|
|
|
CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells |
Ping Wang1,4, Zunpeng Liu2,4, Xiaoqian Zhang2,4, Jingyi Li4,5, Liang Sun7, Zhenyu Ju8, Jian Li7, Piu Chan5, Guang-Hui Liu1,4,5,6,8( ), Weiqi Zhang1,4,5( ), Moshi Song3,4,6( ), Jing Qu2,4,6( ) |
1. National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China 2. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 3. State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 4. University of Chinese Academy of Sciences, Beijing 100049, China 5. National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing 100053, China 6. Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China 7. The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China 8. Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China |
|
|
|
|
Abstract Vascular cell functionality is critical to blood vessel homeostasis. Constitutive NF-κB activation in vascular cells results in chronic vascular inflammation, leading to various cardiovascular diseases. However, how NF-κB regulates human blood vessel homeostasis remains largely elusive. Here, using CRISPR/Cas9-mediated gene editing, we generated RelA knockout human embryonic stem cells (hESCs) and differentiated them into various vascular cell derivatives to study how NF-κB modulates human vascular cells under basal and inflammatory conditions. Multi-dimensional phenotypic assessments and transcriptomic analyses revealed that RelA deficiency affected vascular cells via modulating inflammation, survival, vasculogenesis, cell differentiation and extracellular matrix organization in a cell typespecific manner under basal condition, and that RelA protected vascular cells against apoptosis and modulated vascular inflammatory response upon tumor necrosis factor α (TNFα) stimulation. Lastly, further evaluation of gene expression patterns in IκBα knockout vascular cells demonstrated that IκBα acted largely independent of RelA signaling. Taken together, our data reveal a protective role of NF-κB/RelA in modulating human blood vessel homeostasis and map the human vascular transcriptomic landscapes for the discovery of novel therapeutic targets.
|
| Keywords
NF-κB
RelA
Stem cell
Inflammation
Apoptosis
|
|
Corresponding Author(s):
Guang-Hui Liu,Weiqi Zhang,Moshi Song,Jing Qu
|
|
Issue Date: 29 November 2018
|
|
| 1 |
Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169
https://doi.org/10.1093/bioinformatics/btu638
|
| 2 |
Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13:11–22
https://doi.org/10.1016/j.cmet.2010.12.008
|
| 3 |
Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071
https://doi.org/10.1056/NEJM199704103361506
|
| 4 |
Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, Page M, Kaltschmidt C, Baeuerle PA, Neumeier D (1996) Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest 97:1715–1722
https://doi.org/10.1172/JCI118598
|
| 5 |
Breitbach M, Kimura K, Luis TC, Fuegemann CJ, Woll PS, Hesse M, Facchini R, Rieck S, Jobin K, Reinhardt Jet al. (2018) In Vivo Labeling by CD73 Marks Multipotent Stromal Cells and Highlights Endothelial Heterogeneity in the Bone Marrow Niche. Cell Stem Cell 22(262–276):e267
https://doi.org/10.1016/j.stem.2018.01.008
|
| 6 |
Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9:11–15
https://doi.org/10.1016/j.stem.2011.06.008
|
| 7 |
Chen G, Chen Y, Chen H, Li L, Yao J, Jiang Q, Lin X, Wen J, Lin L (2011a) The effect of NF-kappaB pathway on proliferation and apoptosis of human umbilical vein endothelial cells induced by intermittent high glucose. Mol Cell Biochem 347:127–133
https://doi.org/10.1007/s11010-010-0620-5
|
| 8 |
Chen G, Qiao Y, Yao J, Jiang Q, Lin X, Chen F, Lin F, Lin M, Lin L, Zhu P (2011b) Construction of NF-kappaB-targeting RNAi adenovirus vector and the effect of NF-kappaB pathway on proliferation and apoptosis of vascular endothelial cells. Mol Biol Rep 38:3089–3094
https://doi.org/10.1007/s11033-010-9977-5
|
| 9 |
Chiba T, Kondo Y, Shinozaki S, Kaneko E, Ishigami A, Maruyama N, Umezawa K, Shimokado K (2006) A selective NFkappaB inhibitor, DHMEQ, reduced atherosclerosis in ApoE-deficient mice. J Atheroscler Thromb 13:308–313
https://doi.org/10.5551/jat.13.308
|
| 10 |
Courtois G, Smahi A, Reichenbach J, Doffinger R, Cancrini C, Bonnet M, Puel A, Chable-Bessia C, Yamaoka S, Feinberg Jet al. (2003) A hypermorphic IkappaBalpha mutation is associated with autosomal dominant anhidrotic ectodermal dysplasia and T cell immunodeficiency. J Clin Invest 112:1108–1115
https://doi.org/10.1172/JCI18714
|
| 11 |
da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299
https://doi.org/10.1634/stemcells.2007-1122
|
| 12 |
Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12:393–394
https://doi.org/10.1016/j.stem.2013.03.006
|
| 13 |
Duan S, Yuan G, Liu X, Ren R, Li J, Zhang W, Wu J, Xu X, Fu L, Li Yet al. (2015) PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun 6:10068
https://doi.org/10.1038/ncomms10068
|
| 14 |
Fagerlund R, Behar M, Fortmann KT, Lin YE, Vargas JD, Hoffmann A (2015) Anatomy of a negative feedback loop: the case of IkappaBalpha. J R Soc Interface 12:0262
https://doi.org/10.1098/rsif.2015.0262
|
| 15 |
Fang J, Yang J, Wu X, Zhang G, Li T, Wang X, Zhang H, Wang CC, Liu GH, Wang L (2018) Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase. Aging Cell 7:e12765
https://doi.org/10.1111/acel.12765
|
| 16 |
Galley HF, Webster NR (2004) Physiology of the endothelium. Br J Anaesth 93:105–113
https://doi.org/10.1093/bja/aeh163
|
| 17 |
Gareus R, Kotsaki E, Xanthoulea S, van der Made I, Gijbels MJ, Kardakaris R, Polykratis A, Kollias G, de Winther MP, Pasparakis M (2008) Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis. Cell Metab 8:372–383
https://doi.org/10.1016/j.cmet.2008.08.016
|
| 18 |
Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulsky MI (2000) The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci USA 97:9052–9057
https://doi.org/10.1073/pnas.97.16.9052
|
| 19 |
Hiraoka A, Yano Ki K, Kagami N, Takeshige K, Mio H, Anazawa H, Sugimoto S (2001) Stem cell growth factor: in situ hybridization analysis on the gene expression, molecular characterization and in vitro proliferative activity of a recombinant preparation on primitive hematopoietic progenitor cells. Hematol J 2:307–315
https://doi.org/10.1038/sj.thj.6200118
|
| 20 |
Ijaz T, Wakamiya M, Sun H, Recinos A III, Tilton RG, Brasier AR (2016) Generation and characterization of a novel transgenic mouse harboring conditional nuclear factor-kappa B/RelA knockout alleles. BMC Dev Biol 16:32
https://doi.org/10.1186/s12861-016-0135-8
|
| 21 |
Jakkampudi A, Jangala R, Reddy BR, Mitnala S, Nageshwar Reddy D, Talukdar R (2016) NF-kappaB in acute pancreatitis: Mechanisms and therapeutic potential. Pancreatology 16:477–488
https://doi.org/10.1016/j.pan.2016.05.001
|
| 22 |
Janssen-Heininger YM, Poynter ME, Baeuerle PA (2000) Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 28:1317–1327
https://doi.org/10.1016/S0891-5849(00)00218-5
|
| 23 |
Khan SY, Awad EM, Oszwald A, Mayr M, Yin X, Waltenberger B, Stuppner H, Lipovac M, Uhrin P, Breuss JM (2017) Premature senescence of endothelial cells upon chronic exposure to TNFα can be prevented by N-acetyl cysteine and plumericin. Sci Rep 7:39501
https://doi.org/10.1038/srep39501
|
| 24 |
Kida Y, Kobayashi M, Suzuki T, Takeshita A, Okamatsu Y, Hanazawa S, Yasui T, Hasegawa K (2005) Interleukin-1 stimulates cytokines, prostaglandin E2 and matrix metalloproteinase-1 production via activation of MAPK/AP-1 and NF-kappaB in human gingival fibroblasts. Cytokine 29:159–168
https://doi.org/10.1016/j.cyto.2004.10.009
|
| 25 |
Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360
https://doi.org/10.1038/nmeth.3317
|
| 26 |
Kirton JP, Xu Q (2010) Endothelial precursors in vascular repair. Microvasc Res 79:193–199
https://doi.org/10.1016/j.mvr.2010.02.009
|
| 27 |
Kubben N, Zhang W, Wang L, Voss TC, Yang J, Qu J, Liu GH, Misteli T (2016) Repression of the antioxidant NRF2 pathway in premature aging. Cell 165:1361–1374
https://doi.org/10.1016/j.cell.2016.05.017
|
| 28 |
Kucharczak J, Simmons MJ, Fan Y, Gelinas C (2003) To be, or not to be: NF-kappaB is the answer–role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 22:8961–8982
https://doi.org/10.1038/sj.onc.1207230
|
| 29 |
Lee TH, Sottile J, Chiang HY (2015) Collagen inhibitory peptide R1R2 mediates vascular remodeling by decreasing inflammation and smooth muscle cell activation. PLoS ONE 10:e0117356
https://doi.org/10.1371/journal.pone.0117356
|
| 30 |
Li Y, Zhang W, Chang L, Han Y, Sun L, Gong X, Tang H, Liu Z, Deng H, Ye Yet al. (2016) Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein Cell 7:478–488
https://doi.org/10.1007/s13238-016-0278-1
|
| 31 |
Liu GH, Qu J, Shen X (2008) NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta 1783:713–727
https://doi.org/10.1016/j.bbamcr.2008.01.002
|
| 32 |
Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh Cet al. (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221–225
https://doi.org/10.1038/nature09879
|
| 33 |
Liu GH, Qu J, Suzuki K, Nivet E, Li M, Montserrat N, Yi F, Xu X, Ruiz S, Zhang Wet al. (2012) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 491:603–607
https://doi.org/10.1038/nature11557
|
| 34 |
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
https://doi.org/10.1186/s13059-014-0550-8
|
| 35 |
Mallavia B, Recio C, Oguiza A, Ortiz-Munoz G, Lazaro I, Lopez-Parra V, Lopez-Franco O, Schindler S, Depping R, Egido Jet al. (2013) Peptide inhibitor of NF-kappaB translocation ameliorates experimental atherosclerosis. Am J Pathol 182:1910–1921
https://doi.org/10.1016/j.ajpath.2013.01.022
|
| 36 |
Morris O, Liu X, Domingues C, Runchel C, Chai A, Basith S, Tenev T, Chen H, Choi S, Pennetta Get al. (2016) Signal integration by the IkappaB protein pickle shapes drosophila innate host defense. Cell Host Microbe 20:283–295
https://doi.org/10.1016/j.chom.2016.08.003
|
| 37 |
Nedeljkovic ZS, Gokce N, Loscalzo J (2003) Mechanisms of oxidative stress and vascular dysfunction. Postgrad Med J 79:195–199
https://doi.org/10.1136/pmj.79.930.195
|
| 38 |
Osborn L, Kunkel S, Nabel GJ (1989) Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci USA 86:2336–2340
https://doi.org/10.1073/pnas.86.7.2336
|
| 39 |
Pan H, Guan D, Liu X, Li J, Wang L, Wu J, Zhou J, Zhang W, Ren R, Zhang Wet al. (2016) SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res 26:190–205
https://doi.org/10.1038/cr.2016.4
|
| 40 |
Patsch C, Challet-Meylan L, Thoma EC, Urich E, Heckel T, O’Sullivan JF, Grainger SJ, Kapp FG, Sun L, Christensen Ket al. (2015) Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol 17:994–1003
https://doi.org/10.1038/ncb3205
|
| 41 |
Perkins ND (2007) Integrating cell-signalling pathways with NFkappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62
https://doi.org/10.1038/nrm2083
|
| 42 |
Perkins ND, Gilmore TD (2006) Good cop, bad cop: the different faces of NF-kappaB. Cell Death Diff 13:759–772
https://doi.org/10.1038/sj.cdd.4401838
|
| 43 |
Rudijanto A (2007) The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Medica Indones 39:86–93
|
| 44 |
Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2008) Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7:83–105
https://doi.org/10.1016/j.arr.2007.09.002
|
| 45 |
Schober A, Weber C (2005) Mechanisms of monocyte recruitment in vascular repair after injury. Antioxid Redox Signal 7:1249–1257
https://doi.org/10.1089/ars.2005.7.1249
|
| 46 |
Simeonidis S, Stauber D, Chen G, Hendrickson WA, Thanos D (1999) Mechanisms by which IkappaB proteins control NFkappaB activity. Proc Natl Acad Sci USA 96:49–54
https://doi.org/10.1073/pnas.96.1.49
|
| 47 |
Tas SW, Vervoordeldonk MJ, Tak PP (2009) Gene therapy targeting nuclear factor-kappaB: towards clinical application in inflammatory diseases and cancer. Curr Gene Therapy 9:160–170
https://doi.org/10.2174/156652309788488569
|
| 48 |
Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD (2011) NFkappaB in Aging and Disease. Aging Dis 2:449–465
|
| 49 |
Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736
https://doi.org/10.1038/nri2395
|
| 50 |
Wang L, Yi F, Fu L, Yang J, Wang S, Wang Z, Suzuki K, Sun L, Xu X, Yu Yet al. (2017) CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell 8:365–378
https://doi.org/10.1007/s13238-017-0397-3
|
| 51 |
Wang S, Hu B, Ding Z, Dang Y, Wu J, Li D, Liu X, Xiao B, Zhang W, Ren Ret al. (2018) ATF6 safeguards organelle homeostasis and cellular aging in human mesenchymal stem cells. Cell Discov 4:2
https://doi.org/10.1038/s41421-017-0003-0
|
| 52 |
Wu Z, Zhang W, Song M, Wang W, Wei G, Li W, Lei J, Huang Y, Sang Y, Chan Pet al. (2018) Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein Cell 9:333–350
https://doi.org/10.1007/s13238-018-0517-8
|
| 53 |
Yang J, Li J, Suzuki K, Liu X, Wu J, Zhang W, Ren R, Zhang W, Chan P, Izpisua Belmonte JCet al. (2017) Genetic enhancement in cultured human adult stem cells conferred by a single nucleotide recoding. Cell Res 27:1178–1181
https://doi.org/10.1038/cr.2017.86
|
| 54 |
Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16:284–287
https://doi.org/10.1089/omi.2011.0118
|
| 55 |
Yue R, Shen B, Morrison SJ (2016) Clec11a/osteolectin is an osteogenic growth factor that promotes the maintenance of the adult skeleton. eLife 5
https://doi.org/10.7554/eLife.18782
|
| 56 |
Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo Aet al. (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348:1160–1163
https://doi.org/10.1126/science.aaa1356
|
| 57 |
Zhang W, Song M, Qu J, Liu G (2018) Epigeneic modifications in cardiovascular aging and diseases. Circ Res (in press)
https://doi.org/10.1161/CIRCRESAHA.118.312497
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|