Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2019, Vol. 10 Issue (9) : 649-667    https://doi.org/10.1007/s13238-019-0610-7
RESEARCH ARTICLE
Telomere-dependent and telomereindependent roles of RAP1 in regulating human stem cell homeostasis
Xing Zhang1,2,6, Zunpeng Liu1,6, Xiaoqian Liu1, Si Wang2,3,7, Yiyuan Zhang3,6, Xiaojuan He2, Shuhui Sun3, Shuai Ma3, Ng Shyh-Chang1,6,7, Feng Liu5,6,7, Qiang Wang5,6,7, Xiaoqun Wang3,6,7, Lin Liu4, Weiqi Zhang2,3,6,7(), Moshi Song5,6,7(), Guang-Hui Liu2,3,6,7,8,9(), Jing Qu1,6,7()
1. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2. Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
3. National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
4. State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
5. State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
6. University of Chinese Academy of Sciences, Beijing 100049, China
7. Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
8. Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
9. Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
 Download: PDF(5564 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

RAP1 is a well-known telomere-binding protein, but its functions in human stem cells have remained unclear. Here we generated RAP1-deficient human embryonic stem cells (hESCs) by using CRISPR/Cas9 technique and obtained RAP1-deficient human mesenchymal stem cells (hMSCs) and neural stem cells (hNSCs) via direc- ted differentiation. In both hMSCs and hNSCs, RAP1 not only negatively regulated telomere length but also acted as a transcriptional regulator of RELN by tuning the methylation status of its gene promoter. RAP1 defi- ciency enhanced self-renewal and delayed senescence in hMSCs, but not in hNSCs, suggesting complicated lineage-specific effects of RAP1 in adult stem cells. Altogether, these results demonstrate for the first time that RAP1 plays both telomeric and nontelomeric roles in regulating human stem cell homeostasis.

Keywords RAP1      stem cell      telomere      RELN      methylation     
Corresponding Author(s): Weiqi Zhang,Moshi Song,Guang-Hui Liu,Jing Qu   
Issue Date: 24 September 2019
 Cite this article:   
Xing Zhang,Zunpeng Liu,Xiaoqian Liu, et al. Telomere-dependent and telomereindependent roles of RAP1 in regulating human stem cell homeostasis[J]. Protein Cell, 2019, 10(9): 649-667.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-019-0610-7
https://academic.hep.com.cn/pac/EN/Y2019/V10/I9/649
1 S Anders, PT Pyl, W Huber (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Nat Methods 31:166–169
https://doi.org/10.1093/bioinformatics/btu638
2 N Arnoult, A Van Beneden, A Decottignies (2012) Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1alpha. Nat Struct Mol Biol 19:948–956
https://doi.org/10.1038/nsmb.2364
3 JN Bandaria, P Qin, V Berk, S Chu, A Yildiz (2016) Shelterin Protects Chromosome Ends by Compacting Telomeric Chromatin. Cell 164:735–746
https://doi.org/10.1016/j.cell.2016.01.036
4 EH Blackburn (2001) Switching and signaling at the telomere. Cell 106:661–673
https://doi.org/10.1016/S0092-8674(01)00492-5
5 EH Blackburn, ES Epel, J Lin (2015) Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science 350:1193–1198
https://doi.org/10.1126/science.aab3389
6 T Bourgeron, Z Xu, M Doumic, MT Teixeira (2015) The asymmetry of telomere replication contributes to replicative senescence heterogeneity. Sci Rep 5:15326
https://doi.org/10.1038/srep15326
7 RT Calado, B Dumitriu (2013) Telomere dynamics in mice and humans. Semin Hematol 50:165–174
https://doi.org/10.1053/j.seminhematol.2013.03.030
8 RM Cawthon (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30:e47
https://doi.org/10.1093/nar/30.10.e47
9 J Chen, EE Bardes, BJ Aronow, AG Jegga (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic acids Res 37:W305–311
https://doi.org/10.1093/nar/gkp427
10 JA Dahl, P Collas (2008) A rapid micro chromatin immunoprecipitation assay (microChIP). Nat Protoc 3:1032–1045
https://doi.org/10.1038/nprot.2008.68
11 F Debacq-Chainiaux, JD Erusalimsky, J Campisi, O Toussaint (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806
https://doi.org/10.1038/nprot.2009.191
12 T Di Palma, MG Filippone, GM Pierantoni, A Fusco, S Soddu, M Zannini (2013) Pax8 has a critical role in epithelial cell survival and proliferation. Cell Death Dis 4:e729
https://doi.org/10.1038/cddis.2013.262
13 Y Ding, X Liang, Y Zhang, L Yi, HC Shum, Q Chen, BP Chan, H Fan, Z Liu, V Tergaonkaret al. (2018) Rap1 deficiency-provoked paracrine dysfunction impairs immunosuppressive potency of mesenchymal stem cells in allograft rejection of heart transplantation. Cell Death Dis 9:386
https://doi.org/10.1038/s41419-018-0414-3
14 T Doerks, RR Copley, J Schultz, CP Ponting, P Bork (2002) Systematic identification of novel protein domain families associated with nuclear functions. Genome Res 12:47–56
https://doi.org/10.1101/gr.203201
15 R Donato, G Sorci, I Giambanco (2017) S100A6 protein: functional roles. Cell Mol Life Sci 74:2749–2760
https://doi.org/10.1007/s00018-017-2526-9
16 S Duan, G Yuan, X Liu, R Ren, J Li, W Zhang, J Wu, X Xu, L Fu, Y Liet al. (2015) PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun 6:10068
https://doi.org/10.1038/ncomms10068
17 M Feretzaki, J Lingner (2017) A practical qPCR approach to detect TERRA, the elusive telomeric repeat-containing RNA. Methods 114:39–45
https://doi.org/10.1016/j.ymeth.2016.08.004
18 I Ferrara-Romeo, P Martinez, MA Blasco (2018) Mice lacking RAP1 show early onset and higher rates of DEN-induced hepatocellular carcinomas in female mice. PloS ONE 13:e0204909
https://doi.org/10.1371/journal.pone.0204909
19 L Fu, X Xu, R Ren, J Wu, W Zhang, J Yang, X Ren, S Wang, Y Zhao, L Sunet al. (2016) Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs. Protein Cell 7:210–221
https://doi.org/10.1007/s13238-016-0244-y
20 L Geng, Z Liu, W Zhang, W Li, Z Wu, W Wang, R Ren, Y Su, P Wang, L Sunet al. (2018) Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein Cell.
https://doi.org/10.1007/s13238-018-0567-y
21 MA Goodell, TA Rando (2015) Stem cells and healthy aging. Science 350:1199–1204
https://doi.org/10.1126/science.aab3388
22 CW Greider (1991) Telomeres. Curr Opin Cell Biol 3:444–451
https://doi.org/10.1016/0955-0674(91)90072-7
23 G Ha, A Roth, D Lai, A Bashashati, J Ding, R Goya, R Giuliany, J Rosner, A Oloumi, K Shumanskyet al. (2012) Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple-negative breast cancer. Genome Res 22:1995–2007
https://doi.org/10.1101/gr.137570.112
24 PJ Hohensinner, C Kaun, E Buchberger, B Ebenbauer, S Demyanets, I Huk, W Eppel, G Maurer, K Huber, J Wojta (2016) Age intrinsic loss of telomere protection via TRF1 reduction in endothelial cells. Biochim Biophys Acta 1863:360–367
https://doi.org/10.1016/j.bbamcr.2015.11.034
25 K Ishii, KI Kubo, K Nakajima (2016) Reelin and Neuropsychiatric Disorders. Front Cell Neurosci 10:229
https://doi.org/10.3389/fncel.2016.00229
26 S Kabir, D Hockemeyer, T de Lange (2014) TALEN gene knockouts reveal no requirement for the conservedhuman shelterin protein Rap1 in telomere protection and length regulation. Cell Rep 9:1273–1280
https://doi.org/10.1016/j.celrep.2014.10.014
27 S Kabir, A Sfeir, T de Lange (2010) Taking apart Rap1: an adaptor protein with telomeric and non-telomeric functions. Cell cycle 9:4061–4067
https://doi.org/10.4161/cc.9.20.13579
28 J Kanoh, F Ishikawa (2001) spRap1 and spRif1, recruited to telomeres by Taz1, are essential for telomere function in fission yeast. Curr Biol 11:1624–1630
https://doi.org/10.1016/S0960-9822(01)00503-6
29 E Khurana, Y Fu, J Chen, M Gerstein (2013) Interpretation of genomic variants using a unified biological network approach. PLoS Comput Biol 9:e1002886
https://doi.org/10.1371/journal.pcbi.1002886
30 D Kim, B Langmead, SL Salzberg (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360
https://doi.org/10.1038/nmeth.3317
31 H Kim, F Li, Q He, T Deng, J Xu, F Jin, C Coarfa, N Putluri, D Liu, Z Songyang (2017) Systematic analysis of human telomeric dysfunction using inducible telosome/shelterin CRISPR/Cas9 knockout cells. Cell Discov 3:17034
https://doi.org/10.1038/celldisc.2017.34
32 N Kubben, W Zhang, L Wang, TC Voss, J Yang, J Qu, GH Liu, T Misteli (2016) Repression of the antioxidant NRF2 pathway in premature aging. Cell 165:1361–1374
https://doi.org/10.1016/j.cell.2016.05.017
33 M Kundakovic, Y Chen, E Costa, DR Grayson (2007) DNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes. Mol Pharmacol 71:644–653
https://doi.org/10.1124/mol.106.030635
34 M Kundakovic, Y Chen, A Guidotti, DR Grayson (2009) The reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes. Mol Pharmacol 75:342–354
https://doi.org/10.1124/mol.108.051763
35 G Kyrion, K Liu, C Liu, AJ Lustig (1993) RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae. Genes Dev 7:1146–1159
https://doi.org/10.1101/gad.7.7a.1146
36 TP Lai, WE Wright, JW Shay (2016) Generation of digoxigeninincorporated probes to enhance DNA detection sensitivity. BioTechniques 60:306–309
https://doi.org/10.2144/000114427
37 MA Lancaster, JA Knoblich (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9:2329–2340
https://doi.org/10.1038/nprot.2014.158
38 MA Lancaster, M Renner, CA Martin, D Wenzel, LS Bicknell, ME Hurles, T Homfray, JM Penninger, AP Jackson, JA Knoblich (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379
https://doi.org/10.1038/nature12517
39 B Langmead, SL Salzberg (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
https://doi.org/10.1038/nmeth.1923
40 MW Lensch, TM Schlaeger, LI Zon, GQ Daley (2007) Teratoma formation assays with human embryonic stem cells: a rationale for one type of human-animal chimera. Cell Stem Cell 1:253–258
https://doi.org/10.1016/j.stem.2007.07.019
41 B Li, T de Lange (2003) Rap1 affects the length and heterogeneity of human telomeres. Mol Biol Cell 14:5060–5068
https://doi.org/10.1091/mbc.e03-06-0403
42 WP Li, P Liu, BK Pilcher, RG Anderson (2001) Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. J Cell Sci 114:1397–1408
43 C Lintas, R Sacco, AM Persico (2016) Differential methylation at the RELN gene promoter in temporal cortex from autistic and typically developing post-puberal subjects. J Neurodev Disord 8:18
https://doi.org/10.1186/s11689-016-9151-z
44 GH Liu, BZ Barkho, S Ruiz, D Diep, J Qu, SL Yang, AD Panopoulos, K Suzuki, L Kurian, C Walshet al. (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221–225
https://doi.org/10.1038/nature09879
45 GH Liu, K Suzuki, M Li, J Qu, N Montserrat, C Tarantino, Y Gu, F Yi, X Xu, W Zhanget al. (2014) Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nat Commun 5:4330
https://doi.org/10.1038/ncomms5330
46 JA Londono-Vallejo (2004) Telomere length heterogeneity and chromosome instability. Cancer letters 212:135–144
https://doi.org/10.1016/j.canlet.2004.05.008
47 C Lopez-Otin, MA Blasco, L Partridge, M Serrano, G Kroemer (2013) The hallmarks of aging. Cell 153:1194–1217
https://doi.org/10.1016/j.cell.2013.05.039
48 MI Love, W Huber, S Anders (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550
https://doi.org/10.1186/s13059-014-0550-8
49 K Luo, MA Vega-Palas, M Grunstein (2002) Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev 16:1528–1539
https://doi.org/10.1101/gad.988802
50 P Martinez, G Gomez-Lopez, F Garcia, E Mercken, S Mitchell, JM Flores, R de Cabo, MA Blasco (2013) RAP1 protects from obesity through its extratelomeric role regulating gene expression. Cell reports 3:2059–2074
https://doi.org/10.1016/j.celrep.2013.05.030
51 P Martinez, G Gomez-Lopez, DG Pisano, JM Flores, MA Blasco (2016) A genetic interaction between RAP1 and telomerase reveals an unanticipated role for RAP1 in telomere maintenance. Aging Cell 15(6):1113–1125
https://doi.org/10.1111/acel.12517
52 P Martinez, M Thanasoula, AR Carlos, G Gomez-Lopez, AM Tejera, S Schoeftner, O Dominguez, DG Pisano, M Tarsounas, MA Blasco (2010) Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat Cell Biol 12:768–780
https://doi.org/10.1038/ncb2081
53 P Moretti, D Shore (2001) Multiple interactions in Sir protein recruitment by Rap1p at silencers and telomeres in yeast. Molecular and cellular biology 21:8082–8094
https://doi.org/10.1128/MCB.21.23.8082-8094.2001
54 RM Nabil Fikri, AT Norlelawati, AR Nour El-Huda, MN Hanisah, A Kartini, K Norsidah, A Nor Zamzila (2017) Reelin (RELN) DNA methylation in the peripheral blood of schizophrenia. J Psychiatr Res 88:28–37
https://doi.org/10.1016/j.jpsychires.2016.12.020
55 V Nanavaty, R Sandhu, SE Jehi, UM Pandya, B Li (2017) Trypanosoma brucei RAP1 maintains telomere and subtelomere integrity by suppressing TERRA and telomeric RNA:DNA hybrids. Nucleic Acids Res 45:5785–5796
https://doi.org/10.1093/nar/gkx184
56 MS O’Connor, A Safari, D Liu, J Qin, Z Songyang (2004) The human Rap1 protein complex and modulation of telomere length. The Journal of biological chemistry 279:28585–28591
https://doi.org/10.1074/jbc.M312913200
57 N Omura, CP Li, A Li, SM Hong, K Walter, A Jimeno, M Hidalgo, M Goggins(2008) Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther 7:1146–1156
https://doi.org/10.4161/cbt.7.7.6208
58 W Palm, T de Lange (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334
https://doi.org/10.1146/annurev.genet.41.110306.130350
59 H Pan, D Guan, X Liu, J Li, L Wang, J Wu, J Zhou, W Zhang, R Ren, W Zhanget al. (2016) SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res 26:190–205
https://doi.org/10.1038/cr.2016.4
60 CJ Proctor, TB Kirkwood (2003) Modelling cellular senescence as a result of telomere state. Aging cell 2:151–157
https://doi.org/10.1046/j.1474-9728.2003.00050.x
61 RR Reddel (2014) Telomere maintenance mechanisms in cancer: clinical implications. Curr Pharm Des 20:6361–6374
https://doi.org/10.2174/1381612820666140630101047
62 R Ren, L Deng, Y Xue, K Suzuki, W Zhang, Y Yu, J Wu, L Sun, X Gong, H Luanet al. (2017a) Visualization of aging-associated chromatin alterations with an engineered TALE system. Cell Res 27:483–504
https://doi.org/10.1038/cr.2017.18
63 R Ren, A Ocampo, GH Liu, JC Izpisua Belmonte (2017b) Regulation of stem cell aging by metabolism and epigenetics. Cell Metab 26:460–474
https://doi.org/10.1016/j.cmet.2017.07.019
64 N Sato, N Fukushima, R Chang, H Matsubayashi, M Goggins (2006) Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers. Gastroenterology 130:548–565
https://doi.org/10.1053/j.gastro.2005.11.008
65 I Schmutz, T de Lange (2016) Shelterin. Curr Biol 26:R397–399
https://doi.org/10.1016/j.cub.2016.01.056
66 M Schulze, C Violonchi, S Swoboda, T Welz, E Kerkhoff, S Hoja, S Bruggemann, J Simburger, J Reinders, MJ Riemenschneider (2017) RELN signaling modulates glioblastoma growth and substrate-dependent migration. Brain Pathol 28(5):695–709
https://doi.org/10.1111/bpa.12584
67 K Sekine, K Kubo, K Nakajima (2014) How does Reelin control neuronal migration and layer formation in the developing mammalian neocortex? Neurosci Res 86:50–58
https://doi.org/10.1016/j.neures.2014.06.004
68 A Sfeir, S Kabir, M van Overbeek, GB Celli, T de Lange (2010) Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327:1657–1661
https://doi.org/10.1126/science.1185100
69 D Shore, K Nasmyth (1987) Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51:721–732
https://doi.org/10.1016/0092-8674(87)90095-X
70 A Smogorzewska, T de Lange (2004) Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73:177–208
https://doi.org/10.1146/annurev.biochem.73.071403.160049
71 K Takahashi, K Tanabe, M Ohnuki, M Narita, T Ichisaka, K Tomoda, S Yamanaka (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872
https://doi.org/10.1016/j.cell.2007.11.019
72 A Vincent, N Omura, SM Hong, A Jaffe, J Eshleman, M Goggins (2011) Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin Cancer Res 17:4341–4354
https://doi.org/10.1158/1078-0432.CCR-10-3431
73 KD Wagner, Y Ying, W Leong, J Jiang, X Hu, Y Chen, JF Michiels, Y Lu, E Gilson, N Wagneret al. (2017) The differential spatiotemporal expression pattern of shelterin genes throughout lifespan. Aging 9:1219–1232
https://doi.org/10.18632/aging.101223
74 P Wang, Z Liu, X Zhang, J Li, L Sun, Z Ju, J Li, P Chan, GH Liu, W Zhanget al. (2018a) CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-kappaB/RelA in maintaining the homeostasis of human vascular cells. Protein Cell 9(11):945–965
https://doi.org/10.1007/s13238-018-0560-5
75 S Wang, B Hu, Z Ding, Y Dang, J Wu, D Li, X Liu, B Xiao, W Zhang, R Renet al. (2018b) ATF6 safeguards organelle homeostasis and cellular aging in human mesenchymal stem cells. Cell Discov 4:2
https://doi.org/10.1038/s41421-017-0003-0
76 Z Wu, W Zhang, M Song, W Wang, G Wei, W Li, J Lei, Y Huang, Y Sang, P Chanet al. (2018) Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein Cell 9:333–350
https://doi.org/10.1007/s13238-018-0517-8
77 L Xiao, X Lan, X Shi, K Zhao, D Wang, X Wang, F Li, H Huang, J Liu (2017) Cytoplasmic RAP1 mediates cisplatin resistance of nonsmall cell lung cancer. Cell Death Dis 8:e2803
https://doi.org/10.1038/cddis.2017.210
78 H Xin, D Liu, Z Songyang (2008) The telosome/shelterin complex and its functions. Genome Biol 9:232
https://doi.org/10.1186/gb-2008-9-9-232
79 Z Xu, KD Duc, D Holcman, MT Teixeira (2013) The length of the shortest telomere as the major determinant of the onset of replicative senescence. Genetics 194:847–857
https://doi.org/10.1534/genetics.113.152322
80 D Yang, Y Xiong, H Kim, Q He, Y Li, R Chen, Z Songyang (2011) Human telomeric proteins occupy selective interstitial sites. Cell Res 21:1013–1027
https://doi.org/10.1038/cr.2011.39
81 J Yang, J Li, K Suzuki, X Liu, J Wu, W Zhang, R Ren, W Zhang, P Chan, JC Izpisua Belmonteet al. (2017) Genetic enhancement in cultured human adult stem cells conferred by a single nucleotide recoding. Cell Res 27:1178–1181
https://doi.org/10.1038/cr.2017.86
82 X Yang, LM Figueiredo, A Espinal, E Okubo, B Li (2009) RAP1 is essential for silencing telomeric variant surface glycoprotein genes in Trypanosoma brucei. Cell 137:99–109
https://doi.org/10.1016/j.cell.2009.01.037
83 J Yu, MA Vodyanik, K Smuga-Otto, J Antosiewicz-Bourget, JL Frane, S Tian, J Nie, GA Jonsdottir, V Ruotti, R Stewartet al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920
https://doi.org/10.1126/science.1151526
84 Y Zha, P Gan, Q Yao, FM Ran, J Tan (2014) Downregulation of Rap1 promotes 5-fluorouracil-induced apoptosis in hepatocellular carcinoma cell line HepG2. Oncol Rep 31:1691–1698
https://doi.org/10.3892/or.2014.3033
85 W Zhang, J Li, K Suzuki, J Qu, P Wang, J Zhou, X Liu, R Ren, X Xu, A Ocampoet al. (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348:1160–1163
https://doi.org/10.1126/science.aaa1356
86 W Zhang, H Wan, G Feng, J Qu, J Wang, Y Jing, R Ren, Z Liu, L Zhang, Z Chenet al. (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560:661–665
https://doi.org/10.1038/s41586-018-0437-z
87 Y Zhu, X Liu, X Ding, F Wang, X Geng (2018) Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 20:1–16
https://doi.org/10.1007/s10522-018-9769-1
[1] PAC-0649-18567-LGH_suppl_1 Download
[2] PAC-0649-18567-LGH_suppl_2 Download
[1] Ruimin Xu, Chong Li, Xiaoyu Liu, Shaorong Gao. Insights into epigenetic patterns in mammalian early embryos[J]. Protein Cell, 2021, 12(1): 7-28.
[2] Ermin Li, Xiuya Li, Jie Huang, Chen Xu, Qianqian Liang, Kehan Ren, Aobing Bai, Chao Lu, Ruizhe Qian, Ning Sun. BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy[J]. Protein Cell, 2020, 11(9): 661-679.
[3] Kun Liu, Jiani Cao, Xingxing Shi, Liang Wang, Tongbiao Zhao. Cellular metabolism and homeostasis in pluripotency regulation[J]. Protein Cell, 2020, 11(9): 630-640.
[4] Shijia Bi, Zunpeng Liu, Zeming Wu, Zehua Wang, Xiaoqian Liu, Si Wang, Jie Ren, Yan Yao, Weiqi Zhang, Moshi Song, Guang-Hui Liu, Jing Qu. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer[J]. Protein Cell, 2020, 11(7): 483-504.
[5] Rui Fu, Dawei Yu, Jilong Ren, Chongyang Li, Jing Wang, Guihai Feng, Xuepeng Wang, Haifeng Wan, Tianda Li, Libin Wang, Ying Zhang, Tang Hai, Wei Li, Qi Zhou. Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs[J]. Protein Cell, 2020, 11(2): 97-107.
[6] Lin-Yong Zhao, Jinghui Song, Yibin Liu, Chun-Xiao Song, Chengqi Yi. Mapping the epigenetic modifications of DNA and RNA[J]. Protein Cell, 2020, 11(11): 792-808.
[7] Hua Qin, Andong Zhao. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics[J]. Protein Cell, 2020, 11(10): 707-722.
[8] Xuemei Fu, Shouhai Wu, Bo Li, Yang Xu, Jingfeng Liu. Functions of p53 in pluripotent stem cells[J]. Protein Cell, 2020, 11(1): 71-78.
[9] Feng Li, Yuanlong Ge, Dan Liu, Zhou Songyang. The role of telomere-binding modulators in pluripotent stem cells[J]. Protein Cell, 2020, 11(1): 60-70.
[10] Hui Cheng, Zhaofeng Zheng, Tao Cheng. New paradigms on hematopoietic stem cell differentiation[J]. Protein Cell, 2020, 11(1): 34-44.
[11] Si Wang, Zheying Min, Qianzhao Ji, Lingling Geng, Yao Su, Zunpeng Liu, Huifang Hu, Lixia Wang, Weiqi Zhang, Keiichiro Suzuiki, Yu Huang, Puyao Zhang, Tie-Shan Tang, Jing Qu, Yang Yu, Guang-Hui Liu, Jie Qiao. Rescue of premature aging defects in Cockayne syndrome stem cells by CRISPR/Cas9-mediated gene correction[J]. Protein Cell, 2020, 11(1): 1-22.
[12] Lili Yu, Kai-yuan Ji, Jian Zhang, Yanxia Xu, Yue Ying, Taoyi Mai, Shuxiang Xu, Qian-bing Zhang, Kai-tai Yao, Yang Xu. Core pluripotency factors promote glycolysis of human embryonic stem cells by activating GLUT1 enhancer[J]. Protein Cell, 2019, 10(9): 668-680.
[13] Lingling Geng, Zunpeng Liu, Weiqi Zhang, Wei Li, Zeming Wu, Wei Wang, Ruotong Ren, Yao Su, Peichang Wang, Liang Sun, Zhenyu Ju, Piu Chan, Moshi Song, Jing Qu, Guang-Hui Liu. Chemical screen identifies a geroprotective role of quercetin in premature aging[J]. Protein Cell, 2019, 10(6): 417-435.
[14] Xiangxian Zhang, Li Liu, Xia Yuan, Yuquan Wei, Xiawei Wei. JMJD3 in the regulation of human diseases[J]. Protein Cell, 2019, 10(12): 864-882.
[15] Yuanlong Ge, Shu Wu, Zepeng Zhang, Xiaocui Li, Feng Li, Siyu Yan, Haiying Liu, Junjiu Huang, Yong Zhao. Inhibition of p53 and/or AKT as a new therapeutic approach specifically targeting ALT cancers[J]. Protein Cell, 2019, 10(11): 808-824.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed