Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2019, Vol. 10 Issue (9) : 631-648    https://doi.org/10.1007/s13238-019-0612-5
RESEARCH ARTICLE
Mitochondrion-processed TERC regulates senescence without affecting telomerase activities
Qian Zheng1, Peipei Liu1, Ge Gao1, Jiapei Yuan1, Pengfeng Wang2, Jinliang Huang1, Leiming Xie1, Xinping Lu1, Fan Di1, Tanjun Tong2,3, Jun Chen2,3, Zhi Lu1, Jisong Guan1, Geng Wang1()
1. MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China
2. Peking University Research Center on Aging, Beijing 100191, China
3. Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
 Download: PDF(3470 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mitochondrial dysfunctions play major roles in ageing. How mitochondrial stresses invoke downstream responses and how specificity of the signaling is achieved, however, remains unclear. We have previously discovered that the RNA component of Telomerase TERCis imported into mitochondria, processed to a shorter form TERC-53, and then exported back to the cytosol. Cytosolic TERC-53levels respond to mito- chondrial functions, but have no direct effect on these functions, suggesting that cytosolic TERC-53functions downstream of mitochondria as a signal of mitochon- drial functions. Here, we show that cytosolic TERC-53plays a regulatory role on cellular senescence and is involved in cognition decline in 10 months old mice, independent of its telomerase function. Manipulation of cytosolic TERC-53levels affects cellular senescence and cognition decline in 10 months old mouse hip-pocampi without affecting telomerase activity, and most importantly, affects cellular senescence in terc−/− cells. These findings uncover a senescence-related regulatory pathway with a non-coding RNA as the signal in mammals.

Keywords mitochondria      retrograde signal      nucleus      transcription regulation      non-coding RNA      telomerase     
Corresponding Author(s): Geng Wang   
Issue Date: 24 September 2019
 Cite this article:   
Qian Zheng,Peipei Liu,Ge Gao, et al. Mitochondrion-processed TERC regulates senescence without affecting telomerase activities[J]. Protein Cell, 2019, 10(9): 631-648.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-019-0612-5
https://academic.hep.com.cn/pac/EN/Y2019/V10/I9/631
1 F Acquati, C Morelli, R Cinquetti, MG Bianchi, D Porrini, L Varesco, V Gismondi, R Rocchetti, S Talevi, L Possatiet al. (2001) Cloning and characterization of a senescence inducing and class II tumor suppressor gene in ovarian carcinoma at chromosome region 6q27. Oncogene 20:980–988
https://doi.org/10.1038/sj.onc.1204178
2 JD Alfonzo, D Soll (2009) Mitochondrial tRNA import–the challenge to understand has just begun. Biol Chem 390:717–722
https://doi.org/10.1515/BC.2009.101
3 S Azam, N Jouvet, A Jilani, R Vongsamphanh, X Yang, S Yang, D Ramotar (2008) Human glyceraldehyde-3-phosphate dehydro- genase plays a direct role in reactivating oxidized forms of the DNA repair enzyme APE1. J Biol Chem 283:30632–30641
https://doi.org/10.1074/jbc.M801401200
4 B Bernardes de Jesus, MA Blasco (2013) Telomerase at the intersection of cancer and aging. Trends Genet 29:513–520
https://doi.org/10.1016/j.tig.2013.06.007
5 NA Bishop, T Lu, BA Yankner (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535
https://doi.org/10.1038/nature08983
6 MA Blasco, HW Lee, MP Hande, E Samper, PM Lansdorp, RA DePinho, CW Greider (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34
https://doi.org/10.1016/S0092-8674(01)80006-4
7 RM Cawthon (2009) Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res 37:e21
https://doi.org/10.1093/nar/gkn1027
8 C Chang, H Su, D Zhang, Y Wang, Q Shen, B Liu, R Huang, T Zhou, C Peng, CC Wonget al. (2015) AMPK-dependent phosphoryla- tion of GAPDH triggers Sirt1 activation and is necessary for autophagy upon glucose starvation. Mol Cell 60:930–940
https://doi.org/10.1016/j.molcel.2015.10.037
9 DD Chang, DA Clayton (1989) Mouse RNAase MRP RNA is encoded by a nuclear gene and contains a decamer sequence complementary to a conserved region of mitochondrial RNA substrate. Cell 56:131–139
https://doi.org/10.1016/0092-8674(89)90991-4
10 HW Chen, RN Rainey, CE Balatoni, DW Dawson, JJ Troke, S Wasiak, JS Hong, HM McBride, CM Koehler, MA Teitellet al. (2006) Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol Cell Biol 26:8475–8487
https://doi.org/10.1128/MCB.01002-06
11 Y Cheng, P Liu, Q Zheng, G Gao, J Yuan, P Wang, J Huang, L Xie, X Lu, T Tonget al. (2018) Mitochondrial trafficking and processing of telomerase RNA TERC. Cell Rep 24:2589–2595
https://doi.org/10.1016/j.celrep.2018.08.003
12 DM Chuang, R Ishitani (1996) A role for GAPDH in apoptosis and neurodegeneration. Nat Med 2:609–610
https://doi.org/10.1038/nm0696-609
13 PJ Coates, DJ Jamieson, K Smart, AR Prescott, PA Hall (1997) The prohibitin family of mitochondrial proteins regulate replicative lifespan. Curr Biol 7:607–610
https://doi.org/10.1016/S0960-9822(06)00261-2
14 J Feng, CA Meyer, Q Wang, JS Liu, X Shirley Liu, Y Zhang (2012) GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics 28:2782–2788
https://doi.org/10.1093/bioinformatics/bts515
15 JG Gall (1990) Telomerase RNA: tying up the loose ends. Nature 344:108–109
https://doi.org/10.1038/344108a0
16 RA Gottlieb, D Bernstein (2016) Mitochondrial remodeling: rear- ranging, recycling, and reprogramming. Cell Calcium 60:88–101
https://doi.org/10.1016/j.ceca.2016.04.006
17 M Guha, NG Avadhani (2013) Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion 13:577–591
https://doi.org/10.1016/j.mito.2013.08.007
18 N Hachiya, R Alam, Y Sakasegawa, M Sakaguchi, K Mihara, T Omura (1993) A mitochondrial import factor purified from rat liver cytosol is an ATP-dependent conformational modulator for precursor proteins. EMBO J 12:1579–1586
https://doi.org/10.1002/j.1460-2075.1993.tb05802.x
19 MR Hara, N Agrawal, SF Kim, MB Cascio, M Fujimuro, Y Ozeki, M Takahashi, JH Cheah, SK Tankou, LD Hesteret al. (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7:665–674
https://doi.org/10.1038/ncb1268
20 M Jaskelioff, FL Muller, JH Paik, E Thomas, S Jiang, AC Adams, E Sahin, M Kost-Alimova, A Protopopov, J Cadinanoset al. (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469:102–106
https://doi.org/10.1038/nature09603
21 J Jozefczuk, K Drews, J Adjaye (2012) Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. J Vis Exp.
https://doi.org/10.3791/3854
22 VN Kotiadis, MR Duchen, LD Osellame (2014) Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta 1840:1254–1265
https://doi.org/10.1016/j.bbagen.2013.10.041
23 N Li, Q Li, X Cao, G Zhao, L Xue, T Tong (2011) The tumor suppressor p33ING1b upregulates p16INK4a expression and induces cellular senescence. FEBS Lett 585:3106–3112
https://doi.org/10.1016/j.febslet.2011.08.044
24 P Liu, J Huang, Q Zheng, L Xie, X Lu, J Jin, G Wang (2017) Mammalian mitochondrial RNAs are degraded in the mitochon- drial intermembrane space by RNASET2. Protein Cell 8:735–749
https://doi.org/10.1007/s13238-017-0448-9
25 C Lopez-Otin, MA Blasco, L Partridge, M Serrano, G Kroemer (2013) The hallmarks of aging. Cell 153:1194–1217
https://doi.org/10.1016/j.cell.2013.05.039
26 C Lopez-Otin, L Galluzzi, JM Freije, F Madeo, G Kroemer (2016) Metabolic control of longevity. Cell 166:802–821
https://doi.org/10.1016/j.cell.2016.07.031
27 T Lu, Y Pan, SY Kao, C Li, I Kohane, J Chan, BA Yankner (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891
https://doi.org/10.1038/nature02661
28 KM McAvoy, KN Scobie, S Berger, C Russo, N Guo, P Decharatanachart, H Vega-Ramirez, S Miake-Lye, M Whalen, M Nelsonet al. (2016) Modulating neuronal competition dynamics in the dentate gyrus to rejuvenate aging memory circuits. Neuron 91:1356–1373
https://doi.org/10.1016/j.neuron.2016.08.009
29 TR Mercer, S Neph, ME Dinger, J Crawford, MA Smith, AM Shearwood, E Haugen, CP Bracken, O Rackham, JA Stamatoyannopouloset al. (2011) The human mitochondrial transcriptome. Cell 146:645–658
https://doi.org/10.1016/j.cell.2011.06.051
30 B Min, M Park, K Jeon, JS Park, H Seo, S Jeong, YK Kang (2018) Age-associated bimodal transcriptional drift reduces intergenic disparities in transcription. Aging 10:789–807
https://doi.org/10.18632/aging.101428
31 E Nagy, T Henics, M Eckert, A Miseta, RN Lightowlers, M Kellermayer (2000) Identification of the NAD(+)-binding fold of glyceralde-hyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem Biophys Res Commun 275:253–260
https://doi.org/10.1006/bbrc.2000.3246
32 C Nicholls, AR Pinto, H Li, L Li, L Wang, R Simpson, JP Liu (2012) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induces cancer cell senescence by interacting with telomerase RNA component. Proc Natl Acad Sci USA 109:13308–13313
https://doi.org/10.1073/pnas.1206672109
33 M Phadke, N Krynetskaia, A Mishra, E Krynetskiy (2011) Acceler-ated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells. Biochem Biophys Res Commun 411:409–415
https://doi.org/10.1016/j.bbrc.2011.06.165
34 CR Reczek, NS Chandel (2015) ROS-dependent signal transduction. Curr Opin Cell Biol 33:8–13
https://doi.org/10.1016/j.ceb.2014.09.010
35 KL Rudolph, S Chang, HW Lee, M Blasco, GJ Gottlieb, C Greider, RA DePinho (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96:701–712
https://doi.org/10.1016/S0092-8674(00)80580-2
36 D Sarkar, M Leszczyniecka, DC Kang, IV Lebedeva, K Valerie, S Dhar, TK Pandita, PB Fisher (2003) Down-regulation of Myc as a potential target for growth arrest induced by human polynu-cleotide phosphorylase (hPNPaseold-35) in human melanoma cells. J Biol Chem 278:24542–24551
https://doi.org/10.1074/jbc.M302421200
37 R Sato, N Arai-Ichinoi, A Kikuchi, T Matsuhashi, Y Numata-Uematsu, M Uematsu, Y Fujii, K Murayama, A Ohtake, T Abeet al. (2017) Novel biallelic mutations in the PNPT1 gene encoding a mitochondrial-RNA-import protein PNPase cause delayed myeli-nation. Clin Genet.
https://doi.org/10.3791/3854
38 A Sawa, AA Khan, LD Hester, SH Snyder (1997) Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc Natl Acad Sci USA 94:11669–11674
https://doi.org/10.1073/pnas.94.21.11669
39 AM Schulz, CM Haynes (2015) UPR(mt)-mediated cytoprotection and organismal aging. Biochim Biophys Acta 1847:1448–1456
https://doi.org/10.1016/j.bbabio.2015.03.008
40 N Sen, MR Hara, MD Kornberg, MB Cascio, BI Bae, N Shahani, B Thomas, TM Dawson, VL Dawson, SH Snyderet al. (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10:866–873
https://doi.org/10.1038/ncb1747
41 LB Sullivan, NS Chandel (2014) Mitochondrial reactive oxygen species and cancer. Cancer Metab 2:17
https://doi.org/10.1186/2049-3002-2-17
42 N Sun, RJ Youle, T Finkel (2016) The mitochondrial basis of aging. Mol Cell 61:654–666
https://doi.org/10.1016/j.molcel.2016.01.028
43 C Trapnell, A Roberts, L Goff, G Pertea, D Kim, DR Kelley, H Pimentel, SL Salzberg, JL Rinn, L Pachter (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578
https://doi.org/10.1038/nprot.2012.016
44 V Vedrenne, A Gowher, P De Lonlay, P Nitschke, V Serre, N Boddaert, C Altuzarra, AM Mager-Heckel, F Chretien, N Enteliset al. (2012) Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency. Am J Hum Genet 91:912–918
https://doi.org/10.1016/j.ajhg.2012.09.001
45 S von Ameln, G Wang, R Boulouiz, MA Rutherford, GM Smith, Y Li, HM Pogoda, G Nurnberg, B Stiller, AE Volket al. (2012) A mutation in PNPT1, encoding mitochondrial-RNA-import protein PNPase, causes hereditary hearing loss. Am J Hum Genet 91:919–927
https://doi.org/10.1016/j.ajhg.2012.09.002
46 DC Wallace (2012) Mitochondria and cancer. Nature reviews. Cancer 12:685–698
https://doi.org/10.1038/nrc3365
47 G Wang, HW Chen, Y Oktay, J Zhang, EL Allen, GM Smith, KC Fan, JS Hong, SW French, JM McCafferyet al. (2010) PNPASE regulates RNA import into mitochondria. Cell 142:456–467
https://doi.org/10.1016/j.cell.2010.06.035
48 C Yee, W Yang, S Hekimi (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 157:897–909
https://doi.org/10.1016/j.cell.2014.02.055
49 X Zhang, X Zuo, B Yang, Z Li, Y Xue, Y Zhou, J Huang, X Zhao, J Zhou, Y Yanet al. (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158:607
https://doi.org/10.1016/j.cell.2014.05.047
[1] PAC-0631-18533-WG_suppl_1 Download
[2] PAC-0631-18533-WG_suppl_2 Download
[1] Ermin Li, Xiuya Li, Jie Huang, Chen Xu, Qianqian Liang, Kehan Ren, Aobing Bai, Chao Lu, Ruizhe Qian, Ning Sun. BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy[J]. Protein Cell, 2020, 11(9): 661-679.
[2] Wei Li, Wenchen Shen, Bo Zhang, Kuan Tian, Yamu Li, Lili Mu, Zhiyuan Luo, Xiaoling Zhong, Xudong Wu, Ying Liu, Yan Zhou. Long non-coding RNA LncKdm2bregulates cortical neuronal differentiation by cis-activating Kdm2b[J]. Protein Cell, 2020, 11(3): 161-186.
[3] Feng Li, Yuanlong Ge, Dan Liu, Zhou Songyang. The role of telomere-binding modulators in pluripotent stem cells[J]. Protein Cell, 2020, 11(1): 60-70.
[4] Crystal A. Lee, Lih-Shen Chin, Lian Li. Hypertonia-linked protein Trak1 functions with mitofusins to promote mitochondrial tethering and fusion[J]. Protein Cell, 2018, 9(8): 693-716.
[5] Yi Yang, Han Wu, Xiangjin Kang, Yanhui Liang, Ting Lan, Tianjie Li, Tao Tan, Jiangyun Peng, Quanjun Zhang, Geng An, Yali Liu, Qian Yu, Zhenglai Ma, Ying Lian, Boon Seng Soh, Qingfeng Chen, Ping Liu, Yaoyong Chen, Xiaofang Sun, Rong Li, Xiumei Zhen, Ping Liu, Yang Yu, Xiaoping Li, Yong Fan. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs[J]. Protein Cell, 2018, 9(3): 283-297.
[6] Qianqian Li, Zewen Gao, Ye Chen, Min-Xin Guan. The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells[J]. Protein Cell, 2017, 8(6): 439-445.
[7] Peipei Liu, Jinliang Huang, Qian Zheng, Leiming Xie, Xinping Lu, Jie Jin, Geng Wang. Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2[J]. Protein Cell, 2017, 8(10): 735-749.
[8] Lucy Cassar,Craig Nicholls,Alex R. Pinto,Ruping Chen,Lihui Wang,He Li,Jun-Ping Liu. TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence[J]. Protein Cell, 2017, 8(1): 39-54.
[9] Zhi-Dong Liu,Su Zhang,Jian-Jin Hao,Tao-Rong Xie,Jian-Sheng Kang. Cellular model of neuronal atrophy induced by DYNC1I1 deficiency reveals protective roles of RAS-RAF-MEK signaling[J]. Protein Cell, 2016, 7(9): 638-650.
[10] Juan Feng,Silin Lü,Yanhong Ding,Ming Zheng,Xian Wang. Homocysteine activates T cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration[J]. Protein Cell, 2016, 7(6): 391-402.
[11] Mengmeng Chen,Yang Li,Mengxue Yang,Xiaoping Chen,Yemeng Chen,Fan Yang,Sheng Lu,Shengyu Yao,Timothy Zhou,Jianghong Liu,Li Zhu,Sidan Du,Jane Y. Wu. A new method for quantifying mitochondrial axonal transport[J]. Protein Cell, 2016, 7(11): 804-819.
[12] Yan-Cheng Tang,Hong-Xia Tian,Tao Yi,Hu-Biao Chen. The critical roles of mitophagy in cerebral ischemia[J]. Protein Cell, 2016, 7(10): 699-713.
[13] Chunju Fang,Xiawei Wei,Yuquan Wei. Mitochondrial DNA in the regulation of innate immune responses[J]. Protein Cell, 2016, 07(1): 11-16.
[14] Xiaoying Chen,Kunshan Zhang,Liqiang Zhou,Xinpei Gao,Junbang Wang,Yinan Yao,Fei He,Yuping Luo,Yongchun Yu,Siguang Li,Liming Cheng,Yi E. Sun. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation[J]. Protein Cell, 2016, 07(03): 175-186.
[15] Jun Cao,Zhengyu Luo,Qingyu Cheng,Qianlan Xu,Yan Zhang,Fei Wang,Yan Wu,Xiaoyuan Song. Three-dimensional regulation of transcription[J]. Protein Cell, 2015, 6(4): 241-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed