Xinyi Zhang,Feng Qian. Intranasal and oral vaccination with protein-based antigens: advantages, challenges and formulation strategies[J]. Protein Cell, 2015, 6(7): 480-503.
[14] Xiaokang Li,Hui Zhao,Chunxiao Qi,Yang Zeng,Feng Xu,Yanan Du. Direct intercellular communications dominate the interaction between adipose-derived MSCs and myofibroblasts against cardiac fibrosis[J]. Protein Cell, 2015, 6(10): 735-745.
[15] Minghao Dang,Xiangxi Wang,Quan Wang,Yaxin Wang,Jianping Lin,Yuna Sun,Xuemei Li,Liguo Zhang,Zhiyong Lou,Junzhi Wang,Zihe Rao. Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71[J]. Protein Cell, 2014, 5(9): 692-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed