Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2019, Vol. 10 Issue (1) : 8-19    https://doi.org/10.1007/s13238-018-0523-x
REVIEW
Release and uptake mechanisms of vesicular Ca2+ stores
Junsheng Yang1,2, Zhuangzhuang Zhao1, Mingxue Gu2, Xinghua Feng1(), Haoxing Xu2()
1. Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
2. The Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
 Download: PDF(1159 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cells utilize calcium ions (Ca2+) to signal almost all aspects of cellular life, ranging from cell proliferation to cell death, in a spatially and temporally regulated manner. A key aspect of this regulation is the compartmentalization of Ca2+ in various cytoplasmic organelles that act as intracellular Ca2+ stores. Whereas Ca2+ release from the large-volume Ca2+ stores, such as the endoplasmic reticulum (ER) and Golgi apparatus, are preferred for signal transduction, Ca2+ release from the small-volume individual vesicular stores that are dispersed throughout the cell, such as lysosomes, may be more useful in local regulation, such as membrane fusion and individualized vesicular movements. Conceivably, these two types of Ca2+ stores may be established, maintained or refilled via distinct mechanisms. ER stores are refilled through sustained Ca2+ influx at ER-plasma membrane (PM) membrane contact sites (MCSs). In this review, we discuss the release and refilling mechanisms of intracellular small vesicular Ca2+ stores, with a special focus on lysosomes. Recent imaging studies of Ca2+ release and organelle MCSs suggest that Ca2+ exchange may occur between two types of stores, such that the small stores acquire Ca2+ from the large stores via ER-vesicle MCSs. Hence vesicular stores like lysosomes may be viewed as secondary Ca2+ stores in the cell.

Keywords Ca2+ stores      lysosomes      vesicles      refilling      organelle membrane contact sites (MCSs)     
Corresponding Author(s): Xinghua Feng,Haoxing Xu   
Issue Date: 31 January 2019
 Cite this article:   
Junsheng Yang,Zhuangzhuang Zhao,Mingxue Gu, et al. Release and uptake mechanisms of vesicular Ca2+ stores[J]. Protein Cell, 2019, 10(1): 8-19.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-018-0523-x
https://academic.hep.com.cn/pac/EN/Y2019/V10/I1/8
1 HAppelqvist, ACJohansson, E,Linderoth UJohansson, BAntonsson, RSteinfeld, KKagedal, KOllinger (2012) Lysosome-mediated apoptosis is associated with cathepsin D-specific processing of bid at Phe24, Trp48, and Phe183. Ann Clin Lab Sci 42(3):231–242
2 RBagur, GHajnoczky (2017) Intracellular Ca2+ sensing: its role in calcium homeostasis and signaling. Mol Cell 66(6):780–788
https://doi.org/10.1016/j.molcel.2017.05.028
3 NWBellono, EVOancea (2014) Ion transport in pigmentation. Arch Biochem Biophys 563:35–41
https://doi.org/10.1016/j.abb.2014.06.020
4 CPBengtson, HBading (2012) Nuclear calcium signaling. Adv Exp Med Biol 970:377–405
https://doi.org/10.1007/978-3-7091-0932-8_17
5 MJBerridge (2012) Calcium signalling remodelling and disease. Biochem Soc Trans 40(2):297–309
https://doi.org/10.1042/BST20110766
6 MJBerridge, PLipp, MDBootman (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21
https://doi.org/10.1038/35036035
7 MDBootman, CFearnley, ISmyrnias, FMacDonald, HLRoderick (2009) An update on nuclear calcium signalling. J Cell Sci 122(Pt14):2337–2350
https://doi.org/10.1242/jcs.028100
8 EBrailoiu, DChuramani, XCai, MGSchrlau, GCBrailoiu, XGao, RHooper, MJBoulware, NJDun, JSMarchant, SPatel (2009) Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J Cell Biol 186(2):201–209
https://doi.org/10.1083/jcb.200904073
9 PJCalcraft, MRuas, ZPan, XCheng, AArredouani, XHao, JTang, KRietdorf, LTeboul, KTChuang, PLin, RXiao, CWang, YZhu, YLin, CNWyatt, JParrington, JMa, AMEvans, AGalione, MXZhu (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459(7246):596–600
https://doi.org/10.1038/nature08030
10 CCang, YZhou, BNavarro, YJSeo, KAranda, LShi, SBattaglia-Hsu, INissim, DEClapham, DRen (2013) mTOR regulates lysosomal ATP-sensitive two-pore Na(+) channels to adapt to metabolic state. Cell 152(4):778–790
https://doi.org/10.1016/j.cell.2013.01.023
11 QCao, XZZhong, YZou, RMurrell-Lagnado, MXZhu, XPDong(2015a) Calcium release through P2X4 activates calmodulin to promote endolysosomal membrane fusion. J Cell Biol 209(6):879–894
https://doi.org/10.1083/jcb.201409071
12 QCao, XZZhong, YZou, ZZhang, LToro, XPDong (2015b) BK channels alleviate lysosomal storage diseases by providing positive feedback regulation of lysosomal Ca2+ release. Dev Cell 33(4):427–441
https://doi.org/10.1016/j.devcel.2015.04.010
13 CCardenas, RAMiller, ISmith, TBui, JMolgo, MMuller, HVais, KHCheung, JYang, I,Parker CBThompson, MJBirnbaum, KRHallows, JKFoskett (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142(2):270–283
https://doi.org/10.1016/j.cell.2010.06.007
14 X,Cheng DShen, MSamie, HXu (2010) Mucolipins: intracellular TRPML1-3 channels. FEBS Lett 584(10):2013–2021
https://doi.org/10.1016/j.febslet.2009.12.056
15 KAChristensen, JTMyers, JASwanson (2002) pH-dependent regulation of lysosomal calcium in macrophages. J Cell Sci 115 (Pt 3):599–607
16 BBChu, YCLiao, WQi, CXie, XDu, JWang, HYang, HHMiao, BLLi, BLSong (2015) Cholesterol transport through lysosomeperoxisome membrane contacts. Cell 161(2):291–306
https://doi.org/10.1016/j.cell.2015.02.019
17 DEClapham (2007) Calcium signaling. Cell 131(6):1047–1058
https://doi.org/10.1016/j.cell.2007.11.028
18 RClark, GMGriffiths (2003) Lytic granules, secretory lysosomes and disease. Curr Opin Immunol 15(5):516–521
https://doi.org/10.1016/S0952-7915(03)00113-4
19 KCoen, RSFlannagan, SBaron, LRCarraro-Lacroix, DWang, WVermeire, CMichiels, SMunck, VBaert, SSugita, FWuytack, PRHiesinger, SGrinstein, WAnnaert (2012) Lysosomal calcium homeostasis defects, not proton pump defects, cause endolysosomal dysfunction in PSEN-deficient cells. J Cell Biol 198 (1):23–35
https://doi.org/10.1083/jcb.201201076
20 MGDe Leo, LStaiano, MVicinanza, ALuciani, ACarissimo, MMutarelli, ADi Campli, EPolishchuk, G,Di Tullio VMorra, ELevtchenko, FOltrabella, TStarborg, MSantoro, DDi Bernardo, ODevuyst, MLowe, DLMedina, ABallabio, MADe Matteis (2016) Autophagosome-lysosome fusion triggers a lysosomal response mediated by TLR9 and controlled by OCRL. Nat Cell Biol 18(8):839–850
https://doi.org/10.1038/ncb3386
21 DDe Stefani, RRizzuto, TPozzan (2016) Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem 85:161–192
https://doi.org/10.1146/annurev-biochem-060614-034216
22 EJDickson, JGDuman, MWMoody, LChen, BHille (2012) Orai-STIM-mediated Ca2+ release from secretory granules revealed by a targeted Ca2+ and pH probe. Proc Natl Acad Sci USA 109 (51):E3539–E3548
https://doi.org/10.1073/pnas.1218247109
23 XPDong, DShen, XWang, TDawson, XLi, QZhang, XCheng, YZhang, LSWeisman, M,Delling HXu (2010a) PI(3,5)P(2) controls membrane traffic by direct activation of mucolipin ca release channels in the endolysosome. Nat Commun 1(4):38
https://doi.org/10.1038/ncomms1037
24 XPDong, DShen, XWang, TDawson, XLi, QZhang, XCheng, YZhang, LSWeisman, MDelling, HXu (2010b) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca (2+) release channels in the endolysosome. Nat Commun 1:38
https://doi.org/10.1038/ncomms1037
25 XDu, JKumar, CFerguson, TASchulz, YSOng, WHong, WAPrinz, RGParton, AJBrown, HYang (2011) A role for oxysterol-binding protein-related protein 5 in endosomal cholesterol trafficking. J Cell Biol 192(1):121–135
https://doi.org/10.1083/jcb.201004142
26 AREnglish, GKVoeltz (2013) Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol 5(4):a013227
https://doi.org/10.1101/cshperspect.a013227
27 XFeng, JYang (2016) Lysosomal calcium in neurodegeneration. Messenger 5:56–65
https://doi.org/10.1166/msr.2016.1055
28 AGGarrity, WWang, CMCollier, SALevey, QGao, HXu (2016) The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes. Elife.
https://doi.org/10.7554/eLife.15887
29 FGiordano, YSaheki, OIdevall-Hagren, SFColombo, MPirruccello, IMilosevic, EOGracheva, SNBagriantsev, NBorgese, PDe Camilli (2013) PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 153(7):1494–1509
https://doi.org/10.1016/j.cell.2013.05.026
30 CGrimm, EButz, CCChen, C Wahl-Schott, MBiel (2017) From mucolipidosis type IV to Ebola: TRPML and two-pore channels at the crossroads of endo-lysosomal trafficking and disease. Cell Calcium 67:148–155
https://doi.org/10.1016/j.ceca.2017.04.003
31 LNHockey, BSKilpatrick, EREden, YLin-Moshier, GCBrailoiu, EBrailoiu, CEFutter, AHSchapira, JSMarchant, SPatel (2015) Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by TPC2 inhibition. J Cell Sci 128(2):232–238
https://doi.org/10.1242/jcs.164152
32 DHoglinger, PHaberkant, AAguilera-Romero, HRiezman, FDPorter, FMPlatt, AGalione, CSchultz (2015) Intracellular sphingosine releases calcium from lysosomes. Elife 4:e10616
https://doi.org/10.7554/eLife.10616
33 PHuang, YZou, XZZhong, Q,Cao KZhao, MXZhu, RMurrell-Lagnado, XPDong (2014) P2X4 forms functional ATPactivated cation channels on lysosomal membranes regulated by luminal pH. J Biol Chem 289(25):17658–17667
https://doi.org/10.1074/jbc.M114.552158
34 SEJordt, DMBautista, HHChuang, DDMcKemy, PMZygmunt, EDHogestatt, IDMeng, DJulius (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427(6971):260–265
https://doi.org/10.1038/nature02282
35 BSKilpatrick, J,Magalhaes MSBeavan, AMcNeill, MEGegg, MWCleeter, DBloor-Young, GCChurchill, MRDuchen, AHSchapira, SPatel (2016a) Endoplasmic reticulum and lysosomal Ca(2) (+) stores are remodelled in GBA1-linked Parkinson disease patient fibroblasts. Cell Calcium 59(1):12–20
https://doi.org/10.1016/j.ceca.2015.11.002
36 BSKilpatrick, EYates, CGrimm, AHSchapira, SPatel (2016b) Endo-lysosomal TRP mucolipin-1 channels trigger global ER Ca2+ release and Ca2+ influx. J Cell Sci 129(20):3859–3867
https://doi.org/10.1242/jcs.190322
37 KKiselyov, SYamaguchi, CWLyons, SMuallem (2010) Aberrant Ca2+ handling in lysosomal storage disorders. Cell Calcium 47 (2):103–111
https://doi.org/10.1016/j.ceca.2009.12.007
38 MKrols, G,Bultynck SJanssens (2016) ER-Mitochondria contact sites: a new regulator of cellular calcium flux comes into play. J Cell Biol 214(4):367–370
https://doi.org/10.1083/jcb.201607124
39 ILange, SYamamoto, SPartida-Sanchez, YMori, AFleig, RPenner (2009) TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Sci Signal 2(71):ra23
https://doi.org/10.1126/scisignal.2000278
40 HCLee, RAarhus (1995) A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem 270(5):2152–2157
https://doi.org/10.1074/jbc.270.5.2152
41 JHLee, MKMcBrayer, DMWolfe, LJHaslett , AKumar, YSato, PPLie, PMohan, EECoffey, UKompella, CHMitchell, ELloyd-Evans, RANixon (2015) Presenilin 1 maintains lysosomal Ca(2+) homeostasis via TRPML1 by regulating vATPase-mediated lysosome acidification. Cell Rep 12(9):1430–1444
https://doi.org/10.1016/j.celrep.2015.07.050
42 RMLemons, JGThoene (1991) Mediated calcium transport by isolated human fibroblast lysosomes. J Biol Chem 266 (22):14378–14382
43 YLin-Moshier, TFWalseth, DChuramani, SMDavidson, JTSlama, RHooper, EBrailoiu, SPatel, JSMarchant (2012) Photoaffinity labeling of nicotinic acid adenine dinucleotide phosphate (NAADP) targets in mammalian cells. J Biol Chem 287 (4):2296–2307
https://doi.org/10.1074/jbc.M111.305813
44 ELloyd-Evans, AJMorgan, XHe, DASmith, E Elliot-Smith, DJSillence, GCChurchill, EHSchuchman, AGalione, FMPlatt (2008) Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14 (11):1247–1255
https://doi.org/10.1038/nm.1876
45 JJLopez, LAlbarran, LJGomez, TSmani, GMSalido, JARosado (2016) Molecular modulators of store-operated calcium entry. Biochim Biophys Acta 1863(8):2037–2043
https://doi.org/10.1016/j.bbamcr.2016.04.024
46 MMelchionda, JKPittman, RMayor, SPatel (2016) Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo. J Cell Biol 212(7):803–813
https://doi.org/10.1083/jcb.201510019
47 SWMin, WPChang, TCSudhof (2007) E-Syts, a family of membranous Ca2+-sensor proteins with multiple C2 domains. Proc Natl Acad Sci USA 104(10):3823–3828
https://doi.org/10.1073/pnas.0611725104
48 AJMorgan, AGalione (2007) NAADP induces pH changes in the lumen of acidic Ca2+ stores. Biochem J 402(2):301–310
https://doi.org/10.1042/BJ20060759
49 AJMorgan, FMPlatt, ELloyd-Evans, AGalione (2011) Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochem J 439(3):349–374
https://doi.org/10.1042/BJ20110949
50 AJMorgan, LCDavis, AGalione (2015) Imaging approaches to measuring lysosomal calcium. Methods Cell Biol 126:159–195
https://doi.org/10.1016/bs.mcb.2014.10.031
51 SPatel, XCai (2015) Evolution of acidic Ca(2)(+) stores and their resident Ca(2)(+)-permeable channels. Cell Calcium 57(3):222–230
https://doi.org/10.1016/j.ceca.2014.12.005
52 SPatel, RDocampo (2010) Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol 20(5):277–286
https://doi.org/10.1016/j.tcb.2010.02.003
53 MJPhillips, GKVoeltz (2016) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17(2):69–82
https://doi.org/10.1038/nrm.2015.8
54 SJPitt, TMFunnell, MSitsapesan, EVenturi, KRietdorf, MRuas, AGanesan, RGosain, GCChurchill, MXZhu, JParrington, AGalione, RSitsapesan (2010) TPC2 is a novel NAADPsensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+. J Biol Chem 285(45):35039–35046
https://doi.org/10.1074/jbc.M110.156927
55 JKPittman (2011) Vacuolar Ca(2+) uptake. Cell Calcium 50(2):139–146
https://doi.org/10.1016/j.ceca.2011.01.004
56 PPizzo, VLissandron, PCapitanio, TPozzan (2011) Ca(2+) signalling in the Golgi apparatus. Cell Calcium 50(2):184–192
https://doi.org/10.1016/j.ceca.2011.01.006
57 MPrakriya, RSLewis (2015) Store-operated calcium channels. Physiol Rev 95(4):1383–1436
https://doi.org/10.1152/physrev.00020.2014
58 JWPutney, NSteinckwich-Besancon, TNumaga-Tomita, FMDavis, PNDesai, DM D’Agostin, SWu, GSBird (2017) The functions of store-operated calcium channels. Biochim Biophys Acta 1864 (6):900–906
https://doi.org/10.1016/j.bbamcr.2016.11.028
59 OSQureshi, AParamasivam, JCYu, RDMurrell-Lagnado (2007) Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis. J Cell Sci 120(Pt 21):3838–3849
https://doi.org/10.1242/jcs.010348
60 ARaffaello, CMammucari, GGherardi, RRizzuto (2016) Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem Sci 41(12):1035–1049
https://doi.org/10.1016/j.tibs.2016.09.001
61 CRaiborg, EMWenzel, NMPedersen, HStenmark (2016) ERendosome contact sites in endosome positioning and protrusion outgrowth. Biochem Soc Trans 44(2):441–446
https://doi.org/10.1042/BST20150246
62 RRizzuto, PPinton, WCarrington, FSFay, KEFogarty, LMLifshitz, RATuft, TPozzan (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280(5370):1763–1766
https://doi.org/10.1126/science.280.5370.1763
63 RRizzuto, DDe Stefani, ARaffaello, CMammucari (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13(9):566–578
https://doi.org/10.1038/nrm3412
64 NRocha, CKuijl, Rvan der Kant, LJanssen, DHouben, HJanssen, WZwart, JNeefjes (2009) Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 glued and late endosome positioning. J Cell Biol 185(7):1209–1225
https://doi.org/10.1083/jcb.200811005
65 VRonco, DMPotenza, FDenti, SVullo, GGagliano, MTognolina, GGuerra, PPinton, AAGenazzani, LMapelli, DLim, FMoccia (2015) A novel Ca(2)(+)-mediated cross-talk between endoplasmic reticulum and acidic organelles: implications for NAADPdependent Ca(2)(+) signalling. Cell Calcium 57(2):89–100
https://doi.org/10.1016/j.ceca.2015.01.001
66 MRuas, KRietdorf, AArredouani, LCDavis, ELloyd-Evans, HKoegel, TMFunnell, AJMorgan, JAWard, KWatanabe, XCheng, GCChurchill, MXZhu, FMPlatt, GMWessel, JParrington, AGalione (2010) Purified TPC isoforms form NAADP receptors with distinct roles for Ca(2+) signaling and endolysosomal trafficking. Curr Biol 20(8):703–709
https://doi.org/10.1016/j.cub.2010.02.049
67 RRudolf, MMongillo, RRizzuto, TPozzan (2003) Looking forward to seeing calcium. Nat Rev Mol Cell Biol 4(7):579–586
https://doi.org/10.1038/nrm1153
68 YSaheki, PDe Camilli (2017) Endoplasmic reticulum-plasma membrane contact sites. Annu Rev Biochem 86:659–684
https://doi.org/10.1146/annurev-biochem-061516-044932
69 NSahoo, MGu, XZhang, NRaval, JYang, MBekier, RCalvo, SPatnaik, WWang, GKing, MSamie, QGao, SSahoo, SSundaresan, TMKeeley, Y,Wang JMarugan, MFerrer, LCSamuelson, JLMerchant, HXu (2017) Gastric acid secretion from parietal cells is mediated by a Ca2+ efflux channel in the tubulovesicle. Dev Cell 41(3):262–273 e266
70 PSchmiege, MFine, GBlobel, XLi (2017) Human TRPML1 channel structures in open and closed conformations. Nature 550 (7676):366–370
https://doi.org/10.1038/nature24036
71 CCScott, JGruenberg (2011) Ion flux and the function of endosomes and lysosomes: pH is just the start: the flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH. BioEssays 33(2):103–110
https://doi.org/10.1002/bies.201000108
72 SShang, FZhu, BLiu, ZChai, QWu, MHu, YWang, RHuang, X,Zhang XWu, LSun, YWang, LWang, HXu, STeng, BLiu, LZheng, CZhang, FZhang, XFeng, DZhu, CWang (2016) Intracellular TRPA1 mediates Ca2+ release from lysosomes in dorsal root ganglion neurons. J Cell Biol 215(3):369–381
https://doi.org/10.1083/jcb.201603081
73 DShen, XWang, XLi, XZhang, ZYao, SDibble, XPDong, TYu, APLieberman, HDShowalter, HXu (2012) Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat Commun 3:731
https://doi.org/10.1038/ncomms1735
74 PBStathopulos, MIkura (2017) Store operated calcium entry: from concept to structural mechanisms. Cell Calcium 63:3–7
https://doi.org/10.1016/j.ceca.2016.11.005
75 GSzabadkai, KBianchi, PVarnai, DDe Stefani, MRWieckowski, DCavagna, AINagy, TBalla, RRizzuto (2006) Chaperonemediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 175(6):901–911
https://doi.org/10.1083/jcb.200608073
76 XTian, UGala, YZhang, WShang, SNagarkar Jaiswal, Adi Ronza, MJaiswal, SYamamoto, HSandoval, LDuraine, MSardiello, RVSillitoe, KVenkatachalam, HFan, HJBellen, CTong (2015) A voltage-gated calcium channel regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal homeostasis. PLoS Biol 13(3):e1002103
https://doi.org/10.1371/journal.pbio.1002103
77 Rvan der Kant, JNeefjes (2014) Small regulators, major consequences—Ca(2)(+) and cholesterol at the endosome-ER interface. J Cell Sci 127(Pt 5):929–938
https://doi.org/10.1242/jcs.137539
78 TFWalseth, YLin-Moshier, PJain, MRuas, JParrington, AGalione, JSMarchant, JTSlama (2012) Photoaffinity labeling of high affinity nicotinic acid adenine dinucleotide phosphate (NAADP)- binding proteins in sea urchin egg. J Biol Chem 287(4):2308–2315
https://doi.org/10.1074/jbc.M111.306563
79 XWang, XZhang, XPDong, MSamie, XLi, XCheng, AGoschka, D,Shen YZhou, JHarlow, MXZhu, DEClapham, DRen, HXu (2012) TPC proteins are phosphoinositide-activated sodiumselective ion channels in endosomes and lysosomes. Cell 151 (2):372–383
https://doi.org/10.1016/j.cell.2012.08.036
80 WWang, XZhang, QGao(2017) A voltage-dependent K+ channel in the lysosome is required for refilling lysosomal Ca2+ stores. J Cell Biol 216(6):1715–1730
https://doi.org/10.1083/jcb.201612123
81 J,Xiong MXZhu (2016) Regulation of lysosomal ion homeostasis by channels and transporters. Sci China Life Sci 59(8):777–791
https://doi.org/10.1007/s11427-016-5090-x
82 HXu, DRen (2015) Lysosomal physiology. Annu Rev Physiol 77:57–80
https://doi.org/10.1146/annurev-physiol-021014-071649
83 HXu, EMartinoia, ISzabo (2015) Organellar channels and transporters. Cell Calcium 58(1):1–10
https://doi.org/10.1016/j.ceca.2015.02.006
84 TYoshimori, AYamamoto, YMoriyama, MFutai, YTashiro(1991) Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266(26):17707–17712
85 XZhang, LYu, HXu (2016) Lysosome calcium in ROS regulation of autophagy. Autophagy 12(10):1954–1955
https://doi.org/10.1080/15548627.2016.1212787
86 XZZhong, YZou, XSun, GDong, QCao, APandey, JKRainey, XZhu, XPDong (2017) Inhibition of transient receptor potential channel mucolipin-1 (TRPML1) by lysosomal adenosine involved in severe combined immunodeficiency diseases. J Biol Chem 292(8):3445–3455
https://doi.org/10.1074/jbc.M116.743963
87 YZhou, COWong, KJCho, Dvan der Hoeven, HLiang, DPThakur, JLuo, MBabic, KEZinsmaier, MXZhu, HHu, KVenkatachalam, JFHancock (2015) Signal transduction. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science 349(6250):873–876
https://doi.org/10.1126/science.aaa5619
88 XZhou, M,Li DSu, QJia, HLi, X,Li JYang (2017) Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states. Nat Struct Mol Biol 24(12):1146–1154
https://doi.org/10.1038/nsmb.3502
[1] Jintao Bao,Liangjun Zheng,Qi Zhang,Xinya Li,Xuefei Zhang,Zeyang Li,Xue Bai,Zhong Zhang,Wei Huo,Xuyang Zhao,Shujiang Shang,Qingsong Wang,Chen Zhang,Jianguo Ji. Deacetylation of TFEB promotes fibrillar Aβ degradation by upregulating lysosomal biogenesis in microglia[J]. Protein Cell, 2016, 7(6): 417-433.
[2] Susu Mao,Qi Sun,Hui Xiao,Chenyu Zhang,Liang Li. Secreted miR-34a in astrocytic shedding vesicles enhanced the vulnerability of dopaminergic neurons to neurotoxins by targeting Bcl-2[J]. Protein Cell, 2015, 6(7): 529-540.
[3] Qi Sun, Xi Chen, Jianxiong Yu, Ke Zen, Chen-Yu Zhang, Liang Li. Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum[J]. Prot Cell, 2013, 4(3): 197-210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed