|
|
|
Single-cell metagenomics: challenges and applications |
Yuan Xu1, Fangqing Zhao1,2( ) |
1. Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China 2. University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
|
|
Abstract With the development of high throughput sequencing and single-cell genomics technologies, many uncultured bacterial communities have been dissected by combining these two techniques. Especially, by simultaneously leveraging of single-cell genomics and metagenomics, researchers can greatly improve the efficiency and accuracy of obtaining whole genome information from complex microbial communities, which not only allow us to identify microbes but also link function to species, identify subspecies variations, study host-virus interactions and etc. Here, we review recent developments and the challenges need to be addressed in single-cell metagenomics, including potential contamination, uneven sequence coverage, sequence chimera, genome assembly and annotation. With the development of sequencing and computational methods, single-cell metagenomics will undoubtedly broaden its application in various microbiome studies.
|
| Keywords
metagenomics
bioinformatics
single-cell genomics
|
|
Corresponding Author(s):
Fangqing Zhao
|
|
Issue Date: 08 June 2018
|
|
| 1 |
Albanese D, Donati C (2017) Strain profiling and epidemiology of bacterial species from metagenomic sequencing. Nat Commun 8:2260
https://doi.org/10.1038/s41467-017-02209-5
|
| 2 |
Avital G, Avraham R, Fan A, Hashimshony T, Hung DT, Yanai I (2017) scDual-Seq: mapping the gene regulatory program of Salmonella infection by host and pathogen single-cell RNAsequencing. Genome Biol 18:200
https://doi.org/10.1186/s13059-017-1340-x
|
| 3 |
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski ADet al. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477
https://doi.org/10.1089/cmb.2012.0021
|
| 4 |
Becraft ED, Dodsworth JA, Murugapiran SK, Ohlsson JI, Briggs BR, Kanbar J, De Vlaminck I, Quake SR, Dong H, Hedlund BPet al. (2015) Single-cell-genomics-facilitated read binning of candidate phylum EM19 genomes from geothermal spring metagenomes. Appl Environ Microbiol 82:992–1003
https://doi.org/10.1128/AEM.03140-15
|
| 5 |
Blainey PC (2013) The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev 37:407–427
https://doi.org/10.1111/1574-6976.12015
|
| 6 |
Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, Salas M (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264:8935–8940
|
| 7 |
Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J (2012) Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol 13:R122
https://doi.org/10.1186/gb-2012-13-12-r122
|
| 8 |
Brown CT (2015) Strain recovery from metagenomes. Nat Biotechnol 33:1041–1043
https://doi.org/10.1038/nbt.3375
|
| 9 |
Chaisson MJ, Pevzner PA (2008) Short read fragment assembly of bacterial genomes. Genome Res 18:324–330
https://doi.org/10.1101/gr.7088808
|
| 10 |
Champlot S, Berthelot C, Pruvost M, Bennett EA, Grange T, Geigl EM (2010) An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications. PLoS ONE 5:e13042
https://doi.org/10.1371/journal.pone.0013042
|
| 11 |
Chen M, Song P, Zou D, Hu X, Zhao S, Gao S, Ling F (2014) Comparison of multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in single-cell sequencing. PLoS ONE 9:e114520
https://doi.org/10.1371/journal.pone.0114520
|
| 12 |
Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo MJ, Dupont CL, Badger JH, Novotny M, Rusch DB, Fraser LJ, Gormley NAet al. (2011) Efficient de novo assembly of single-cell bacterial genomes from short-read data sets. Nat Biotechnol 29:915–921
https://doi.org/10.1038/nbt.1966
|
| 13 |
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642
https://doi.org/10.1093/nar/gkt1244
|
| 14 |
de la Cruz Peña MJ, Martinez-Hernandez F, Garcia-Heredia I, Lluesma Gomez M, Fornas Ò, Martinez-Garcia M (2018) Deciphering the human virome with single-virus genomics and metagenomics. Viruses 10:113
https://doi.org/10.3390/v10030113
|
| 15 |
De Smet J, Hendrix H, Blasdel BG, Danis-Wlodarczyk K, Lavigne R (2017) Pseudomonas predators: understanding and exploiting phage-host interactions. Nat Rev Microbiol 15:517–530
https://doi.org/10.1038/nrmicro.2017.61
|
| 16 |
Dean FB, Nelson JR, Giesler TL, Lasken RS (2001) Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11:1095–1099
https://doi.org/10.1101/gr.180501
|
| 17 |
Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679
https://doi.org/10.1093/bioinformatics/btm009
|
| 18 |
Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27:4636–4641
https://doi.org/10.1093/nar/27.23.4636
|
| 19 |
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072
https://doi.org/10.1128/AEM.03006-05
|
| 20 |
Dodsworth JA, Blainey PC, Murugapiran SK, Swingley WD, Ross CA, Tringe SG, Chain PS, Scholz MB, Lo CC, Raymond Jet al. (2013) Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nat Commun 4:1854
https://doi.org/10.1038/ncomms2884
|
| 21 |
Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Richter RA, Valas R, Novotny M, Yee-Greenbaum J, Selengut JD, Haft DHet al. (2012) Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J 6:1186–1199
https://doi.org/10.1038/ismej.2011.189
|
| 22 |
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200
https://doi.org/10.1093/bioinformatics/btr381
|
| 23 |
Erkel C, Kube M, Reinhardt R, Liesack W (2006) Genome of Rice Cluster I archaea—the key methane producers in the rice rhizosphere. Science 313:370–372
https://doi.org/10.1126/science.1127062
|
| 24 |
Garcia Martin H, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, Yeates C, He S, Salamov AA, Szeto Eet al. (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24:1263–1269
https://doi.org/10.1038/nbt1247
|
| 25 |
Hasegawa M, Hashimoto T (1993) Ribosomal RNA trees misleading? Nature 361:23
https://doi.org/10.1038/361023b0
|
| 26 |
Hosono S, Faruqi AF, Dean FB, Du Y, Sun Z, Wu X, Du J, Kingsmore SF, Egholm M, Lasken RS (2003) Unbiased whole-genome amplification directly from clinical samples. Genome Res 13:954–964
https://doi.org/10.1101/gr.816903
|
| 27 |
Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn Met al. (2016) eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 44:D286–D293
https://doi.org/10.1093/nar/gkv1248
|
| 28 |
Ji P, Zhang Y, Wang J, Zhao F (2017) MetaSort untangles metagenome assembly by reducing microbial community complexity. Nat Commun 8:14306
https://doi.org/10.1038/ncomms14306
|
| 29 |
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu Tet al. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484
https://doi.org/10.1093/nar/gkm882
|
| 30 |
Kang DD, Froula J, Egan R, Wang Z (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3:e1165
https://doi.org/10.7717/peerj.1165
|
| 31 |
Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker Ret al. (2014) Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344:416–420
https://doi.org/10.1126/science.1248575
|
| 32 |
Koren S, Treangen TJ, Pop M (2011) Bambus 2: scaffolding metagenomes. Bioinformatics 27:2964–2971
https://doi.org/10.1093/bioinformatics/btr520
|
| 33 |
Kvist T, Ahring BK, Lasken RS, Westermann P (2007) Specific single-cell isolation and genomic amplification of uncultured microorganisms. Appl Microbiol Biotechnol 74:926–935
https://doi.org/10.1007/s00253-006-0725-7
|
| 34 |
Labonte JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, Sullivan MB, Woyke T, Wommack KE, Stepanauskas R (2015) Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J 9:2386–2399
https://doi.org/10.1038/ismej.2015.48
|
| 35 |
Lasken RS, Stockwell TB (2007) Mechanism of chimera formation during the multiple displacement amplification reaction. BMC Biotechnol 7:19
https://doi.org/10.1186/1472-6750-7-19
|
| 36 |
Lin H-H, Liao Y-C (2016) Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Reports 6:24175
https://doi.org/10.1038/srep24175
|
| 37 |
Liu J, Wang H, Yang H, Zhang Y, Wang J, Zhao F, Qi J (2013) Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functional enrichment of microorganisms. Nucleic Acids Res 41:e3
https://doi.org/10.1093/nar/gks828
|
| 38 |
Marcy Y, Ishoey T, Lasken RS, Stockwell TB, Walenz BP, Halpern AL, Beeson KY, Goldberg SM, Quake SR (2007) Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet 3:1702–1708
https://doi.org/10.1371/journal.pgen.0030155
|
| 39 |
Marshall IP, Blainey PC, Spormann AM, Quake SR (2012) A singlecell genome for Thiovulum sp. Appl Environ Microbiol 78:8555–8563
https://doi.org/10.1128/AEM.02314-12
|
| 40 |
Martinez-Garcia M, Santos F, Moreno-Paz M, Parro V, Anton J (2014) Unveiling viral-host interactions within the ‘microbial dark matter’. Nat Commun 5:4542
https://doi.org/10.1038/ncomms5542
|
| 41 |
Munson-McGee JH, Peng S, Dewerff S, Stepanauskas R, Whitaker RJ, Weitz JS, Young MJ (2018) A virus or more in (nearly) every cell: ubiquitous networks of virus–host interactions in extreme environments. ISME J.
https://doi.org/10.1038/s41396-018-0071-7
|
| 42 |
Namiki T, Hachiya T, Tanaka H, Sakakibara Y (2012) MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 40:e155
https://doi.org/10.1093/nar/gks678
|
| 43 |
Nobu MK, Narihiro T, Rinke C, Kamagata Y, Tringe SG, Woyke T, Liu WT (2015) Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J 9:1710–1722
https://doi.org/10.1038/ismej.2014.256
|
| 44 |
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834
https://doi.org/10.1101/gr.213959.116
|
| 45 |
Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304
https://doi.org/10.1038/35012500
|
| 46 |
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla Met al. (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214
https://doi.org/10.1093/nar/gkt1226
|
| 47 |
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MT, Fookes M, Falush D, Keane JA, Parkhill J (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693
https://doi.org/10.1093/bioinformatics/btv421
|
| 48 |
Peng Y, Leung HC, Yiu SM, Chin FY (2011) Meta-IDBA: a de Novo assembler for metagenomic data. Bioinformatics 27:i94–i101
https://doi.org/10.1093/bioinformatics/btr216
|
| 49 |
Peng Y, Leung HC, Yiu SM, Chin FY (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:1420–1428
https://doi.org/10.1093/bioinformatics/bts174
|
| 50 |
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596
https://doi.org/10.1093/nar/gks1219
|
| 51 |
Quince C, Delmont TO, Raguideau S, Alneberg J, Darling AE, Collins G, Eren AM (2017) DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biol 18:181
https://doi.org/10.1186/s13059-017-1309-9
|
| 52 |
Raghunathan A, Ferguson HR Jr, Bornarth CJ, Song W, Driscoll M, Lasken RS (2005) Genomic DNA amplification from a single bacterium. Appl Environ Microbiol 71:3342–3347
https://doi.org/10.1128/AEM.71.6.3342-3347.2005
|
| 53 |
Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N, Dmitrieff E, Malmstrom R, Stepanauskas R, Woyke T (2014) Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat Protoc 9:1038–1048
https://doi.org/10.1038/nprot.2014.067
|
| 54 |
Rodrigue S, Malmstrom RR, Berlin AM, Birren BW, Henn MR, Chisholm SW (2009) Whole genome amplification and de novo assembly of single bacterial cells. PLoS ONE 4:e6864
https://doi.org/10.1371/journal.pone.0006864
|
| 55 |
Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P, Stepanauskas R, Woyke T, Hallam SJ, Sullivan MB (2014) Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. Elife 3: e03125
https://doi.org/10.7554/eLife.03125
|
| 56 |
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069
https://doi.org/10.1093/bioinformatics/btu153
|
| 57 |
Shaw K, Sesardic I, Bristol N, Ames C, Dagnall K, Ellis C, Whittaker F, Daniel B (2008) Comparison of the effects of sterilisation techniques on subsequent DNA profiling. Int J Legal Med 122:29–33
https://doi.org/10.1007/s00414-007-0159-5
|
| 58 |
Shi W, Ji P, Zhao F (2017) The combination of direct and paired link graphs can boost repetitive genome assembly. Nucleic Acids Res 45:e43
https://doi.org/10.1093/nar/gkw1191
|
| 59 |
Spencer SJ, Tamminen MV, Preheim SP, Guo MT, Briggs AW, Brito IL, Weitz A, PitkänenVigneault LK, Virta MPet al. (2015) Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J 10:427
https://doi.org/10.1038/ismej.2015.124
|
| 60 |
Stepanauskas R, Fergusson EA, Brown J, Poulton NJ, Tupper B, Labonte JM, Becraft ED, Brown JM, Pachiadaki MG, Povilaitis Tet al. (2017) Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat Commun 8:84
https://doi.org/10.1038/s41467-017-00128-z
|
| 61 |
Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, Reinthaler T, Poulton NJ, Masland ED, Gomez MLet al. (2011) Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333:1296–1300
https://doi.org/10.1126/science.1203690
|
| 62 |
Szollosi GJ, Boussau B, Abby SS, Tannier E, Daubin V (2012) Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc Natl Acad Sci USA 109:17513–17518
https://doi.org/10.1073/pnas.1202997109
|
| 63 |
Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N (2017) Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res 27:626–638
https://doi.org/10.1101/gr.216242.116
|
| 64 |
Wang J, Gao Y, Zhao F (2016) Phage-bacteria interaction network in human oral microbiome. Environ Microbiol 18:2143–2158
https://doi.org/10.1111/1462-2920.12923
|
| 65 |
Wang Y, Leung HC, Yiu SM, Chin FY (2012) MetaCluster 5.0: a tworound binning approach for metagenomic data for low-abundance species in a noisy sample. Bioinformatics 28:i356–i362
https://doi.org/10.1093/bioinformatics/bts397
|
| 66 |
Woese CR, Achenbach L, Rouviere P, Mandelco L (1991) Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst Appl Microbiol 14:364–371
https://doi.org/10.1016/S0723-2020(11)80311-5
|
| 67 |
Woyke T, Sczyrba A, Lee J, Rinke C, Tighe D, Clingenpeel S, Malmstrom R, Stepanauskas R, Cheng JF (2011) Decontamination of MDA reagents for single cell whole genome amplification. PLoS ONE 6:e26161
https://doi.org/10.1371/journal.pone.0026161
|
| 68 |
Woyke T, Xie G, Copeland A, Gonzalez JM, Han C, Kiss H, Saw JH, Senin P, Yang C, Chatterji Set al. (2009) Assembling the marine metagenome, one cell at a time. PLoS ONE 4:e5299
https://doi.org/10.1371/journal.pone.0005299
|
| 69 |
Wright ES, Yilmaz LS, Noguera DR (2012) DECIPHER, a searchbased approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78:717–725
https://doi.org/10.1128/AEM.06516-11
|
| 70 |
Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJet al. (2009) A phylogenydriven genomic encyclopaedia of Bacteria and Archaea. Nature 462:1056–1060
https://doi.org/10.1038/nature08656
|
| 71 |
Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW (2014) MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2:26
https://doi.org/10.1186/2049-2618-2-26
|
| 72 |
Yilmaz S, Singh AK (2012) Single cell genome sequencing. Curr Opin Biotechnol 23:437–443
https://doi.org/10.1016/j.copbio.2011.11.018
|
| 73 |
Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME, Wilson WH, Yang EC, Duffy S, Bhattacharya D (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332:714–717
https://doi.org/10.1126/science.1203163
|
| 74 |
Yu FB, Blainey PC, Schulz F, Woyke T, Horowitz MA, Quake SR (2017) Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples. Elife.
https://doi.org/10.7554/eLife.26580
|
| 75 |
Zaneveld JR, Lozupone C, Gordon JI, Knight R (2010) Ribosomal RNA diversity predicts genome diversity in gut bacteria and their relatives. Nucleic Acids Res 38:3869–3879
https://doi.org/10.1093/nar/gkq066
|
| 76 |
Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829
https://doi.org/10.1101/gr.074492.107
|
| 77 |
Zhang K, Martiny AC, Reppas NB, Barry KW, Malek J, Chisholm SW, Church GM (2006) Sequencing genomes from single cells by polymerase cloning. Nat Biotechnol 24:680–686
https://doi.org/10.1038/nbt1214
|
| 78 |
Zhang Y, Ji P, Wang J, Zhao F (2016) RiboFR-Seq: a novel approach to linking 16S rRNA amplicon profiles to metagenomes. Nucleic Acids Res 44:e99
https://doi.org/10.1093/nar/gkw165
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|