|
|
Telomere-dependent and telomereindependent roles of RAP1 in regulating human stem cell homeostasis |
Xing Zhang1,2,6, Zunpeng Liu1,6, Xiaoqian Liu1, Si Wang2,3,7, Yiyuan Zhang3,6, Xiaojuan He2, Shuhui Sun3, Shuai Ma3, Ng Shyh-Chang1,6,7, Feng Liu5,6,7, Qiang Wang5,6,7, Xiaoqun Wang3,6,7, Lin Liu4, Weiqi Zhang2,3,6,7( ), Moshi Song5,6,7( ), Guang-Hui Liu2,3,6,7,8,9( ), Jing Qu1,6,7( ) |
1. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 2. Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China 3. National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China 4. State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China 5. State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 6. University of Chinese Academy of Sciences, Beijing 100049, China 7. Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China 8. Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China 9. Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China |
|
|
Abstract RAP1 is a well-known telomere-binding protein, but its functions in human stem cells have remained unclear. Here we generated RAP1-deficient human embryonic stem cells (hESCs) by using CRISPR/Cas9 technique and obtained RAP1-deficient human mesenchymal stem cells (hMSCs) and neural stem cells (hNSCs) via direc- ted differentiation. In both hMSCs and hNSCs, RAP1 not only negatively regulated telomere length but also acted as a transcriptional regulator of RELN by tuning the methylation status of its gene promoter. RAP1 defi- ciency enhanced self-renewal and delayed senescence in hMSCs, but not in hNSCs, suggesting complicated lineage-specific effects of RAP1 in adult stem cells. Altogether, these results demonstrate for the first time that RAP1 plays both telomeric and nontelomeric roles in regulating human stem cell homeostasis.
|
Keywords
RAP1
stem cell
telomere
RELN
methylation
|
Corresponding Author(s):
Weiqi Zhang,Moshi Song,Guang-Hui Liu,Jing Qu
|
Issue Date: 24 September 2019
|
|
1 |
S Anders, PT Pyl, W Huber (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Nat Methods 31:166–169
https://doi.org/10.1093/bioinformatics/btu638
|
2 |
N Arnoult, A Van Beneden, A Decottignies (2012) Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1alpha. Nat Struct Mol Biol 19:948–956
https://doi.org/10.1038/nsmb.2364
|
3 |
JN Bandaria, P Qin, V Berk, S Chu, A Yildiz (2016) Shelterin Protects Chromosome Ends by Compacting Telomeric Chromatin. Cell 164:735–746
https://doi.org/10.1016/j.cell.2016.01.036
|
4 |
EH Blackburn (2001) Switching and signaling at the telomere. Cell 106:661–673
https://doi.org/10.1016/S0092-8674(01)00492-5
|
5 |
EH Blackburn, ES Epel, J Lin (2015) Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science 350:1193–1198
https://doi.org/10.1126/science.aab3389
|
6 |
T Bourgeron, Z Xu, M Doumic, MT Teixeira (2015) The asymmetry of telomere replication contributes to replicative senescence heterogeneity. Sci Rep 5:15326
https://doi.org/10.1038/srep15326
|
7 |
RT Calado, B Dumitriu (2013) Telomere dynamics in mice and humans. Semin Hematol 50:165–174
https://doi.org/10.1053/j.seminhematol.2013.03.030
|
8 |
RM Cawthon (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30:e47
https://doi.org/10.1093/nar/30.10.e47
|
9 |
J Chen, EE Bardes, BJ Aronow, AG Jegga (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids Res 37:W305–311
https://doi.org/10.1093/nar/gkp427
|
10 |
JA Dahl, P Collas (2008) A rapid micro chromatin immunoprecipitation assay (microChIP). Nat Protoc 3:1032–1045
https://doi.org/10.1038/nprot.2008.68
|
11 |
F Debacq-Chainiaux, JD Erusalimsky, J Campisi, O Toussaint (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806
https://doi.org/10.1038/nprot.2009.191
|
12 |
T Di Palma, MG Filippone, GM Pierantoni, A Fusco, S Soddu, M Zannini (2013) Pax8 has a critical role in epithelial cell survival and proliferation. Cell Death Dis 4:e729
https://doi.org/10.1038/cddis.2013.262
|
13 |
Y Ding, X Liang, Y Zhang, L Yi, HC Shum, Q Chen, BP Chan, H Fan, Z Liu, V Tergaonkaret al. (2018) Rap1 deficiency-provoked paracrine dysfunction impairs immunosuppressive potency of mesenchymal stem cells in allograft rejection of heart transplantation. Cell Death Dis 9:386
https://doi.org/10.1038/s41419-018-0414-3
|
14 |
T Doerks, RR Copley, J Schultz, CP Ponting, P Bork (2002) Systematic identification of novel protein domain families associated with nuclear functions. Genome Res 12:47–56
https://doi.org/10.1101/gr.203201
|
15 |
R Donato, G Sorci, I Giambanco (2017) S100A6 protein: functional roles. Cell Mol Life Sci 74:2749–2760
https://doi.org/10.1007/s00018-017-2526-9
|
16 |
S Duan, G Yuan, X Liu, R Ren, J Li, W Zhang, J Wu, X Xu, L Fu, Y Liet al. (2015) PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun 6:10068
https://doi.org/10.1038/ncomms10068
|
17 |
M Feretzaki, J Lingner (2017) A practical qPCR approach to detect TERRA, the elusive telomeric repeat-containing RNA. Methods 114:39–45
https://doi.org/10.1016/j.ymeth.2016.08.004
|
18 |
I Ferrara-Romeo, P Martinez, MA Blasco (2018) Mice lacking RAP1 show early onset and higher rates of DEN-induced hepatocellular carcinomas in female mice. PloS ONE 13:e0204909
https://doi.org/10.1371/journal.pone.0204909
|
19 |
L Fu, X Xu, R Ren, J Wu, W Zhang, J Yang, X Ren, S Wang, Y Zhao, L Sunet al. (2016) Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs. Protein Cell 7:210–221
https://doi.org/10.1007/s13238-016-0244-y
|
20 |
L Geng, Z Liu, W Zhang, W Li, Z Wu, W Wang, R Ren, Y Su, P Wang, L Sunet al. (2018) Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein Cell.
https://doi.org/10.1007/s13238-018-0567-y
|
21 |
MA Goodell, TA Rando (2015) Stem cells and healthy aging. Science 350:1199–1204
https://doi.org/10.1126/science.aab3388
|
22 |
CW Greider (1991) Telomeres. Curr Opin Cell Biol 3:444–451
https://doi.org/10.1016/0955-0674(91)90072-7
|
23 |
G Ha, A Roth, D Lai, A Bashashati, J Ding, R Goya, R Giuliany, J Rosner, A Oloumi, K Shumanskyet al. (2012) Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple-negative breast cancer. Genome Res 22:1995–2007
https://doi.org/10.1101/gr.137570.112
|
24 |
PJ Hohensinner, C Kaun, E Buchberger, B Ebenbauer, S Demyanets, I Huk, W Eppel, G Maurer, K Huber, J Wojta (2016) Age intrinsic loss of telomere protection via TRF1 reduction in endothelial cells. Biochim Biophys Acta 1863:360–367
https://doi.org/10.1016/j.bbamcr.2015.11.034
|
25 |
K Ishii, KI Kubo, K Nakajima (2016) Reelin and Neuropsychiatric Disorders. Front Cell Neurosci 10:229
https://doi.org/10.3389/fncel.2016.00229
|
26 |
S Kabir, D Hockemeyer, T de Lange (2014) TALEN gene knockouts reveal no requirement for the conservedhuman shelterin protein Rap1 in telomere protection and length regulation. Cell Rep 9:1273–1280
https://doi.org/10.1016/j.celrep.2014.10.014
|
27 |
S Kabir, A Sfeir, T de Lange (2010) Taking apart Rap1: an adaptor protein with telomeric and non-telomeric functions. Cell cycle 9:4061–4067
https://doi.org/10.4161/cc.9.20.13579
|
28 |
J Kanoh, F Ishikawa (2001) spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11:1624–1630
https://doi.org/10.1016/S0960-9822(01)00503-6
|
29 |
E Khurana, Y Fu, J Chen, M Gerstein (2013) Interpretation of genomic variants using a unified biological network approach. PLoS Comput Biol 9:e1002886
https://doi.org/10.1371/journal.pcbi.1002886
|
30 |
D Kim, B Langmead, SL Salzberg (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360
https://doi.org/10.1038/nmeth.3317
|
31 |
H Kim, F Li, Q He, T Deng, J Xu, F Jin, C Coarfa, N Putluri, D Liu, Z Songyang (2017) Systematic analysis of human telomeric dysfunction using inducible telosome/shelterin CRISPR/Cas9 knockout cells. Cell Discov 3:17034
https://doi.org/10.1038/celldisc.2017.34
|
32 |
N Kubben, W Zhang, L Wang, TC Voss, J Yang, J Qu, GH Liu, T Misteli (2016) Repression of the antioxidant NRF2 pathway in premature aging. Cell 165:1361–1374
https://doi.org/10.1016/j.cell.2016.05.017
|
33 |
M Kundakovic, Y Chen, E Costa, DR Grayson (2007) DNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes. Mol Pharmacol 71:644–653
https://doi.org/10.1124/mol.106.030635
|
34 |
M Kundakovic, Y Chen, A Guidotti, DR Grayson (2009) The reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes. Mol Pharmacol 75:342–354
https://doi.org/10.1124/mol.108.051763
|
35 |
G Kyrion, K Liu, C Liu, AJ Lustig (1993) RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae. Genes Dev 7:1146–1159
https://doi.org/10.1101/gad.7.7a.1146
|
36 |
TP Lai, WE Wright, JW Shay (2016) Generation of digoxigeninincorporated probes to enhance DNA detection sensitivity. BioTechniques 60:306–309
https://doi.org/10.2144/000114427
|
37 |
MA Lancaster, JA Knoblich (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9:2329–2340
https://doi.org/10.1038/nprot.2014.158
|
38 |
MA Lancaster, M Renner, CA Martin, D Wenzel, LS Bicknell, ME Hurles, T Homfray, JM Penninger, AP Jackson, JA Knoblich (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379
https://doi.org/10.1038/nature12517
|
39 |
B Langmead, SL Salzberg (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
https://doi.org/10.1038/nmeth.1923
|
40 |
MW Lensch, TM Schlaeger, LI Zon, GQ Daley (2007) Teratoma formation assays with human embryonic stem cells: a rationale for one type of human-animal chimera. Cell Stem Cell 1:253–258
https://doi.org/10.1016/j.stem.2007.07.019
|
41 |
B Li, T de Lange (2003) Rap1 affects the length and heterogeneity of human telomeres. Mol Biol Cell 14:5060–5068
https://doi.org/10.1091/mbc.e03-06-0403
|
42 |
WP Li, P Liu, BK Pilcher, RG Anderson (2001) Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. J Cell Sci 114:1397–1408
|
43 |
C Lintas, R Sacco, AM Persico (2016) Differential methylation at the RELN gene promoter in temporal cortex from autistic and typically developing post-puberal subjects. J Neurodev Disord 8:18
https://doi.org/10.1186/s11689-016-9151-z
|
44 |
GH Liu, BZ Barkho, S Ruiz, D Diep, J Qu, SL Yang, AD Panopoulos, K Suzuki, L Kurian, C Walshet al. (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221–225
https://doi.org/10.1038/nature09879
|
45 |
GH Liu, K Suzuki, M Li, J Qu, N Montserrat, C Tarantino, Y Gu, F Yi, X Xu, W Zhanget al. (2014) Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun 5:4330
https://doi.org/10.1038/ncomms5330
|
46 |
JA Londono-Vallejo (2004) Telomere length heterogeneity and chromosome instability. Cancer letters 212:135–144
https://doi.org/10.1016/j.canlet.2004.05.008
|
47 |
C Lopez-Otin, MA Blasco, L Partridge, M Serrano, G Kroemer (2013) The hallmarks of aging. Cell 153:1194–1217
https://doi.org/10.1016/j.cell.2013.05.039
|
48 |
MI Love, W Huber, S Anders (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
https://doi.org/10.1186/s13059-014-0550-8
|
49 |
K Luo, MA Vega-Palas, M Grunstein (2002) Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev 16:1528–1539
https://doi.org/10.1101/gad.988802
|
50 |
P Martinez, G Gomez-Lopez, F Garcia, E Mercken, S Mitchell, JM Flores, R de Cabo, MA Blasco (2013) RAP1 protects from obesity through its extratelomeric role regulating gene expression. Cell reports 3:2059–2074
https://doi.org/10.1016/j.celrep.2013.05.030
|
51 |
P Martinez, G Gomez-Lopez, DG Pisano, JM Flores, MA Blasco (2016) A genetic interaction between RAP1 and telomerase reveals an unanticipated role for RAP1 in telomere maintenance. Aging Cell 15(6):1113–1125
https://doi.org/10.1111/acel.12517
|
52 |
P Martinez, M Thanasoula, AR Carlos, G Gomez-Lopez, AM Tejera, S Schoeftner, O Dominguez, DG Pisano, M Tarsounas, MA Blasco (2010) Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat Cell Biol 12:768–780
https://doi.org/10.1038/ncb2081
|
53 |
P Moretti, D Shore (2001) Multiple interactions in Sir protein recruitment by Rap1p at silencers and telomeres in yeast. Molecular and cellular biology 21:8082–8094
https://doi.org/10.1128/MCB.21.23.8082-8094.2001
|
54 |
RM Nabil Fikri, AT Norlelawati, AR Nour El-Huda, MN Hanisah, A Kartini, K Norsidah, A Nor Zamzila (2017) Reelin (RELN) DNA methylation in the peripheral blood of schizophrenia. J Psychiatr Res 88:28–37
https://doi.org/10.1016/j.jpsychires.2016.12.020
|
55 |
V Nanavaty, R Sandhu, SE Jehi, UM Pandya, B Li (2017) Trypanosoma brucei RAP1 maintains telomere and subtelomere integrity by suppressing TERRA and telomeric RNA:DNA hybrids. Nucleic Acids Res 45:5785–5796
https://doi.org/10.1093/nar/gkx184
|
56 |
MS O’Connor, A Safari, D Liu, J Qin, Z Songyang (2004) The human Rap1 protein complex and modulation of telomere length. The Journal of biological chemistry 279:28585–28591
https://doi.org/10.1074/jbc.M312913200
|
57 |
N Omura, CP Li, A Li, SM Hong, K Walter, A Jimeno, M Hidalgo, M Goggins(2008) Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther 7:1146–1156
https://doi.org/10.4161/cbt.7.7.6208
|
58 |
W Palm, T de Lange (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334
https://doi.org/10.1146/annurev.genet.41.110306.130350
|
59 |
H Pan, D Guan, X Liu, J Li, L Wang, J Wu, J Zhou, W Zhang, R Ren, W Zhanget al. (2016) SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res 26:190–205
https://doi.org/10.1038/cr.2016.4
|
60 |
CJ Proctor, TB Kirkwood (2003) Modelling cellular senescence as a result of telomere state. Aging cell 2:151–157
https://doi.org/10.1046/j.1474-9728.2003.00050.x
|
61 |
RR Reddel (2014) Telomere maintenance mechanisms in cancer: clinical implications. Curr Pharm Des 20:6361–6374
https://doi.org/10.2174/1381612820666140630101047
|
62 |
R Ren, L Deng, Y Xue, K Suzuki, W Zhang, Y Yu, J Wu, L Sun, X Gong, H Luanet al. (2017a) Visualization of aging-associated chromatin alterations with an engineered TALE system. Cell Res 27:483–504
https://doi.org/10.1038/cr.2017.18
|
63 |
R Ren, A Ocampo, GH Liu, JC Izpisua Belmonte (2017b) Regulation of stem cell aging by metabolism and epigenetics. Cell Metab 26:460–474
https://doi.org/10.1016/j.cmet.2017.07.019
|
64 |
N Sato, N Fukushima, R Chang, H Matsubayashi, M Goggins (2006) Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers. Gastroenterology 130:548–565
https://doi.org/10.1053/j.gastro.2005.11.008
|
65 |
I Schmutz, T de Lange (2016) Shelterin. Curr Biol 26:R397–399
https://doi.org/10.1016/j.cub.2016.01.056
|
66 |
M Schulze, C Violonchi, S Swoboda, T Welz, E Kerkhoff, S Hoja, S Bruggemann, J Simburger, J Reinders, MJ Riemenschneider (2017) RELN signaling modulates glioblastoma growth and substrate-dependent migration. Brain Pathol 28(5):695–709
https://doi.org/10.1111/bpa.12584
|
67 |
K Sekine, K Kubo, K Nakajima (2014) How does Reelin control neuronal migration and layer formation in the developing mammalian neocortex? Neurosci Res 86:50–58
https://doi.org/10.1016/j.neures.2014.06.004
|
68 |
A Sfeir, S Kabir, M van Overbeek, GB Celli, T de Lange (2010) Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327:1657–1661
https://doi.org/10.1126/science.1185100
|
69 |
D Shore, K Nasmyth (1987) Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51:721–732
https://doi.org/10.1016/0092-8674(87)90095-X
|
70 |
A Smogorzewska, T de Lange (2004) Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73:177–208
https://doi.org/10.1146/annurev.biochem.73.071403.160049
|
71 |
K Takahashi, K Tanabe, M Ohnuki, M Narita, T Ichisaka, K Tomoda, S Yamanaka (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872
https://doi.org/10.1016/j.cell.2007.11.019
|
72 |
A Vincent, N Omura, SM Hong, A Jaffe, J Eshleman, M Goggins (2011) Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin Cancer Res 17:4341–4354
https://doi.org/10.1158/1078-0432.CCR-10-3431
|
73 |
KD Wagner, Y Ying, W Leong, J Jiang, X Hu, Y Chen, JF Michiels, Y Lu, E Gilson, N Wagneret al. (2017) The differential spatiotemporal expression pattern of shelterin genes throughout lifespan. Aging 9:1219–1232
https://doi.org/10.18632/aging.101223
|
74 |
P Wang, Z Liu, X Zhang, J Li, L Sun, Z Ju, J Li, P Chan, GH Liu, W Zhanget al. (2018a) CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-kappaB/RelA in maintaining the homeostasis of human vascular cells. Protein Cell 9(11):945–965
https://doi.org/10.1007/s13238-018-0560-5
|
75 |
S Wang, B Hu, Z Ding, Y Dang, J Wu, D Li, X Liu, B Xiao, W Zhang, R Renet al. (2018b) ATF6 safeguards organelle homeostasis and cellular aging in human mesenchymal stem cells. Cell Discov 4:2
https://doi.org/10.1038/s41421-017-0003-0
|
76 |
Z Wu, W Zhang, M Song, W Wang, G Wei, W Li, J Lei, Y Huang, Y Sang, P Chanet al. (2018) Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein Cell 9:333–350
https://doi.org/10.1007/s13238-018-0517-8
|
77 |
L Xiao, X Lan, X Shi, K Zhao, D Wang, X Wang, F Li, H Huang, J Liu (2017) Cytoplasmic RAP1 mediates cisplatin resistance of nonsmall cell lung cancer. Cell Death Dis 8:e2803
https://doi.org/10.1038/cddis.2017.210
|
78 |
H Xin, D Liu, Z Songyang (2008) The telosome/shelterin complex and its functions. Genome Biol 9:232
https://doi.org/10.1186/gb-2008-9-9-232
|
79 |
Z Xu, KD Duc, D Holcman, MT Teixeira (2013) The length of the shortest telomere as the major determinant of the onset of replicative senescence. Genetics 194:847–857
https://doi.org/10.1534/genetics.113.152322
|
80 |
D Yang, Y Xiong, H Kim, Q He, Y Li, R Chen, Z Songyang (2011) Human telomeric proteins occupy selective interstitial sites. Cell Res 21:1013–1027
https://doi.org/10.1038/cr.2011.39
|
81 |
J Yang, J Li, K Suzuki, X Liu, J Wu, W Zhang, R Ren, W Zhang, P Chan, JC Izpisua Belmonteet al. (2017) Genetic enhancement in cultured human adult stem cells conferred by a single nucleotide recoding. Cell Res 27:1178–1181
https://doi.org/10.1038/cr.2017.86
|
82 |
X Yang, LM Figueiredo, A Espinal, E Okubo, B Li (2009) RAP1 is essential for silencing telomeric variant surface glycoprotein genes in Trypanosoma brucei. Cell 137:99–109
https://doi.org/10.1016/j.cell.2009.01.037
|
83 |
J Yu, MA Vodyanik, K Smuga-Otto, J Antosiewicz-Bourget, JL Frane, S Tian, J Nie, GA Jonsdottir, V Ruotti, R Stewartet al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920
https://doi.org/10.1126/science.1151526
|
84 |
Y Zha, P Gan, Q Yao, FM Ran, J Tan (2014) Downregulation of Rap1 promotes 5-fluorouracil-induced apoptosis in hepatocellular carcinoma cell line HepG2. Oncol Rep 31:1691–1698
https://doi.org/10.3892/or.2014.3033
|
85 |
W Zhang, J Li, K Suzuki, J Qu, P Wang, J Zhou, X Liu, R Ren, X Xu, A Ocampoet al. (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348:1160–1163
https://doi.org/10.1126/science.aaa1356
|
86 |
W Zhang, H Wan, G Feng, J Qu, J Wang, Y Jing, R Ren, Z Liu, L Zhang, Z Chenet al. (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560:661–665
https://doi.org/10.1038/s41586-018-0437-z
|
87 |
Y Zhu, X Liu, X Ding, F Wang, X Geng (2018) Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 20:1–16
https://doi.org/10.1007/s10522-018-9769-1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|