Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2018, Vol. 9 Issue (5) : 474-487    https://doi.org/10.1007/s13238-018-0543-6
REVIEW
The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get
Jia Yang, Jun Yu()
State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong
 Download: PDF(758 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Despite the success of colonoscopy screening and recent advances in cancer treatment, colorectal cancer (CRC) still remains one of the most commonly diagnosed and deadly cancers, with a significantly increased incidence in developing countries where people are adapting to Western lifestyle. Diet has an important impact on risk of CRC. Multiple epidemiological studies have suggested that excessive animal protein and fat intake, especially red meat and processed meat, could increase the risk of developing CRC while fiber could protect against colorectal tumorigenesis. Mechanisms have been investigated by animal studies.Diet could re-shape the community structure of gut microbiota and influence its function by modulating the production of metabolites. Butyrate, one of the short-chain fatty acids (SCFAs), which act as a favorable source for colonocytes, could protect colonic epithelial cells from tumorigenesis via anti-inflammatory and antineoplastic properties through cell metabolism, microbiota homeostasis, antiproliferative, immunomodulatory and genetic/epigenetic regulation ways. In contrast, protein fermentation and bile acid deconjugation, which cause damage to colonic cells through proinflammatory and proneoplastic ways, lead to increasedriskofdevelopingCRC.In conclusion, abalanced diet with an increased abundance of fiber should be adopted to reduce the risk and prevent CRC.

Keywords colorectal cancer      gut microbiota      fiber      protein      fat      metabolites     
Corresponding Author(s): Jun Yu   
Issue Date: 08 June 2018
 Cite this article:   
Jia Yang,Jun Yu. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get[J]. Protein Cell, 2018, 9(5): 474-487.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-018-0543-6
https://academic.hep.com.cn/pac/EN/Y2018/V9/I5/474
1 Alberts DS, Ritenbaugh C, Story JA, Aickin M, Rees-McGee S, Buller MK, Atwood J, Phelps J, Ramanujam PS, Bellapravalu Set al. (1996) Randomized, double-blinded, placebo-controlled study of effect of wheat bran fiber and calcium on fecal bile acids in patients with resected adenomatous colon polyps. J Natl Cancer Inst 88:81–92
https://doi.org/10.1093/jnci/88.2.81
2 Alexander DD, Weed DL, Cushing CA, Lowe KA (2011) Metaanalysis of prospective studies of red meat consumption and colorectal cancer. Eur J Cancer Prev 20:293–307
https://doi.org/10.1097/CEJ.0b013e328345f985
3 Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers ABet al. (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123
https://doi.org/10.1126/science.1224820
4 Bardou M, Barkun AN, Martel M (2013) Obesity and colorectal cancer. Gut 62:933–947
https://doi.org/10.1136/gutjnl-2013-304701
5 Beaumont M, Portune KJ, Steuer N, Lan A, Cerrudo V, Audebert M, Dumont F, Mancano G, Khodorova N, Andriamihaja Met al. (2017) Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. Am J Clin Nutr 106:1005–1019
https://doi.org/10.3945/ajcn.117.158816
6 Bergman EN (1990) Energy contributions of volatile fatty-acids from the gastrointestinal-tract in various species. Physiol Rev 70:567–590
https://doi.org/10.1152/physrev.1990.70.2.567
7 Bernstein C, Holubec H, Bhattacharyya AK, Nguyen H, Payne CM, Zaitlin B, Bernstein H (2011) Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol 85:863–871
https://doi.org/10.1007/s00204-011-0648-7
8 Bingham SA, Day NE, Luben R (2003) Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study (vol 361, pg 1496, 2003). Lancet 362:1000–1000
9 Bostick RM, Potter JD, Kushi LH, Sellers TA, Steinmetz KA, McKenzie DR, Gapstur SM, Folsom AR (1994) Sugar, meat, and fat intake, and non-dietary risk factors for colon cancer incidence in Iowa women (United States). Cancer Causes Control 5:38–52
https://doi.org/10.1007/BF01830725
10 Bostick RM, Potter JD, Sellers TA, Mckenzie DR, Kushi LH, Folsom AR (1993) Relation of calcium, vitamin-D, and dairy food-intake to incidence of colon-cancer among older women—the Iowa womens health study. Am J Epidemiol 137:1302–1317
https://doi.org/10.1093/oxfordjournals.aje.a116640
11 Brink M, Weijenberg MP, de Goeij AFPM, Schouten LJ, Koedijk FDH, Roemen GMJM, Lentjes MHFM, de Bruine AP, Goldbohm RA, van den Brandt PA (2004) Fat and K-ras mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis 25:1619–1628
https://doi.org/10.1093/carcin/bgh177
12 Bultman SJ (2014) Emerging roles of the microbiome in cancer. Carcinogenesis 35:249–255
https://doi.org/10.1093/carcin/bgt392
13 Burkitt DP (1971) Epidemiology of cancer of the colon and rectum. Cancer 28:3–13
https://doi.org/10.1002/1097-0142(197107)28:1<3::AID-CNCR2820280104>3.0.CO;2-N
14 Burnett-Hartman AN, Newcomb PA, Mandelson MT, Adams SV, Wernli KJ, Shadman M, Wurscher MA, Makar KW (2011) Colorectal polyp type and the association with charred meat consumption, smoking, and microsomal epoxide hydrolase polymorphisms. Nutr Cancer 63:583–592
https://doi.org/10.1080/01635581.2011.553021
15 Burnouf DY, Miturski R, Nagao M, Nakagama H, Nothisen M, Wagner J, Fuchs RPP (2001) Early detection of 2-amino-1-methyl-6-phenylimidazo (4,5-b)pyridine(PhIP)-induced mutations within the Apc gene of rat colon. Carcinogenesis 22:329–335
https://doi.org/10.1093/carcin/22.2.329
16 Burns MB, Lynch J, Starr TK, Knights D, Blekhman R (2015) Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med 7
https://doi.org/10.1186/s13073-015-0177-8
17 Butler LM, Wang R, Koh WP, Stern MC, Yuan JM, Yu MC (2009) Marine n-3 and saturated fatty acids in relation to risk of colorectal cancer in Singapore Chinese: a prospective study. Int J Cancer 124:678–686
https://doi.org/10.1002/ijc.23950
18 Butler LM, Wang R, Koh WP, Yu MC (2008) Prospective study of dietary patterns and colorectal cancer among Singapore Chinese. Br J Cancer 99:1511–1516
https://doi.org/10.1038/sj.bjc.6604678
19 Carr PR, Walter V, Brenner H, Hoffmeister M (2016) Meat subtypes and their association with colorectal cancer: systematic review and meta-analysis. Int J Cancer 138:293–302
https://doi.org/10.1002/ijc.29423
20 Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen-Vercoe E, Moore RAet al. (2012) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22:299–306
https://doi.org/10.1101/gr.126516.111
21 Chan DSM, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, Norat T (2011) Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS ONE6
https://doi.org/10.1371/journal.pone.0020456
22 Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66:115–132
https://doi.org/10.3322/caac.21338
23 Cho E, Smith-Warner SA, Spiegelman D, Beeson WL, van den Brandt PA, Colditz GA, Folsom AR, Fraser GE, Freudenheim JL, Giovannucci Eet al. (2004) Dairy foods, calcium, and colorectal cancer: a pooled analysis of 10 cohort studies. J Natl Cancer Inst 96:1015–1022
https://doi.org/10.1093/jnci/djh185
24 Chomchai C, Bhadrachari N, Nigro ND (1974) The effect of bile on the induction of experimental intestinal tumors in rats. Dis Colon Rectum 17:310–312
https://doi.org/10.1007/BF02586971
25 Chung L, Orberg ET, Geis AL, Chan JL, Fu K, Shields CED, Dejea CM, Fathi P, Chen J, Finard BBet al. (2018) Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 23:203–214
https://doi.org/10.1016/j.chom.2018.01.007
26 Chyou PH, Nomura AMY, Stemmermann GN (1996) A prospective study of colon and rectal cancer among Hawaii Japanese men. Ann Epidemiol 6:276–282
https://doi.org/10.1016/S1047-2797(96)00047-6
27 Cross AJ, Ferrucci LM, Risch A, Graubard BI, Ward MH, Park Y, Hollenbeck AR, Schatzkin A, Sinha R (2010) A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Can Res 70:2406–2414
https://doi.org/10.1158/0008-5472.CAN-09-3929
28 Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrede JP (2010) Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA 107:11537–11542
https://doi.org/10.1073/pnas.1001261107
29 Dahm CC (2011) Dietary fiber and colorectal cancer risk: a nested case-control study using food diaries (vol 102, pg 614, 2010). J Natl Cancer Inst 103:1484–1484
30 Dahm CC, Keogh RH, Spencer EA, Greenwood DC, Key TJ, Fentiman IS, Shipley MJ, Brunner EJ, Cade JE, Burley VJet al. (2010) Dietary fiber and colorectal cancer risk: a nested casecontrol study using food diaries. J Natl Cancer Inst 102:614–626
https://doi.org/10.1093/jnci/djq092
31 David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, Perrotta A, Erdman SE, Alm EJ (2014a) Host lifestyle affects human microbiota on daily timescales. Genome Biol 15:R89
https://doi.org/10.1186/gb-2014-15-7-r89
32 David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MAet al.(2014b) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563
https://doi.org/10.1038/nature12820
33 De Boever P, Wouters R, Verschaeve L, Berckmans P, Schoeters G, Verstraete W (2000) Protective effect of the bile salt hydrolaseactive Lactobacillus reuteri against bile salt cytotoxicity. Appl Microbiol Biotechnol 53:709–714
https://doi.org/10.1007/s002530000330
34 De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P(2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696
https://doi.org/10.1073/pnas.1005963107
35 De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Backhed F, Mithieux G (2014) Microbiotagenerated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96
https://doi.org/10.1016/j.cell.2013.12.016
36 DeSalvo KB (2016) Public health 3.0: applying the 2015-2020 dietary guidelines for Americans. Public Health Rep 131:518–521
https://doi.org/10.1177/0033354916662207
37 Doll R, Peto R (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66:1191–1308
https://doi.org/10.1093/jnci/66.6.1192
38 Domingo JL, Nadal M (2016) Carcinogenicity of consumption of red and processed meat: What about environmental contaminants? Environ Res 145:109–115
https://doi.org/10.1016/j.envres.2015.11.031
39 Dong Y, Zhou J, Zhu Y, Luo L, He T, Hu H, Liu H, Zhang Y, Luo D, Xu Set al. (2017) Abdominal obesity and colorectal cancer risk: systematic review and meta-analysis of prospective studies. Biosci Rep 37
https://doi.org/10.1042/BSR20170945
40 Dove WF, Clipson L, Gould KA, Luongo C, Marshall DJ, Moser AR, Newton MA, Jacoby RF (1997) Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res 57:812–814
41 Drasar BS, Irving D (1973) Environmental factors and cancer of the colon and breast. Br J Cancer 27:167–172
https://doi.org/10.1038/bjc.1973.20
42 Egeberg R, Olsen A, Christensen J, Halkjaer J, Jakobsen MU, Overvad K, Tjonneland A (2013) Associations between red meat and risks for colon and rectal cancer depend on the type of red meat consumed. J Nutr 143:464–472
https://doi.org/10.3945/jn.112.168799
43 Esumi H, Ohgaki H, Kohzen E, Takayama S, Sugimura T (1989) Induction of lymphoma in Cdf1 mice by the food mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Jpn J Cancer Res 80:1176–1178
https://doi.org/10.1111/j.1349-7006.1989.tb01651.x
44 Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RLet al. (2013) The long-term stability of the human gut microbiota. Science 341:1237439
https://doi.org/10.1126/science.1237439
45 Ferrucci LM, Sinha R, Graubard BI, Mayne ST, Ma XM, Schatzkin A, Schoenfeld PS, Cash BD, Flood A, Cross AJ (2009) Dietary meat intake in relation to colorectal adenoma in asymptomatic women. Am J Gastroenterol 104:1231–1240
https://doi.org/10.1038/ajg.2009.102
46 Ferrucci LM, Sinha R, Huang WY, Berndt SI, Katki HA, Schoen RE, Hayes RB, Cross AJ (2012) Meat consumption and the risk of incident distal colon and rectal adenoma. Br J Cancer 106:608–616
https://doi.org/10.1038/bjc.2011.549
47 Flood A, Velie EM, Sinha R, Chaterjee N, Lacey JV, Schairer C, Schatzkin A (2003) Meat, fat, and their subtypes as risk factors for colorectal cancer in a prospective cohort of women. Am J Epidemiol 158:59–68
https://doi.org/10.1093/aje/kwg099
48 Fujita H, Nagano K, Ochiai M, Ushijima T, Sugimura T, Nagao M, Matsushima T (1999) Difference in target organs in carcinogenesis with a heterocyclic amine, 2-amino-3,4-dimethylimidazo[4,5-f]quinol in different strains of mice. Jpn J Cancer Res 90:1203–1206
https://doi.org/10.1111/j.1349-7006.1999.tb00696.x
49 Fung KY, Cosgrove L, Lockett T, Head R, Topping DL (2012) A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr 108:820–831
https://doi.org/10.1017/S0007114512001948
50 Gaard M, Tretli S, Loken EB (1996) Dietary factors and risk of colon cancer: a prospective study of 50,535 young Norwegian men and women. Eur J Cancer Prev 5:445–454
51 Gholizadeh P, Eslami H, Kafil HS (2017) Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed Pharmacother 89:918–925
https://doi.org/10.1016/j.biopha.2017.02.102
52 Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Ascherio A, Willett WC (1994) Intake of fat, meat, and fiber in relation to risk of colon-cancer in men. Can Res 54:2390–2397
53 Goldbohm RA, Vandenbrandt PA, Vantveer P, Brants HAM, Dorant E, Sturmans F, Hermus RJJ (1994) A prospective cohort study on the relation between meat consumption and the risk of coloncancer. Can Res 54:718–723
54 Goss PE, Strasser-Weippl K, Lee-Bychkovsky BL, Fan L, Li J, Chavarri-Guerra Y, Liedke PE, Pramesh CS, Badovinac-Crnjevic T, Sheikine Yet al. (2014) Challenges to effective cancer control in China, India, and Russia. Lancet Oncol 15:489–538
https://doi.org/10.1016/S1470-2045(14)70029-4
55 Grivennikov SI, Wang KP, Mucida D, Stewart CA, Schnabl B, Jauch D, Taniguchi K, Yu GY, Osterreicher CH, Hung KEet al. (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491:254
https://doi.org/10.1038/nature11465
56 Gunter MJ, Probst-Hensch NM, Cortessis VK, Kulldorff M, Haile RW, Sinha R (2005) Meat intake, cooking-related mutagens and risk of colorectal adenoma in a sigmoidoscopy-based case-control study. Carcinogenesis 26:637–642
https://doi.org/10.1093/carcin/bgh350
57 Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119
https://doi.org/10.1111/j.1365-2036.2007.03562.x
58 Hansen L, Skeie G, Landberg R, Lund E, Palmqvist R, Johansson I, Dragsted LO, Egeberg R, Johnsen NF, Christensen Jet al. (2012) Intake of dietary fiber, especially from cereal foods, is associated with lower incidence of colon cancer in the HELGA cohort. Int J Cancer 131:469–478
https://doi.org/10.1002/ijc.26381
59 Heilbrun LK, Nomura A, Hankin JH, Stemmermann GN (1989) Diet and colorectal cancer with special reference to fiber intake. Int J Cancer 44:1–6
https://doi.org/10.1002/ijc.2910440102
60 Higashimura Y, Naito Y, Takagi T, Uchiyama K, Mizushima K, Ushiroda C, Ohnogi H, Kudo Y, Yasui M, Inui Set al. (2016) Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice. Am J Physiol Gastrointest Liver Physiol 310:G367–375
https://doi.org/10.1152/ajpgi.00324.2015
61 Hollister EB, Gao C, Versalovic J (2014) Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146:1449–1458
https://doi.org/10.1053/j.gastro.2014.01.052
62 Howe GR, Aronson KJ, Benito E, Castelleto R, Cornee J, Duffy S, Gallagher RP, Iscovich JM, DengAo J, Kaaks Ret al. (1997) The relationship between dietary fat intake and risk of colorectal cancer: evidence from the combined analysis of 13 case-control studies. Cancer Causes Control 8:215–228
https://doi.org/10.1023/A:1018476414781
63 Hylla S, Gostner A, Dusel G, Anger H, Bartram HP, Christl SU, Kasper H, Scheppach W (1998) Effects of resistant starch on the colon in healthy volunteers: possible implications for cancer prevention. Am J Clin Nutr 67:136–142
https://doi.org/10.1093/ajcn/67.1.136
64 Ito N, Hasegawa R, Sano M, Tamano S, Esumi H, Takayama S, Sugimura T (1991) A new colon and mammary carcinogen in cooked food, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (phip). Carcinogenesis 12:1503–1506
https://doi.org/10.1093/carcin/12.8.1503
65 Jarvinen R, Knekt P, Hakulinen T, Aromaa A (2001a) Prospective study on milk products, calcium and cancers of the colon and rectum. Eur J Clin Nutr 55:1000–1007
https://doi.org/10.1038/sj.ejcn.1601260
66 Jarvinen R, Knekt P, Hakulinen T, Rissanen H, Heliovaara M (2001b) Dietary fat, cholesterol and colorectal cancer in a prospective study. Br J Cancer 85:357–361
https://doi.org/10.1054/bjoc.2001.1906
67 Kabat GC, Miller AB, Jain M, Rohan TE (2007) A cohort study of dietary iron and heme iron intake and risk of colorectal cancer in women (vol 97, pg 118, 2007). Br J Cancer 97:1600–1600
https://doi.org/10.1038/sj.bjc.6604107
68 Kabat GC, Shikany JM, Beresford SA, Caan B, Neuhouser ML, Tinker LF, Rohan TE (2008) Dietary carbohydrate, glycemic index, and glycemic load in relation to colorectal cancer risk in the Women’s Health Initiative. Cancer Causes Control 19:1291–1298
https://doi.org/10.1007/s10552-008-9200-3
69 Kampman E, Goldbohm RA, Vandenbrandt PA, Vantveer P (1994) Fermented dairy-products, calcium, and colorectal-cancer in the netherlands cohort study. Can Res 54:3186–3190
70 Kato I, Akhmedkhanov A, Koenig K, Toniolo PG, Shore RE, Riboli E (1997) Prospective study of diet and female colorectal cancer: the New York University Women’s Health Study. Nutr Cancer 28:276–281
https://doi.org/10.1080/01635589709514588
71 Kato T, Migita H, Ohgaki H, Sato S, Takayama S, Sugimura T (1989) Induction of tumors in the zymbal gland, oral cavity, colon, skin and mammary-gland of F344 rats by a mutagenic compound, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline. Carcinogenesis 10:601–603
https://doi.org/10.1093/carcin/10.3.601
72 Kato T, Ohgaki H, Hasegawa H, Sato S, Takayama S, Sugimura T (1988) Carcinogenicity in rats of a mutagenic compound, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline. Carcinogenesis 9:71–73
https://doi.org/10.1093/carcin/9.1.71
73 Kearney J, Giovannucci E, Rimm EB, Ascherio A, Stampfer MJ, Colditz GA, Wing A, Kampman E, Willett WC (1996) Calcium, vitamin D, anddairy foods and the occurrence of colon cancer in men. Am J Epidemiol 143:907–917
https://doi.org/10.1093/oxfordjournals.aje.a008834
74 Kesse E, Boutron-Ruault MC, Norat T, Riboli E, Clavel-Chapelon F, Grp EN (2005) Dietary calcium, phosphorus, vitamin D, dairy products and the risk of colorectal adenoma and cancer among French women of the E3N-EPIC prospective study. Int J Cancer 117:137–144
https://doi.org/10.1002/ijc.21148
75 Kostic AD, Chun EY, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GLet al. (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207–215
https://doi.org/10.1016/j.chom.2013.07.007
76 Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero Jet al. (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–298
https://doi.org/10.1101/gr.126573.111
77 Lanza E, Hartman TJ, Albert PS, Shields R, Slattery M, Caan B, Paskett E, Iber F, Kikendall JW, Lance Pet al. (2006) High dry bean intake and reduced risk of advanced colorectal adenoma recurrence among participants in the polyp prevention trial. J Nutr 136:1896–1903
https://doi.org/10.1093/jn/136.7.1896
78 Larsson SC, Rafter J, Holmberg L, Bergkvist L, Wolk A (2005) Red meat consumption and risk of cancers of the proximal colon, distal colon and rectum: the Swedish Mammography Cohort. Int J Cancer 113:829–834
https://doi.org/10.1002/ijc.20658
79 Lee DH, Anderson KE, Harnack LJ, Folsom AR, Jacobs DR (2004) Heme iron, zinc, alcohol consumption, and colon cancer: Iowa Women’s Health Study. J Natl Cancer Inst 96:403–407
https://doi.org/10.1093/jnci/djh047
80 Liang Q, Chiu J, Chen Y, Huang Y, Higashimori A, Fang J, Brim H, Ashktorab H, Ng SC, Ng SSMet al.(2017) Fecal bacteria act as novel biomarkers for noninvasive diagnosis of colorectal cancer. Clin Cancer Res 23:2061–2070
https://doi.org/10.1158/1078-0432.CCR-16-1599
81 Lin J, Zhang SM, Cook NR, Lee IM, Buring JE (2004) Dietary fat and fatty acids and risk of colorectal cancer in women. Am J Epidemiol 160:1011–1022
https://doi.org/10.1093/aje/kwh319
82 Lin J, Zhang SM, Cook NR, Manson JE, Lee IM, Buring JE (2005) Intakes of calcium and vitamin D and risk of colorectal cancer in women. Am J Epidemiol 161:755–764
https://doi.org/10.1093/aje/kwi101
83 Liu L, Zhuang W, Wang RQ, Mukherjee R, Xiao SM, Chen Z, Wu XT, Zhou Y, Zhang HY (2011) Is dietary fat associated with the risk of colorectal cancer? A meta-analysis of 13 prospective cohort studies. Eur J Nutr 50:173–184
https://doi.org/10.1007/s00394-010-0128-5
84 Ma Y, Yang Y, Wang F, Zhang P, Shi C, Zou Y, Qin H (2013) Obesity and risk of colorectal cancer: a systematic review of prospective studies. PLoS ONE 8:e53916
https://doi.org/10.1371/journal.pone.0053916
85 Mai V, Flood A, Peters U, Lacey JV Jr, Schairer C, Schatzkin A (2003) Dietary fibre and risk of colorectal cancer in the breast cancer detection demonstration project (BCDDP) follow-up cohort. Int J Epidemiol 32:234–239
https://doi.org/10.1093/ije/dyg052
86 Matsukura N, Kawachi T, Morino K, Ohgaki H, Sugimura T, Takayama S (1981) Carcinogenicity in mice of mutagenic compounds from a tryptophan pyrolyzate. Science 213:346–347
https://doi.org/10.1126/science.7244619
87 McCullough ML, Robertson AS, Chao A, Jacobs EJ, Stampfer MJ, Jacobs DR, Diver WR, Calle EE, Thun MJ (2003a) A prospective study of whole grains, fruits, vegetables and colon cancer risk. Cancer Causes Control 14:959–970
https://doi.org/10.1023/B:CACO.0000007983.16045.a1
88 McCullough ML, Robertson AS, Rodriguez C, Jacobs EJ, Chao A, Jonas C, Calle EE, Willett WC, Thun MJ (2003b) Calcium, vitamin D, dairy products, and risk of colorectal cancer in the Cancer Prevention Study II Nutrition Cohort (United States). Cancer Causes Control 14:1–12
https://doi.org/10.1023/A:1022591007673
89 Michels KB, Fuchs CS, Giovannucci E, Colditz GA, Hunter DJ, Stampfer MJ, Willett WC (2005) Fiber intake and incidence of colorectal cancer among 76,947 women and 47,279 men. Cancer Epidemiol Biomark Prev 14:842–849
https://doi.org/10.1158/1055-9965.EPI-04-0544
90 Nagao M (1999) A new approach to risk estimation of food-borne carcinogens–heterocyclic amines–based on molecular information. Mutat Res 431:3–12
https://doi.org/10.1016/S0027-5107(99)00154-2
91 Nagao M, Ushijima T, Toyota M, Inoue R, Sugimura T (1997) Genetic changes induced by heterocyclic amines. Mutat Res Fundam Mol Mech Mutagen 376:161–167
https://doi.org/10.1016/S0027-5107(97)00039-0
92 Narisawa T, Magadia NE, Weisburger JH, Wynder EL (1974) Promoting effect of bile-acids on colon carcinogenesis after intrarectal instillation of N-methyl-N’-nitro-N-nitrosoguanidine in rats. J Natl Cancer Inst 53:1093–1097
https://doi.org/10.1093/jnci/53.4.1093
93 Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136:65–80
https://doi.org/10.1053/j.gastro.2008.10.080
94 Nomura AM, Hankin JH, Henderson BE, Wilkens LR, Murphy SP, Pike MC, Le Marchand L, Stram DO, Monroe KR, Kolonel LN (2007) Dietary fiber and colorectal cancer risk: the multiethnic cohort study. Cancer Causes Control 18:753–764
https://doi.org/10.1007/s10552-007-9018-4
95 O’Keefe SJ (2016) Diet, microorganisms and their metabolites, and colon cancer. Nat Rev Gastroenterol Hepatol 13:691–706
https://doi.org/10.1038/nrgastro.2016.165
96 O’Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, Posma JM, Kinross J, Wahl E, Ruder Eet al. (2015) Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 6:6342
https://doi.org/10.1038/ncomms7342
97 Oba S, Shimizu N, Nagata C, Shimizu H, Kametani M, Takeyama N, Ohnuma T, Matsushita S (2006) The relationship between the consumption of meat, fat, and coffee and the risk of colon cancer: a prospective study in Japan. Cancer Lett 244:260–267
https://doi.org/10.1016/j.canlet.2005.12.037
98 Ochiai M, Imai H, Sugimura T, Nagao M, Nakagama H(2002) Induction of intestinal tumors and lymphomas in C57BL/6N mice by a food-borne carcinogen, 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine. Jpn J Cancer Res 93:478–483
https://doi.org/10.1111/j.1349-7006.2002.tb01281.x
99 Ohgaki H, Hasegawa H, Suenaga M, Kato T, Sato S, Takayama S, Sugimura T (1986) Induction of hepatocellular-carcinoma and highly metastatic squamous-cell carcinomas in the forestomach of mice by feeding 2-amino-3,4-dimethylimidazo[4,5-f]quinoline. Carcinogenesis 7:1889–1893
https://doi.org/10.1093/carcin/7.11.1889
100 Ohgaki H, Hasegawa H, Suenaga M, Sato S, Takayama S, Sugimura T (1987) Carcinogenicity in mice of a mutagenic compound, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (meiqx) from cooked foods. Carcinogenesis 8:665–668
https://doi.org/10.1093/carcin/8.5.665
101 Ohgaki H, Kusama K, Matsukura N, Morino K, Hasegawa H, Sato S, Takayama S, Sugimura T (1984a) Carcinogenicity in mice of a mutagenic compound, 2-amino-3-methylimidazo[4,5-f]quinoline, from broiled sardine, cooked beef and beef extract. Carcinogenesis 5:921–924
https://doi.org/10.1093/carcin/5.7.921
102 Ohgaki H, Matsukura N, Morino K, Kawachi T, Sugimura T, Takayama S (1984b) Carcinogenicity in mice of mutagenic compounds from glutamic-acid and soybean globulin pyrolysates. Carcinogenesis 5:815–819
https://doi.org/10.1093/carcin/5.6.815
103 Okochi E, Watanabe N, Shimada Y, Takahashi S, Wakazono K, Shirai T, Sugimura T, Nagao M, Ushijima T (1999) Preferential induction of guanine deletion at 5 ‘-GGGA-3 ‘ in rat mammary glands by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Carcinogenesis 20:1933–1938
https://doi.org/10.1093/carcin/20.10.1933
104 Okonogi H, Ushijima T, Zhang XB, Heddle JA, Suzuki T, Sofuni T, Felton JS, Tucker JD, Sugimura T, Nagao M (1997) Agreement of mutational characteristics of heterocyclic amines in lacI of the Big Blue(R) mouse with those in tumor related genes in rodents. Carcinogenesis 18:745–748
https://doi.org/10.1093/carcin/18.4.745
105 Otani T, Iwasaki M, Ishihara J, Sasazuki S, Inoue M, Tsugane S, Japan Public Health Center-Based Prospective Study G (2006) Dietary fiber intake and subsequent risk of colorectal cancer: the Japan Public Health Center-based prospective study. Int J Cancer 119:1475–1480
https://doi.org/10.1002/ijc.22007
106 Ou J, Carbonero F, Zoetendal EG, DeLany JP, Wang M, Newton K, Gaskins HR, O’Keefe SJ (2013) Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr 98:111–120
https://doi.org/10.3945/ajcn.112.056689
107 Phillips DH (1983) Fifty years of benzo(a)pyrene. Nature 303:468–472
https://doi.org/10.1038/303468a0
108 Phillips DH, Grover PL (1994) Polycyclic-hydrocarbon activation –bay regions and beyond. Drug Metab Rev 26:443–467
https://doi.org/10.3109/03602539409029808
109 Pietinen P, Malila N, Virtanen M, Hartman TJ, Tangrea JA, Albanes D, Virtamo J (1999) Diet and risk of colorectal cancer in a cohort of Finnish men. Cancer Causes Control 10:387–396
https://doi.org/10.1023/A:1008962219408
110 Ralston RA, Truby H, Palermo CE, Walker KZ (2014) Colorectal cancer and nonfermented milk, solid cheese, and fermented milk consumption: a systematic review and meta-analysis of prospective studies. Crit Rev Food Sci Nutr 54:1167–1179
https://doi.org/10.1080/10408398.2011.629353
111 Rijnkels JM, Hollanders VM, Woutersen RA, Koeman JH, Alink GM (1997) Interaction of dietary fat and of a vegetables/fruit mixture on 1,2-dimethylhydrazine-or N-methyl-N’-nitro-N-nitrosoguanidine-induced colorectal cancer in rats. Cancer Lett 114:297–298
https://doi.org/10.1016/S0304-3835(97)04685-5
112 Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar Net al. (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555:210–215
https://doi.org/10.1038/nature25973
113 Rubinstein MR, Wang XW, Liu WD, Hao YJ, Cai GF, Han YPW (2013) Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA Adhesin. Cell Host Microbe 14:195–206
https://doi.org/10.1016/j.chom.2013.07.012
114 Sanapareddy N, Legge RM, Jovov B, McCoy A, Burcal L, Araujo-Perez F, Randall TA, Galanko J, Benson A, Sandler RSet al. (2012) Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J 6:1858–1868
https://doi.org/10.1038/ismej.2012.43
115 Sanjoaquin MA, Appleby PN, Thorogood M, Mann JI, Key TJ (2004) Nutrition, lifestyle and colorectal cancer incidence: a prospective investigation of 10 998 vegetarians and non-vegetarians in the United Kingdom. Br J Cancer 90:118–121
https://doi.org/10.1038/sj.bjc.6601441
116 Schatzkin A, Mouw T, Park Y, Subar AF, Kipnis V, Hollenbeck A, Leitzmann MF, Thompson FE (2007) Dietary fiber and wholegrain consumption in relation to colorectal cancer in the NIHAARP Diet and Health Study. Am J Clin Nutr 85:1353–1360
https://doi.org/10.1093/ajcn/85.5.1353
117 Sears CL (2009) Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev 22:349–369
https://doi.org/10.1128/CMR.00053-08
118 Shin A, Li H, Shu XO, Yang G, Gao YT, Zheng W (2006) Dietary intake of calcium, fiber and other micronutrients in relation to colorectal cancer risk: results from the Shanghai Women’s Health Study. Int J Cancer 119:2938–2942
https://doi.org/10.1002/ijc.22196
119 Shin A, Shrubsole MJ, Ness RM, Wu HY, Sinha R, Smalley WE, Shyr Y, Zheng W (2007) Meat and meat-mutagen intake, doneness preference and the risk of colorectal polyps: the Tennessee Colorectal Polyp Study. Int J Cancer 121:136–142
https://doi.org/10.1002/ijc.22664
120 Shirai T, Sano M, Tamano S, Takahashi S, Hirose M, Futakuchi M, Hasegawa R, Imaida K, Matsumoto K, Wakabayashi Ket al. (1997) The prostate: a target for carcinogenicity of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) derived from cooked foods. Cancer Res 57:195–198
121 Shiryaev SA, Remacle AG, Chernov AV, Golubkov VS, Motamedchaboki K, Muranaka N, Dambacher CM, Capek P, Kukreja M, Kozlov IAet al. (2013) Substrate cleavage profiling suggests a distinct function of bacteroides fragilis metalloproteinases (fragilysin and metalloproteinase II) at the microbiome-inflammationcancer interface. J Biol Chem 288:34956–34967
https://doi.org/10.1074/jbc.M113.516153
122 Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30
https://doi.org/10.3322/caac.21442
123 Silvester KR, Cummings JH (1995) Does digestibility of meat protein help explain large-bowel cancer risk. Nutr Cancer 24:279–288
https://doi.org/10.1080/01635589509514417
124 Sinha R, Cross A, Curtin J, Zimmerman T, McNutt S, Risch A, Holden J (2005a) Development of a food frequency questionnaire module and databases for compounds in cooked and processed meats. Mol Nutr Food Res 49:648–655
https://doi.org/10.1002/mnfr.200500018
125 Sinha R, Peters U, Cross AJ, Kulldorff M, Weissfeld JL, Pinsky PF, Rothman N, Hayes RB, Team LOCP (2005b) Meat, meat cooking methods and preservation, and risk for colorectal adenoma. Can Res 65:8034–8041
https://doi.org/10.1158/0008-5472.CAN-04-3429
126 Slavin JL (2008) Position of the American Dietetic Association: health implications of dietary fiber. J Am Diet Assoc 108:1716–1731
https://doi.org/10.1016/j.jada.2008.08.007
127 Sokol SY (1999) Wnt signaling and dorso-ventral axis specification in vertebrates. Curr Opin Genet Dev 9:405–410
https://doi.org/10.1016/S0959-437X(99)80061-6
128 Song M, Nishihara R, Wu KN, Qian ZR, Kim SA, Sukawa Y, Mima K, Inamura K, Masuda A, Yang JHet al. (2015) Prospective study of marine omega-3 polyunsaturated fatty acids and risk of colorectal cancer according to microsatellite instability. Cancer Res 75
129 Song MY, Nishihara R, Cao Y, Chun E, Qian ZR, Mima K, Inamura K, Masugi Y, Nowak J, Nosho Ket al. (2016) Marine omega-3 polyunsaturated fatty acid intake and risk of colorectal cancer according to tumor-infiltrating T cells. Cancer Res 76
130 Song MY, Zhang XH, Meyerhardt JA, Giovannucci EL, Ogino SJ, Fuchs CS, Chan AT (2017) Marine omega-3 polyunsaturated fatty acid intake and survival after colorectal cancer diagnosis. Gut 66:1790–1796
https://doi.org/10.1136/gutjnl-2016-311990
131 Steinmetz KA, Kushi LH, Bostick RM, Folsom AR, Potter JD (1994) Vegetables, fruit, and colon cancer in the Iowa Women’s Health Study. Am J Epidemiol 139:1–15
https://doi.org/10.1093/oxfordjournals.aje.a116921
132 Steliou K, Boosalis MS, Perrine SP, Sangerman J, Faller DV (2012) Butyrate histone deacetylase inhibitors. Biores Open Access 1:192–198
https://doi.org/10.1089/biores.2012.0223
133 Stemmermann GN, Nomura AM, Heilbrun LK (1984) Dietary fat and the risk of colorectal cancer. Cancer Res 44:4633–4637
134 Sugimura T, Wakabayashi K, Nakagama H, Nagao M (2004) Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci 95:290–299
https://doi.org/10.1111/j.1349-7006.2004.tb03205.x
135 Tabatabaei SM, Heyworth JS, Knuiman MW, Fritschi L (2010) Dietary benzo[a]pyrene intake from meat and the risk of colorectal cancer. Cancer Epidemiol Biomark Prev 19:3182–3184
https://doi.org/10.1158/1055-9965.EPI-10-1051
136 Taira T, Yamaguchi S, Takahashi A, Okazaki Y, Yamaguchi A, Sakaguchi H, Chiji H (2015) Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet. J Clin Biochem Nutr 57:212–216
https://doi.org/10.3164/jcbn.15-15
137 Takayama S, Masuda M, Mogami M, Ohgaki H, Sato S, Sugimura T (1984a) Induction of cancers in the intestine, liver and various other organs of rats by feeding mutagens from glutamic-acid pyrolysate. Gann 75:207–213
138 Takayama S, Nakatsuru Y, Masuda M, Ohgaki H, Sato S, Sugimura T (1984b) Demonstration of carcinogenicity in f344 rats of 2-amino-3-methylimidazo[4,5-f]quinoline from broiled sardine, fried beef and beef extract. Gann 75:467–470
139 Takayama S, Nakatsuru Y, Ohgaki H, Sato S, Sugimura T (1985a) Atrophy of salivary-glands and pancreas of rats fed on diet with amino-methyl-alpha-carboline. Proc Jpn Acad Ser B 61:277–280
https://doi.org/10.2183/pjab.61.277
140 Takayama S, Nakatsuru Y, Ohgaki H, Sato S, Sugimura T (1985b) Carcinogenicity in rats of a mutagenic compound, 3-amino-1,4-dimethyl-5h-pyrido[4,3-b]indole, from tryptophan pyrolysate. Jpn J Cancer Res 76:815–817
141 Tamano S, Hasegawa R, Hagiwara A, Nagao M, Sugimura T, Ito N (1994) Carcinogenicity of a mutagenic compound from food, 2-amino-3-methyl-9h-pyrido[2,3-b]indole (mea-alpha-c), in male f344 rats. Carcinogenesis 15:2009–2015
https://doi.org/10.1093/carcin/15.9.2009
142 Terry P, Baron JA, Bergkvist L, Holmberg L, Wolk A (2002) Dietary calcium and vitamin D intake and risk of colorectal cancer: a prospective cohort study in women. Nutr Cancer 43:39–46
https://doi.org/10.1207/S15327914NC431_4
143 Terry P, Bergkvist L, Holmberg L, Wolk A (2001) No association between fat and fatty acids intake and risk of colorectal cancer. Cancer Epidemiol Biomark Prev 10:913–914
144 Toden S, Bird AR, Topping DL, Conlon MA (2006) Resistant starch prevents colonic DNA damage induced by high dietary cooked red meat or casein in rats. Cancer Biol Ther 5:267–272
https://doi.org/10.4161/cbt.5.3.2382
145 Toden S, Bird AR, Topping DL, Conlon MA (2007) Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch. Br J Nutr 97:535–543
https://doi.org/10.1017/S0007114507336817
146 Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, Soyletir G (2006) A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 12:782–786
https://doi.org/10.1111/j.1469-0691.2006.01494.x
147 Tsoi H, Chu ESH, Zhang X, Sheng JQ, Nakatsu G, Ng SC, Chan AWH, Chan FKL, Sung JJY, Yu J (2017) Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 152:1419–1433
https://doi.org/10.1053/j.gastro.2017.01.009
148 Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223
https://doi.org/10.1016/j.chom.2008.02.015
149 Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14.
https://doi.org/10.1126/scitranslmed.3000322
150 Uronis JM, Muhlbauer M, Herfarth HH, Rubinas TC, Jones GS, Jobin C (2009) Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS ONE 4: e6026
https://doi.org/10.1371/journal.pone.0006026
151 Ursell LK, Haiser HJ, Van Treuren W, Garg N, Reddivari L, Vanamala J, Dorrestein PC, Turnbaugh PJ, Knight R (2014) The intestinal metabolome: an intersection between microbiota and host. Gastroenterology 146:1470–1476
https://doi.org/10.1053/j.gastro.2014.03.001
152 Varghese C, Shin HR (2014) Strengthening cancer control in China. Lancet Oncol 15:484–485
https://doi.org/10.1016/S1470-2045(14)70056-7
153 Weijenberg MP, Luchtenborg M, de Goeij AF, Brink M, van Muijen GN, de Bruine AP, Goldbohm RA, van den Brandt PA (2007) Dietary fat and risk of colon and rectal cancer with aberrant MLH1 expression, APC or KRAS genes. Cancer Causes Control 18:865–879
https://doi.org/10.1007/s10552-007-9032-6
154 Willett WC, Stampfer MJ, Colditz GA, Rosner BA, Speizer FE (1990) Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective-study among women. N Engl J Med 323:1664–1672
https://doi.org/10.1056/NEJM199012133232404
155 Windey K, De Preter V, Verbeke K (2012) Relevance of protein fermentation to gut health. Mol Nutr Food Res 56:184–196
https://doi.org/10.1002/mnfr.201100542
156 Winter J, Nyskohus L, Young GP, Hu Y, Conlon MA, Bird AR, Topping DL, Le Leu RK (2011) Inhibition by resistant starch of red meat-induced promutagenic adducts in mouse colon. Cancer Prev Res (Phila) 4:1920–1928
https://doi.org/10.1158/1940-6207.CAPR-11-0176
157 Wu SG, Rhee KJ, Albesiano E, Rabizadeh S, Wu XQ, Yen HR, Huso DL, Brancati FL, Wick E, McAllister Fet al. (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15:1016–U1064
https://doi.org/10.1038/nm.2015
158 Wu SJ, Feng B, Li K, Zhu X, Liang SH, Liu XF, Han S, Wang BL, Wu KC, Miao DMet al. (2012) Fish consumption and colorectal cancer risk in humans: a systematic review and meta-analysis. Am J Med 125(551):559
https://doi.org/10.1016/j.amjmed.2012.01.022
159 Xu Z, Knight R (2015) Dietary effects on human gut microbiome diversity. Br J Nutr 113:11
https://doi.org/10.1017/S0007114514004127
160 Yu XF, Zou J, Dong J (2014) Fish consumption and risk of gastrointestinal cancers: a meta-analysis of cohort studies. World J Gastroenterol 20:15398–15412
https://doi.org/10.3748/wjg.v20.i41.15398
161 Zhang XH, Giovannucci EL, Smith-Warner SA, Wu K, Fuchs CS, Pollak M, Willett WC, Ma J (2011) A prospective study of intakes of zinc and heme iron and colorectal cancer risk in men and women. Cancer Causes Control 22:1627–1637
https://doi.org/10.1007/s10552-011-9839-z
162 Zimmer J, Lange B, Frick JS, Sauer H, Zimmermann K, Schwiertz A, Rusch K, Klosterhalfen S, Enck P (2012) A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr 66:53–60
https://doi.org/10.1038/ejcn.2011.141
[1] Lu Zhang, Yao Zhao, Ruogu Gao, Jun Li, Xiuna Yang, Yan Gao, Wei Zhao, Sudagar S. Gurcha, Natacha Veerapen, Sarah M. Batt, Kajelle Kaur Besra, Wenqing Xu, Lijun Bi, Xian’en Zhang, Luke W. Guddat8, Haitao Yang, Quan Wang, Gurdyal S. Besra, Zihe Rao. Cryo-EM snapshots of mycobacterial arabinosyltransferase complex EmbB2-AcpM2[J]. Protein Cell, 2020, 11(7): 505-517.
[2] Fenjie Li, Junjun Ding. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression[J]. Protein Cell, 2019, 10(8): 550-565.
[3] Jing Liu, Xu Kong, Mengkai Zhang, Xiao Yang, Xiuqin Xu. RNA binding protein 24 deletion disrupts global alternative splicing and causes dilated cardiomyopathy[J]. Protein Cell, 2019, 10(6): 405-416.
[4] Junting Cai, Miranda K. Culley, Yutong Zhao, Jing Zhao. The role of ubiquitination and deubiquitination in the regulation of cell junctions[J]. Protein Cell, 2018, 9(9): 754-769.
[5] Jinzhu Xiang, Suying Cao, Liang Zhong, Hanning Wang, Yangli Pei, Qingqing Wei, Bingqiang Wen, Haiyuan Mu, Shaopeng Zhang, Liang Yue, Genhua Yue, Bing Lim, Jianyong Han. Pluripotent stem cells secrete Activin A to improve their epiblast competency after injection into recipient embryos[J]. Protein Cell, 2018, 9(8): 717-728.
[6] Na Qu, Zhao Ma, Mengrao Zhang, Muaz N. Rushdi, Christopher J. Krueger, Antony K. Chen. Inhibition of retroviral Gag assembly by non-silencing miRNAs promotes autophagic viral degradation[J]. Protein Cell, 2018, 9(7): 640-651.
[7] Jun Wang, Liang Chen, Na Zhao, Xizhan Xu, Yakun Xu, Baoli Zhu. Of genes and microbes: solving the intricacies in host genomes[J]. Protein Cell, 2018, 9(5): 446-461.
[8] Zeneng Wang, Yongzhong Zhao. Gut microbiota derived metabolites in cardiovascular health and disease[J]. Protein Cell, 2018, 9(5): 416-431.
[9] Bo Jing, Chunxue Zhang, Xianjun Liu, Liqiang Zhou, Jiping Liu, Yinan Yao, Juehua Yu, Yuteng Weng, Min Pan, Jie Liu, Zuolin Wang, Yao Sun, Yi Eve Sun. Glycosylation of dentin matrix protein 1 is a novel key element for astrocyte maturation and BBB integrity[J]. Protein Cell, 2018, 9(3): 298-309.
[10] Xu Zhang, Xuetao Ji, Qian Wang, John Zhong Li. New insight into inter-organ crosstalk contributing to the pathogenesis of nonalcoholic fatty liver disease (NAFLD)[J]. Protein Cell, 2018, 9(2): 164-177.
[11] Jihong Lian, Randal Nelson, Richard Lehner. Carboxylesterases in lipid metabolism: from mouse to human[J]. Protein Cell, 2018, 9(2): 178-195.
[12] Vsevolod V. Gurevich, Eugenia V. Gurevich, Vladimir N. Uversky. Arrestins: structural disorder creates rich functionality[J]. Protein Cell, 2018, 9(12): 986-1003.
[13] Huang Cao, Kaitao Zhao, Yongxuan Yao, Jing Guo, Xiaoxiao Gao, Qi Yang, Min Guo, Wandi Zhu, Yun Wang, Chunchen Wu, Jizheng Chen, Yuan Zhou, Xue Hu, Mengji Lu, Xinwen Chen, Rongjuan Pei. RNA binding protein 24 regulates the translation and replication of hepatitis C virus[J]. Protein Cell, 2018, 9(11): 930-944.
[14] Liming Liu. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins[J]. Protein Cell, 2018, 9(1): 15-32.
[15] Wenzhi Li, Peizhe Wang, Bingjie Zhang, Jing Zhang, Jia Ming, Wei Xie, Jie Na. Differential regulation of H3S10 phosphorylation, mitosis progression and cell fate by Aurora Kinase B and C in mouse preimplantation embryos[J]. Protein Cell, 2017, 8(9): 662-674.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed