Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2019, Vol. 10 Issue (8) : 550-565    https://doi.org/10.1007/s13238-018-0597-5
REVIEW
Sialylation is involved in cell fate decision during development, reprogramming and cancer progression
Fenjie Li1,2, Junjun Ding1,2()
1. Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
2. Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
 Download: PDF(1373 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Sialylation, or the covalent addition of sialic acid to the terminal end of glycoproteins, is a biologically important modification that is involved in embryonic development, neurodevelopment, reprogramming, oncogenesis and immune responses. In this review, we have given a comprehensive overview of the current literature on the involvement of sialylation in cell fate decision during development, reprogramming and cancer progression. Sialylation is essential for early embryonic development and the deletion of UDP-GlcNAc 2-epimerase, a rate-limiting enzyme in sialic acid biosynthesis, is embryonically lethal. Furthermore, the sialyltransferase ST6GAL1 is required for somatic cell reprogramming, and its downregulation is associated with decreased reprogramming efficiency. In addition, sialylation levels and patterns are altered during cancer progression, indicating the potential of sialylated molecules as cancer biomarkers. Taken together, the current evidences demonstrate that sialylation is involved in crucial cell fate decision.

Keywords sialylation      cell fate      development      reprogramming      cancer     
Corresponding Author(s): Junjun Ding   
Issue Date: 22 August 2019
 Cite this article:   
Fenjie Li,Junjun Ding. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression[J]. Protein Cell, 2019, 10(8): 550-565.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-018-0597-5
https://academic.hep.com.cn/pac/EN/Y2019/V10/I8/550
1 M Abeln, KM Borst, S Cajic, H Thiesler, E Kats, I Albers, M Kuhn, V Kaever, RB Erdmann, A Munster-Kuhnelet al. (2017) Sialylation is dispensable for early murine embryonic development in vitro. ChemBioChem 18(13):1305–1316
https://doi.org/10.1002/cbic.201700083
2 T Angata, A Varki (2002) Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem Rev 102(2):439–469
https://doi.org/10.1021/cr000407m
3 T Angata, SC Kerr, DR Greaves, NM Varki, PR Crocker, A Varki (2002) Cloning and characterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J Biol Chem 277(27):24466–24474
https://doi.org/10.1074/jbc.M202833200
4 HA Badr, DM Alsadek, AA Darwish, AI Elsayed, BO Bekmanov, EM Khussainova, X Zhang, WC Cho, LB Djansugurova, CZ Li (2014) Lectin approaches for glycoproteomics in FDA-approved cancer biomarkers. Expert Rev Proteomics 11(2):227–236
https://doi.org/10.1586/14789450.2014.897611
5 SE Baldus, TK Zirbes, SP Monig, S Engel, E Monaca, K Rafiqpoor, FG Hanisch, C Hanski, J Thiele, H Pichlmaieret al. (1998) Histopathological subtypes and prognosis of gastric cancer are correlated with the expression of mucin-associated sialylated antigens: Sialosyl-Lewis(a), Sialosyl-Lewis(x) and sialosyl-Tn. Tumour Biol 19(6):445–453
https://doi.org/10.1159/000030036
6 UK Ballehaninna, RS Chamberlain (2012) The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal. J Gastrointest Oncol 3(2):105–119
7 GP Bhide, KJ Colley (2017) Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem Cell Biol 147(2):149–174
https://doi.org/10.1007/s00418-016-1520-x
8 E Bianconi, A Piovesan, F Facchin, A Beraudi, R Casadei, F Frabetti, L Vitale, MC Pelleri, S Tassani, F Pivaet al. (2013) An estimation of the number of cells in the human body. Ann Human Biol 40(6):463–471
https://doi.org/10.3109/03014460.2013.807878
9 G Blix (1936) Über die Kohlenhydratgruppen des Submaxillarismucins. Hoppe-Seyler's Zeitschrift für physiologische Chemie 240(1–2):43–54
https://doi.org/10.1515/bchm2.1936.240.1-2.43
10 FG Blix, A Gottschalk, E Klenk (1957) Proposed nomenclature in the field of neuraminic and sialic acids. Nature 179(4569):1088
https://doi.org/10.1038/1791088b0
11 R Bonasio, S Tu, D Reinberg (2010) Molecular signals of epigenetic states. Science 330(6004):612–616
https://doi.org/10.1126/science.1191078
12 GV Born, W Palinski (1985) Unusually high concentrations of sialic acids on the surface of vascular endothelia. Br J Exp Pathol 66(5):543–549
13 A Cazet, S Julien, M Bobowski, MA Krzewinski-Recchi, A Harduin-Lepers, S Groux-Degroote, P Delannoy (2010) Consequences of the expression of sialylated antigens in breast cancer. Carbohydr Res 345(10):1377–1383
https://doi.org/10.1016/j.carres.2010.01.024
14 X Chen, A Varki (2010) Advances in the biology and chemistry of sialic acids. ACS Chem Biol 5(2):163–176
https://doi.org/10.1021/cb900266r
15 CS Chu, PW Lo, YH Yeh, PH Hsu, SH Peng, YC Teng, ML Kang, CH Wong, LJ Juan (2014) O-GlcNAcylation regulates EZH2 protein stability and function. Proc Natl Acad Sci USA 111 (4):1355–1360
https://doi.org/10.1073/pnas.1323226111
16 BE Close, KJ Colley (1998) In vivo autopolysialylation and localization of the polysialyltransferases PST and STX. J Biol Chem 273(51):34586–34593
https://doi.org/10.1074/jbc.273.51.34586
17 SW Coates, T Jr Gurney, LW Sommers, M Yeh, CB Hirschberg (1980) Subcellular localization of sugar nucleotide synthetases. J Biol Chem 255(19):9225–9229
18 DG Comb, S Roseman (1958) Enzymic synthesis of N-acetyl-Dmannosamine. Biochim Biophys Acta 29(3):653–654
https://doi.org/10.1016/0006-3002(58)90031-3
19 AP Corfield (2015) Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta 1850(1):236–252
https://doi.org/10.1016/j.bbagen.2014.05.003
20 AP Corfield, N Myerscough, BF Warren, P Durdey, C Paraskeva, R Schauer (1999) Reduction of sialic acid O-acetylation in human colonic mucins in the adenoma-carcinoma sequence. Glycoconj J 16(6):307–317
https://doi.org/10.1023/A:1007026314792
21 HX Cui, H Wang, Y Wang, J Song, H Tian, C Xia, Y Shen (2016) ST3Gal III modulates breast cancer cell adhesion and invasion by altering the expression of invasion-related molecules. Oncol Rep 36(6):3317–3324
https://doi.org/10.3892/or.2016.5180
22 M Dalziel, C Whitehouse, I McFarlane, I Brockhausen, S Gschmeissner, T Schwientek, H Clausen, JM Burchell, J Taylor-Papadimitriou (2001) The relative activities of the C2GnT1 and ST3Gal-I glycosyltransferases determine O-glycan structure and expression of a tumor-associated epitope on MUC1. J Biol Chem 276(14):11007–11015
https://doi.org/10.1074/jbc.M006523200
23 TL Dao, C Ip, J Patel (1980) Serum sialyltransferase and 5’-nucleotidase as reliable biomarkers in women with breast cancer. J Natl Cancer Inst 65(3):529–534
24 LQ Deng, X Chen, A Varki (2013) Exploration of sialic acid diversity and biology using sialoglycan microarrays. Biopolymers 99 (10):650–665
https://doi.org/10.1002/bip.22314
25 JJ Dickson, M Messer (1978) Intestinal neuraminidase activity of suckling rats and other mammals. Relationship to the sialic acid content of milk. Biochem J 170(2):407–413
https://doi.org/10.1042/bj1700407
26 J Du, MA Meledeo, Z Wang, HS Khanna, VD Paruchuri, KJ Yarema (2009) Metabolic glycoengineering: sialic acid and beyond. Glycobiology 19(12):1382–1401
https://doi.org/10.1093/glycob/cwp115
27 J Du, S Hong, L Dong, B Cheng, L Lin, B Zhao, YG Chen, X Chen (2015) Dynamic sialylation in transforming growth factor-beta (TGF-beta)-induced epithelial to mesenchymal transition. J Biol Chem 290(19):12000–12013
https://doi.org/10.1074/jbc.M115.636969
28 N Duraker, S Hot, Y Polat, A Hobek, N Gencler, N Urhan (2007) CEA, CA 19-9, and CA 125 in the differential diagnosis of benign and malignant pancreatic diseases with or without jaundice. J Surg Oncol 95(2):142–147
https://doi.org/10.1002/jso.20604
29 M Eckhardt, R Gerardy-Schahn (1998) Genomic organization of the murine polysialyltransferase gene ST8SiaIV (PST-1). Glycobiology 8(12):1165–1172
https://doi.org/10.1093/glycob/8.12.1165
30 MJ Evans, MH Kaufman (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156
https://doi.org/10.1038/292154a0
31 EH Eylar, MA Madoff, OV Brody, JL Oncley (1962) The contribution of sialic acid to the surface charge of the erythrocyte. J Biol Chem 237:1992–2000
32 SC Fleming, S Smith, D Knowles, A Skillen, CH Self (1998) Increased sialylation of oligosaccharides on IgG paraproteins–a potential new tumour marker in multiple myeloma. J Clin Pathol 51(11):825–830
https://doi.org/10.1136/jcp.51.11.825
33 MM Fuster, JD Esko (2005) The sweet and sour of cancer: Glycans as novel therapeutic targets. Nat Rev Cancer 5(7):526–542
https://doi.org/10.1038/nrc1649
34 B Gal, MJ Ruano, R Puente, LA Garcia-Pardo, R Rueda, A Gil, P Hueso (1997) Developmental changes in UDP-N-acetylglucosamine 2-epimerase activity of rat and guinea-pig liver. Comp Biochem Physiol B: Biochem Mol Biol 118(1):13–15
https://doi.org/10.1016/S0305-0491(97)00016-3
35 R Gerardy-Schahn, P Delannoy, M von Itzstein (2015) SialoGlyco chemistry and biology II tools and techniques to identify and capture sialoglycans preface. Sialoglyco Chemistry and Biology Ii 367:V–Vii
https://doi.org/10.1007/978-3-319-21317-0
36 S Ghosh, S Roseman (1961) Enzymatic phosphorylation of N-acetyl-D-mannosamine. Proc Natl Acad Sci USA 47:955–958
https://doi.org/10.1073/pnas.47.7.955
37 S Hakomori (1985) Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives. Cancer Res 45(6):2405–2414
38 T Hamamoto, M Kawasaki, N Kurosawa, T Nakaoka, YC Lee, S Tsuji (1993) Two step single primer mediated polymerase chain reaction. Application to cloning of putative mouse, beta-galactoside alpha 2,6-sialyltransferase cDNA. Bioorg Med Chem 1(2):141–145
https://doi.org/10.1016/S0968-0896(00)82111-2
39 JA Hanover (2001) Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB J 15(11):1865–1876
https://doi.org/10.1096/fj.01-0094rev
40 K Hasehira, H Tateno, Y Onuma, Y Ito, M Asashima, J Hirabayashi (2012) Structural and quantitative evidence for dynamic glycome shift on production of induced pluripotent stem cells. Mol Cell Proteomics 11(12):1913–1923
https://doi.org/10.1074/mcp.M112.020586
41 K Hata, T Tochigi, I Sato, S Kawamura, K Shiozaki, T Wada, K Takahashi, S Moriya, K Yamaguchi, M Hosonoet al. (2015) Increased sialidase activity in serum of cancer patients: Identification of sialidase and inhibitor activities in human serum. Cancer Sci 106(4):383–389
https://doi.org/10.1111/cas.12627
42 K Hatano, Y Miyamoto, M Mori, K Nimura, Y Nakai, N Nonomura, Y Kaneda (2012) Androgen-regulated transcriptional control of sialyltransferases in prostate cancer cells. PLoS ONE 7(2): e31234
https://doi.org/10.1371/journal.pone.0031234
43 M Henderson, D Kessel (1977) Alterations in plasma sialyltransferase levels in patients with neoplastic disease. Cancer 39(3):1129–1134
https://doi.org/10.1002/1097-0142(197703)39:3<1129::AID-CNCR2820390318>3.0.CO;2-3
44 JE Hudak, SM Canham, CR Bertozzi (2014) Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat Chem Biol 10(1):69–75
https://doi.org/10.1038/nchembio.1388
45 Y Ikehara, N Shimizu, M Kono, S Nishihara, H Nakanishi, T Kitamura, H Narimatsu, S Tsuji, M Tatematsu (1999) A novel glycosyltransferase with a polyglutamine repeat; a new candidate for GD1alpha synthase (ST6GalNAc V)(1). FEBS Lett 463(1–2):92–96
https://doi.org/10.1016/S0014-5793(99)01605-1
46 WM James, WS Agnew (1987) Multiple oligosaccharide chains in the voltage-sensitive Na channel from electrophorus electricus: evidence for alpha-2,8-linked polysialic acid. Biochem Biophys Res Commun 148(2):817–826
https://doi.org/10.1016/0006-291X(87)90949-1
47 C Jandus, KF Boligan, O Chijioke, H Liu, M Dahlhaus, T Demoulins, C Schneider, M Wehrli, RE Hunger, GM Baerlocheret al. (2014) Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J Clin Investig 124(4):1810–1820
https://doi.org/10.1172/JCI65899
48 C Jiang, S Liu, W He, B Zhang, L Xia (2017) The prognostic and predictive value of carbohydrate antigen 19-9 in metastatic colorectal cancer patients with first line bevacizumab containing chemotherapy. J Cancer 8(8):1410–1416
https://doi.org/10.7150/jca.18325
49 RB Jones, KA Dorsett, AB Hjelmeland, SL Bellis (2018) The ST6Gal-I sialyltransferase protects tumor cells against hypoxia by enhancing HIF-1α signaling. J Biol Chem 293(15):jbc-RA117
https://doi.org/10.1074/jbc.RA117.001194
50 GW Jourdian, AL Swanson, D Watson, S Roseman (1964) Isolation of sialic acid 9-phosphatase from human erythrocytes. J Biol Chem 239:PC2714-6
51 Y Kakugawa, T Wada, K Yamaguchi, H Yamanami, K Ouchi, I Sato, T Miyagi (2002) Up-regulation of plasma membrane-associated ganglioside sialidase (Neu3) in human colon cancer and its involvement in apoptosis suppression. Proc Natl Acad Sci USA 99(16):10718–10723
https://doi.org/10.1073/pnas.152597199
52 R Kannagi (2007) Carbohydrate antigen sialyl Lewis a–its pathophysiological significance and induction mechanism in cancer progression. Chang Gung Med J 30(3):189–209
53 J Kashef, CM Franz (2015) Quantitative methods for analyzing cellcell adhesion in development. Dev Biol 401(1):165–174
https://doi.org/10.1016/j.ydbio.2014.11.002
54 E Kiermaier, C Moussion, CT Veldkamp, R Gerardy-Schahn, I de Vries, LG Williams, GR Chaffee, AJ Phillips, F Freiberger, R Imreet al. (2016) Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science 351(6269):186–190
https://doi.org/10.1126/science.aad0512
55 E Klenk (1941) Neuraminsäure, das Spaltprodukt eines neuen Gehirnlipoids. Hoppe-Seyler's Zeitschrift für physiologische Chemie 268(1–2):50–58
https://doi.org/10.1515/bchm2.1941.268.1-2.50
56 G Kochlamazashvili, O Senkov, S Grebenyuk, C Robinson, MF Xiao, K Stummeyer, R Gerardy-Schahn, AK Engel, L Feig, A Semyanovet al. (2010) Neural cell adhesion molecule-associated polysialic acid regulates synaptic plasticity and learning by restraining the signaling through GluN2B-containing NMDA receptors. J Neurosci 30(11):4171–4183
https://doi.org/10.1523/JNEUROSCI.5806-09.2010
57 K Kodar, J Stadlmann, K Klaamas, B Sergeyev, O Kurtenkov (2012) Immunoglobulin G Fc N-glycan profiling in patients with gastric cancer by LC-ESI-MS: relation to tumor progression and survival. Glycoconj J 29(1):57–66
https://doi.org/10.1007/s10719-011-9364-z
58 M Kono, S Takashima, H Liu, M Inoue, N Kojima, YC Lee, T Hamamoto, S Tsuji (1998) Molecular cloning and functional expression of a fifth-type alpha 2,3-sialyltransferase (mST3Gal V: GM3 synthase). Biochem Biophys Res Commun 253(1):170–175
https://doi.org/10.1006/bbrc.1998.9768
59 MA Krzewinski-Recchi, S Julien, S Juliant, M Teintenier-Lelievre, B Samyn-Petit, MD Montiel, AM Mir, M Cerutti, A Harduin-Lepers, P Delannoy (2003) Identification and functional expression of a second human beta-galactoside alpha 2,6-sialyltransferase, ST6Gal II. Eur J Biochem 270(5):950–961
https://doi.org/10.1046/j.1432-1033.2003.03458.x
60 N Kurosawa, M Inoue, Y Yoshida, S Tsuji (1996) Molecular cloning and genomic analysis of mouse Galbeta 1, 3GalNAc-specific GalNAc alpha2,6-sialyltransferase. J Biol Chem 271(25):15109–15116
https://doi.org/10.1074/jbc.271.25.15109
61 KS Lau, EA Partridge, A Grigorian, CI Silvescu, VN Reinhold, M Demetriou, JW Dennis (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129(1):123–134
https://doi.org/10.1016/j.cell.2007.01.049
62 N Le Marer, V Laudet, EC Svensson, H Cazlaris, B Van Hille, C Lagrou, D Stehelin, J Montreuil, A Verbert, P Delannoy (1992) The c-Ha-ras oncogene induces increased expression of beta-galactoside alpha-2, 6-sialyltransferase in rat fibroblast (FR3T3) cells. Glycobiology 2(1):49–56
https://doi.org/10.1093/glycob/2.1.49
63 YC Lee, N Kojima, E Wada, N Kurosawa, T Nakaoka, T Hamamoto, S Tsuji (1994) Cloning and expression of cDNA for a new type of Gal beta 1,3GalNAc alpha 2,3-sialyltransferase. J Biol Chem 269 (13):10028–10033
64 RH Li, JL Liang, S Ni, T Zhou, XB Qing, HP Li, WZ He, JK Chen, F Li, QA Zhuanget al. (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7(1):51–63
https://doi.org/10.1016/j.stem.2010.04.014
65 Y Liang, P Xu, Q Zou, H Luo, W Yu (2018) An epigenetic perspective on tumorigenesis: loss of cell identity, enhancer switching, and NamiRNA network. Semin Cancer Biol.
https://doi.org/10.1016/j.semcancer.2018.09.004
66 XP Liu, H Sun, J Qi, LL Wang, SW He, J Liu, CQ Feng, CL Chen, W Li, YQ Guoet al. (2013) Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nat Cell Biol 15(7):829-+
https://doi.org/10.1038/ncb2765
67 Lowe JB (2 003) Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr Opin Cell Biol 15(5):531–538
https://doi.org/10.1016/j.ceb.2003.08.002
68 JA Ludwig, JN Weinstein (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5(11):845–856
https://doi.org/10.1038/nrc1739
69 MS Macauley, PR Crocker, JC Paulson (2014) Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 14(10):653–666
https://doi.org/10.1038/nri3737
70 RALBJG Macbeth (1962) Plasma glycoproteins in various disease states including carcinoma. Cancer Res 22(10):1170–1176
71 RK Margolis, RU Margolis (1983) Distribution and characteristics of polysialosyl oligosaccharides in nervous tissue glycoproteins. Biochem Biophys Res Commun 116(3):889–894
https://doi.org/10.1016/S0006-291X(83)80225-3
72 MN Melo-Braga, M Schulz, QY Liu, A Swistowski, G Palmisano, K Engholm-Keller, L Jakobsen, XM Zeng, MR Larsen (2014)Comprehensive quantitative comparison of the membrane proteome, phosphoproteome, and sialiome of human embryonic and neural stem cells. Mol Cell Proteomics 13(1):311–328
https://doi.org/10.1074/mcp.M112.026898
73 L Mincarelli, A Lister, J Lipscombe, IC Macaulay (2018) Defining cell identity with single-cell omics. Proteomics 18(18):e1700312
https://doi.org/10.1002/pmic.201700312
74 T Miyagi, K Takahashi, K Hata, K Shiozaki, K Yamaguchi (2012) Sialidase significance for cancer progression. Glycoconj J 29(8–9):567–577
https://doi.org/10.1007/s10719-012-9394-1
75 N Moris, C Pina, AM Arias (2016) Transition states and cell fate decisions in epigenetic landscapes. Nat Rev Genet 17(11):693–703
https://doi.org/10.1038/nrg.2016.98
76 VA Moyer, USPST Force (2012) Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 157(2):120–134
https://doi.org/10.7326/0003-4819-157-2-201207170-00459
77 M Muhlenhoff, M Rollenhagen, S Werneburg, R Gerardy-Schahn, H Hildebrandt (2013) Polysialic acid: versatile modification of NCAM, SynCAM 1 and neuropilin-2. Neurochem Res 38(6):1134–1143
https://doi.org/10.1007/s11064-013-0979-2
78 T Nakagoe, T Sawai, T Tsuji, M Jibiki, A Nanashima, H Yamaguchi, N Kurosaki, T Yasutake, H Ayabe (2001) Circulating sialyl Lewis (x), sialyl Lewis(a), and sialyl Tn antigens in colorectal cancer patients: multivariate analysis of predictive factors for serum antigen levels. J Gastroenterol 36(3):166–172
https://doi.org/10.1007/s005350170124
79 G Nicoll, T Avril, K Lock, K Furukawa, N Bovin, PR Crocker (2003) Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and-independent mechanisms. Eur J Immunol 33(6):1642–1648
https://doi.org/10.1002/eji.200323693
80 H Nomura, Y Tamada, T Miyagi, A Suzuki, M Taira, N Suzuki, N Susumu, T Irimura, D Aoki (2006) Expression of NEU3 (plasma membrane-associated sialidase) in clear cell adenocarcinoma of the ovary: its relationship with T factor of pTNM classification. Oncol Res 16(6):289–297
https://doi.org/10.3727/000000006783981035
81 MK O’Reilly, JC Paulson (2009) Siglecs as targets for therapy in immune-cell-mediated disease. Trends Pharmacol Sci 30(5):240–248
https://doi.org/10.1016/j.tips.2009.02.005
82 T Okajima, S, Fukumoto H Miyazaki, H Ishida, M Kiso, K Furukawa, T Urano, K Furukawa (1999) Molecular cloning of a novel alpha 2,3-sialyltransferase (ST3Gal VI) that sialylates type II lactosamine structures on glycoproteins and glycolipids. J Biol Chem 274(17):11479–11486
https://doi.org/10.1074/jbc.274.17.11479
83 T Okajima, HH Chen, H Ito, M Kiso, T Tai, K Furukawa, T Urano, K Furukawa (2000) Molecular cloning and expression of mouse GD1alpha/GT1aalpha/GQ1balpha synthase (ST6GalNAc VI) gene. J Biol Chem 275(10):6717–6723
https://doi.org/10.1074/jbc.275.10.6717
84 RB Parekh, RA Dwek, BJ Sutton, DL Fernandes, A Leung, D Stanworth, TW Rademacher, T Mizuochi, T Taniguchi, K Matsutaet al. (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316(6027):452–457
https://doi.org/10.1038/316452a0
85 D Pihikova, P Kasak, P Kubanikova, R Sokol, J Tkac (2016) Aberrant sialylation of a prostate-specific antigen: Electrochemical labelfree glycoprofiling in prostate cancer serum samples. Anal Chim Acta 934:72–79
https://doi.org/10.1016/j.aca.2016.06.043
86 SS Pinho, CA Reis (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15(9):540–555
https://doi.org/10.1038/nrc3982
87 M Pucic, A Knezevic, J Vidic, B Adamczyk, M Novokmet, O Polasek, O Gornik, S Supraha-Goreta, MR Wormald, I Redzicet al. (2011) High throughput isolation and glycosylation analysis of IgGvariability and heritability of the IgG glycome in three isolated human populations. Mol Cell Proteomics 10(10):M111 010090
https://doi.org/10.1074/mcp.M111.010090
88 GN Raval, DD Patel, LJ Parekh, JB Patel, MH Shah, PS Patel (2003) Evaluation of serum sialic acid, sialyltransferase and sialoproteins in oral cavity cancer. Oral Dis 9(3):119–128
https://doi.org/10.1034/j.1601-0825.2003.01795.x
89 S Roseman, GW Jourdian, D Watson, R Rood (1961) Enzymatic synthesis of sialic acid 9-phosphates. Proc Natl Acad Sci USA 47:958–961
https://doi.org/10.1073/pnas.47.7.958
90 S Saito, Y Onuma, Y Ito, H Tateno, M Toyoda, A Hidenori, K Nishino, E Chikazawa, Y Fukawatase, Y Miyagawaet al. (2011) Possible linkages between the inner and outer cellular states of human induced pluripotent stem cells. BMC Syst Biol 5(Suppl 1):S17
https://doi.org/10.1186/1752-0509-5-S1-S17
91 K Sakuma, M Aoki, R Kannagi (2012) Transcription factors c-Myc and CDX2 mediate E-selectin ligand expression in colon cancer cells undergoing EGF/bFGF-induced epithelial-mesenchymal transition. Proc Natl Acad Sci USA 109(20):7776–7781
https://doi.org/10.1073/pnas.1111135109
92 R Saldova, MR Wormald, RA Dwek, PM Rudd (2008) Glycosylation changes on serum glycoproteins in ovarian cancer may contribute to disease pathogenesis. Dis Markers 25(4–5):219–232
https://doi.org/10.1155/2008/601583
93 F Santos-Silva, A Fonseca, T Caffrey, F Carvalho, P Mesquita, C Reis, R Almeida, L David, MA Hollingsworth (2005) Thomsen-Friedenreich antigen expression in gastric carcinomas is associated with MUC1 mucin VNTR polymorphism. Glycobiology 15(5):511–517
https://doi.org/10.1093/glycob/cwi027
94 K Sasaki, E Watanabe, K Kawashima, S Sekine, T Dohi, M Oshima, N Hanai, T Nishi, M Hasegawa (1993) Expression cloning of a novel Gal beta (1-3/1-4) GlcNAc alpha 2,3-sialyltransferase using lectin resistance selection. J Biol Chem 268(30):22782–22787
95 C Sato, K Kitajima (2013) Disialic, oligosialic and polysialic acids: distribution, functions and related disease. J Biochem 154(2):115–136
https://doi.org/10.1093/jb/mvt057
96 H Sawhney, CA Kumar (2011) Correlation of serum biomarkers (TSA & LSA) and epithelial dysplasia in early diagnosis of oral precancer and oral cancer. Cancer Biomark 10(1):43–49
https://doi.org/10.3233/CBM-2012-0226
97 FH Schroeder, J Hugosson, MJ Roobol, TLJ Tammela, S Ciatto, V Nelen, M Kwiatkowski, M Lujan, H Lilja, M Zappaet al. (2009) Screening and Prostate-Cancer Mortality in a Randomized European Study. N Engl J Med 360(13):1320–1328
https://doi.org/10.1056/NEJMoa0810084
98 MJ Schultz, AT Holdbrooks, A Chakraborty, WE Grizzle, CN Landen, DJ Buchsbaum, MG Conner, RC Arend, KJ Yoon, CA Kluget al. (2016) The tumor-associated glycosyltransferase ST6Gal-I regulates stem cell transcription factors and confers a cancer stem cell phenotype. Cancer Res 76(13):3978–3988
https://doi.org/10.1158/0008-5472.CAN-15-2834
99 M Schwarzkopf, KP Knobeloch, E Rohde, S Hinderlich, N Wiechens, L Lucka, I Horak, W Reutter, R Horstkorte (2002) Sialylation is essential for early development in mice. Proc Natl Acad Sci USA 99(8):5267–5270
https://doi.org/10.1073/pnas.072066199
100 EC Seales, GA Jurado, A Singhal, SL Bellis (2003) Ras oncogene directs expression of a differentially sialylated, functionally altered beta1 integrin. Oncogene 22(46):7137–7145
https://doi.org/10.1038/sj.onc.1206834
101 EC Seales, FM Shaikh, AV Woodard-Grice, P Aggarwal, AC McBrayer, KM Hennessy, SL Bellis (2005) A protein kinase C/Ras/ERK signaling pathway activates myeloid fibronectin receptors by altering beta1 integrin sialylation. J Biol Chem 280(45):37610–37615
https://doi.org/10.1074/jbc.M508476200
102 MH Shah, SD Telang, PM Shah, PS Patel (2008) Tissue and serum alpha 2-3- and alpha 2-6-linkage specific sialylation changes in oral carcinogenesis. Glycoconj J 25(3):279–290
https://doi.org/10.1007/s10719-007-9086-4
103 M Stojkovic Lalosevic, S Stankovic, M Stojkovic, V Markovic, I Dimitrijevic, J Lalosevic, J Petrovic, M Brankovic, A Pavlovic Markovic, Z Krivokapic (2017) Can preoperative CEA and CA19-9 serum concentrations suggest metastatic disease in colorectal cancer patients? Hell J Nucl Med 20(1):41–45
104 O Suzuki, M Abe, Y Hashimoto (2015) Sialylation by betagalactoside alpha-2,6-sialyltransferase and N-glycans regulate cell adhesion and invasion in human anaplastic large cell lymphoma. Int J Oncol 46(3):973–980
https://doi.org/10.3892/ijo.2015.2818
105 L Svennerholm, K Bostrom, P Fredman, JE Mansson, B Rosengren, BM Rynmark (1989) Human brain gangliosides: developmental changes from early fetal stage to advanced age. Biochim Biophys Acta 1005(2):109–117
https://doi.org/10.1016/0005-2760(89)90175-6
106 AF Swindall, SL Bellis (2011) Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem 286(26):22982–22990
https://doi.org/10.1074/jbc.M110.211375
107 M Tajiri, C Ohyama, Y Wada (2008) Oligosaccharide profiles of the prostate specific antigen in free and complexed forms from the prostate cancer patient serum and in seminal plasma: a glycopeptide approach. Glycobiology 18(1):2–8
https://doi.org/10.1093/glycob/cwm117
108 K Takahashi, S Yamanaka (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676
https://doi.org/10.1016/j.cell.2006.07.024
109 S Takashima, Y Tachida, T Nakagawa, T Hamamoto, S Tsuji (1999) Quantitative analysis of expression of mouse sialyltransferase genes by competitive PCR. Biochem Biophys Res Commun 260(1):23–27
https://doi.org/10.1006/bbrc.1999.0794
110 S Takashima, HK Ishida, T Inazu, T Ando, H Ishida, M Kiso, S Tsuji, M Tsujimoto (2002) Molecular cloning and expression of a sixth type of alpha 2,8-sialyltransferase (ST8Sia VI) that sialylates O-glycans. J Biol Chem 277(27):24030–24038
https://doi.org/10.1074/jbc.M112367200
111 E Theodoratou, K Thaci, F Agakov, MN Timofeeva, J Stambuk, M Pucic-Bakovic, F Vuckovic, P Orchard, A Agakova, FV Dinet al. (2016) Glycosylation of plasma IgG in colorectal cancer prognosis. Sci Rep 6:28098
https://doi.org/10.1038/srep28098
112 FM Uckun, P Goodman, H Ma, I Dibirdik, S Qazi (2010) CD22 EXON 12 deletion as a pathogenic mechanism of human B-precursor leukemia. Proc Natl Acad Sci USA 107(39):16852–16857
https://doi.org/10.1073/pnas.1007896107
113 CDM van Karnebeek, L Bonafe, XY Wen, M Tarailo-Graovac, S Balzano, B Royer-Bertrand, A Ashikov, L Garavelli, I Mammi, L Turollaet al. (2017) NANS-mediated synthesis of sialic acid is required for brain and skeletal development (vol 48, pg 777, 2016). Nat Genet 49(6):969
https://doi.org/10.1038/ng0617-969a
114 A Varki (2008) Sialic acids in human health and disease. Trends Mol Med 14(8):351–360
https://doi.org/10.1016/j.molmed.2008.06.002
115 F Vuckovic, E Theodoratou, K Thaci, M Timofeeva, A Vojta, J Stambuk, M Pucic-Bakovic, PM Rudd, L Derek, D Serviset al. (2016) IgG glycome in colorectal cancer. Clin Cancer Res 22(12):3078–3086
https://doi.org/10.1158/1078-0432.CCR-15-1867
116 B Wang (2009) Sialic acid is an essential nutrient for brain development and cognition. Annu Rev Nutr 29:177–222
https://doi.org/10.1146/annurev.nutr.28.061807.155515
117 B Wang (2012) Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Advances in Nutrition 3(3):465s–472s
https://doi.org/10.3945/an.112.001875
118 B Wang, J Brand-Miller, P McVeagh, P Petocz (2001) Concentration and distribution of sialic acid in human milk and infant formulas. Am J Clin Nutr 74(4):510–515
https://doi.org/10.1093/ajcn/74.4.510
119 B Wang, P McVeagh, P Petocz, J Brand-Miller (2003) Brain ganglioside and glycoprotein sialic acid in breastfed compared with formula-fed infants. Am J Clin Nutr 78(5):1024–1029
https://doi.org/10.1093/ajcn/78.5.1024
120 YC Wang, SE Peterson, JF Loring (2014) Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res 24(2):143–160
https://doi.org/10.1038/cr.2013.151
121 YC Wang, JW Stein, CL Lynch, HT Tran, CY Lee, R Coleman, A Hatch, VG Antontsev, HS Chy, CM O’Brienet al. (2015) Glycosyltransferase ST6GAL1 contributes to the regulation of pluripotency in human pluripotent stem cells. Sci Rep 5:13317
https://doi.org/10.1038/srep13317
122 KS Weber, R Alon, LB Klickstein (2004) Sialylation of ICAM-2 on platelets impairs adhesion of leukocytes via LFA-1 and DC-SIGN. Inflammation 28(4):177–188
https://doi.org/10.1023/B:IFLA.0000049042.73926.eb
123 S Werneburg, FF Buettner, L Erben, M Mathews, H Neumann, M Muhlenhoff, H Hildebrandt (2016) Polysialylation and lipopolysaccharide-induced shedding of E-selectin ligand-1 and neuropilin-2 by microglia and THP-1 macrophages. Glia 64(8):1314–1330
https://doi.org/10.1002/glia.23004
124 U Yabe, C Sato, T Matsuda, K Kitajima (2003) Polysialic acid in human milk—CD36 is a new member of mammalian polysialic acid-containing glycoprotein. J Biol Chem 278(16):13875–13880
https://doi.org/10.1074/jbc.M300458200
125 X Yang, K Qian (2017) Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol 18(7):452–465
https://doi.org/10.1038/nrm.2017.22
126 PMD Yang, U Rutishauser (1994) Role of charge and hydration in effects of polysialic acid on molecular interactions on and between cell membranes. J Biol Chem 269(37):23039–23044
127 T Yoneyama, C Ohyama, S Hatakeyama, S Narita, T Habuchi, T Koie, K Mori, KIPJ Hidari, M Yamaguchi, T Suzukiet al. (2014) Measurement of aberrant glycosylation of prostate specific antigen can improve specificity in early detection of prostate cancer. Biochem Biophys Res Commun 448(4):390–396
https://doi.org/10.1016/j.bbrc.2014.04.107
128 Y Yoshida, N Kojima, S Tsuji (1995) Molecular cloning and characterization of a third type of N-glycan alpha 2,8-sialyltransferase from mouse lung. J Biochem 118(3):658–664
https://doi.org/10.1093/oxfordjournals.jbchem.a124960
129 D Zhang, BC Chen, YM Wang, P Xia, CY He, YJ Liu, RQ Zhang, M Zhang, ZL Li (2016) Disease-specific IgG Fc N-glycosylation as personalized biomarkers to differentiate gastric cancer from benign gastric diseases. Sci Rep 6:25957
https://doi.org/10.1038/srep25957
130 J Zhao, DM Simeone, D Heidt, MA Anderson, DM Lubman (2006) Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: Application to pancreatic cancer serum. J Proteome Res 5(7):1792–1802
https://doi.org/10.1021/pr060034r
131 ZA Zhao, Y Yu, HX Ma, XX Wang, X Lu, Y Zhai, X Zhang, H Wang, L Li (2015) The roles of ERAS during cell lineage specification of mouse early embryonic development. Open Biol 5(8):150092
https://doi.org/10.1098/rsob.150092
132 T Zhao, Y Fu, J Zhu, Y Liu, Q Zhang, Z Yi, S Chen, Z Jiao, X Xu, J Xuet al. (2018) Single-cell RNA-Seq reveals dynamic early embryonic-like programs during chemical reprogramming. Cell Stem Cell 23(1):31–45 e7
https://doi.org/10.1016/j.stem.2018.05.025
133 Q Zhou, DA Melton (2008) Extreme makeover: converting one cell into another. Cell Stem Cell 3(4):382–388
https://doi.org/10.1016/j.stem.2008.09.015
[1] Mona Teng, Stanley Zhou, Changmeng Cai, Mathieu Lupien, Housheng Hansen He. Pioneer of prostate cancer: past, present and the future of FOXA1[J]. Protein Cell, 2021, 12(1): 29-38.
[2] Ruimin Xu, Chong Li, Xiaoyu Liu, Shaorong Gao. Insights into epigenetic patterns in mammalian early embryos[J]. Protein Cell, 2021, 12(1): 7-28.
[3] Henry Y. Jiang, Sara Najmeh, Guy Martel, Elyse MacFadden-Murphy, Raquel Farias, Paul Savage, Arielle Leone, Lucie Roussel, Jonathan Cools-Lartigue, Stephen Gowing, Julie Berube, Betty Giannias, France Bourdeau, Carlos H. F. Chan, Jonathan D. Spicer, Rebecca McClure, Morag Park, Simon Rousseau, Lorenzo E. Ferri. Activation of the pattern recognition receptor NOD1 augments colon cancer metastasis[J]. Protein Cell, 2020, 11(3): 187-201.
[4] Ruyi Xu, Yi Li, Yang Liu, Jianwei Qu, Wen Cao, Enfan Zhang, Jingsong He, Zhen Cai. How are MCPIP1 and cytokines mutually regulated in cancer-related immunity?[J]. Protein Cell, 2020, 11(12): 881-893.
[5] Weiwei Jiang, Fangfang Cai, Huangru Xu, Yanyan Lu, Jia Chen, Jia Liu, Nini Cao, Xiangyu Zhang, Xiao Chen, Qilai Huang, Hongqin Zhuang, Zi-Chun Hua. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner[J]. Protein Cell, 2020, 11(11): 825-845.
[6] Qiang Hong, Cong Li, Ruhong Ying, Heming Lin, Jingqiu Li, Yu Zhao, Hanhua Cheng, Rongjia Zhou. Loss-of-function of sox3 causes follicle development retardation and reduces fecundity in zebrafish[J]. Protein Cell, 2019, 10(5): 347-364.
[7] Wei Shao, Shasha Li, Lu Li, Kequan Lin, Xinhong Liu, Haiyan Wang, Huili Wang, Dong Wang. Chemical genomics reveals inhibition of breast cancer lung metastasis by Ponatinib via c-Jun[J]. Protein Cell, 2019, 10(3): 161-177.
[8] Yaqin Du, Ting Wang, Jun Xu, Chaoran Zhao, Haibo Li, Yao Fu, Yaxing Xu, Liangfu Xie, Jingru Zhao, Weifeng Yang, Ming Yin, Jinhua Wen, Hongkui Deng. Efficient derivation of extended pluripotent stem cells from NOD-scid Il2rg−/− mice[J]. Protein Cell, 2019, 10(1): 31-42.
[9] Boyi Zhang, Fei Chen, Qixia Xu, Liu Han, Jiaqian Xu, Libin Gao, Xiaochen Sun, Yiwen Li, Yan Li, Min Qian, Yu Sun. Revisiting ovarian cancer microenvironment: a friend or a foe?[J]. Protein Cell, 2018, 9(8): 674-692.
[10] Yelei Guo, Kaichao Feng, Yao Wang, Weidong Han. Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment[J]. Protein Cell, 2018, 9(6): 516-526.
[11] Jia Yang, Jun Yu. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get[J]. Protein Cell, 2018, 9(5): 474-487.
[12] Xiao-xiao Xu, Han Wan, Li Nie, Tong Shao, Li-xin Xiang, Jian-zhong Shao. RIG-I: a multifunctional protein beyond a pattern recognition receptor[J]. Protein Cell, 2018, 9(3): 246-253.
[13] Nicole M. Anderson, Patrick Mucka, Joseph G. Kern, Hui Feng. The emerging role and targetability of the TCA cycle in cancer metabolism[J]. Protein Cell, 2018, 9(2): 216-237.
[14] John M. Dean, Irfan J. Lodhi. Structural and functional roles of ether lipids[J]. Protein Cell, 2018, 9(2): 196-206.
[15] Yanjing Song, Chuan Tong, Yao Wang, Yunhe Gao, Hanren Dai, Yelei Guo, Xudong Zhao, Yi Wang, Zizheng Wang, Weidong Han, Lin Chen. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo[J]. Protein Cell, 2018, 9(10): 867-878.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed