|
|
Mitochondrion-processed TERC regulates senescence without affecting telomerase activities |
Qian Zheng1, Peipei Liu1, Ge Gao1, Jiapei Yuan1, Pengfeng Wang2, Jinliang Huang1, Leiming Xie1, Xinping Lu1, Fan Di1, Tanjun Tong2,3, Jun Chen2,3, Zhi Lu1, Jisong Guan1, Geng Wang1( ) |
1. MOE Key laboratory of Bioinformatics, Cell Biology and Development Center, School of Life Sciences, Tsinghua University, Beijing 100084, China 2. Peking University Research Center on Aging, Beijing 100191, China 3. Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China |
|
|
Abstract Mitochondrial dysfunctions play major roles in ageing. How mitochondrial stresses invoke downstream responses and how specificity of the signaling is achieved, however, remains unclear. We have previously discovered that the RNA component of Telomerase TERCis imported into mitochondria, processed to a shorter form TERC-53, and then exported back to the cytosol. Cytosolic TERC-53levels respond to mito- chondrial functions, but have no direct effect on these functions, suggesting that cytosolic TERC-53functions downstream of mitochondria as a signal of mitochon- drial functions. Here, we show that cytosolic TERC-53plays a regulatory role on cellular senescence and is involved in cognition decline in 10 months old mice, independent of its telomerase function. Manipulation of cytosolic TERC-53levels affects cellular senescence and cognition decline in 10 months old mouse hip-pocampi without affecting telomerase activity, and most importantly, affects cellular senescence in terc−/− cells. These findings uncover a senescence-related regulatory pathway with a non-coding RNA as the signal in mammals.
|
Keywords
mitochondria
retrograde signal
nucleus
transcription regulation
non-coding RNA
telomerase
|
Corresponding Author(s):
Geng Wang
|
Issue Date: 24 September 2019
|
|
1 |
F Acquati, C Morelli, R Cinquetti, MG Bianchi, D Porrini, L Varesco, V Gismondi, R Rocchetti, S Talevi, L Possatiet al. (2001) Cloning and characterization of a senescence inducing and class II tumor suppressor gene in ovarian carcinoma at chromosome region 6q27. Oncogene 20:980–988
https://doi.org/10.1038/sj.onc.1204178
|
2 |
JD Alfonzo, D Soll (2009) Mitochondrial tRNA import–the challenge to understand has just begun. Biol Chem 390:717–722
https://doi.org/10.1515/BC.2009.101
|
3 |
S Azam, N Jouvet, A Jilani, R Vongsamphanh, X Yang, S Yang, D Ramotar (2008) Human glyceraldehyde-3-phosphate dehydro- genase plays a direct role in reactivating oxidized forms of the DNA repair enzyme APE1. J Biol Chem 283:30632–30641
https://doi.org/10.1074/jbc.M801401200
|
4 |
B Bernardes de Jesus, MA Blasco (2013) Telomerase at the intersection of cancer and aging. Trends Genet 29:513–520
https://doi.org/10.1016/j.tig.2013.06.007
|
5 |
NA Bishop, T Lu, BA Yankner (2010) Neural mechanisms of ageing and cognitive decline. Nature 464:529–535
https://doi.org/10.1038/nature08983
|
6 |
MA Blasco, HW Lee, MP Hande, E Samper, PM Lansdorp, RA DePinho, CW Greider (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34
https://doi.org/10.1016/S0092-8674(01)80006-4
|
7 |
RM Cawthon (2009) Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res 37:e21
https://doi.org/10.1093/nar/gkn1027
|
8 |
C Chang, H Su, D Zhang, Y Wang, Q Shen, B Liu, R Huang, T Zhou, C Peng, CC Wonget al. (2015) AMPK-dependent phosphoryla- tion of GAPDH triggers Sirt1 activation and is necessary for autophagy upon glucose starvation. Mol Cell 60:930–940
https://doi.org/10.1016/j.molcel.2015.10.037
|
9 |
DD Chang, DA Clayton (1989) Mouse RNAase MRP RNA is encoded by a nuclear gene and contains a decamer sequence complementary to a conserved region of mitochondrial RNA substrate. Cell 56:131–139
https://doi.org/10.1016/0092-8674(89)90991-4
|
10 |
HW Chen, RN Rainey, CE Balatoni, DW Dawson, JJ Troke, S Wasiak, JS Hong, HM McBride, CM Koehler, MA Teitellet al. (2006) Mammalian polynucleotide phosphorylase is an intermembrane space RNase that maintains mitochondrial homeostasis. Mol Cell Biol 26:8475–8487
https://doi.org/10.1128/MCB.01002-06
|
11 |
Y Cheng, P Liu, Q Zheng, G Gao, J Yuan, P Wang, J Huang, L Xie, X Lu, T Tonget al. (2018) Mitochondrial trafficking and processing of telomerase RNA TERC. Cell Rep 24:2589–2595
https://doi.org/10.1016/j.celrep.2018.08.003
|
12 |
DM Chuang, R Ishitani (1996) A role for GAPDH in apoptosis and neurodegeneration. Nat Med 2:609–610
https://doi.org/10.1038/nm0696-609
|
13 |
PJ Coates, DJ Jamieson, K Smart, AR Prescott, PA Hall (1997) The prohibitin family of mitochondrial proteins regulate replicative lifespan. Curr Biol 7:607–610
https://doi.org/10.1016/S0960-9822(06)00261-2
|
14 |
J Feng, CA Meyer, Q Wang, JS Liu, X Shirley Liu, Y Zhang (2012) GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics 28:2782–2788
https://doi.org/10.1093/bioinformatics/bts515
|
15 |
JG Gall (1990) Telomerase RNA: tying up the loose ends. Nature 344:108–109
https://doi.org/10.1038/344108a0
|
16 |
RA Gottlieb, D Bernstein (2016) Mitochondrial remodeling: rear- ranging, recycling, and reprogramming. Cell Calcium 60:88–101
https://doi.org/10.1016/j.ceca.2016.04.006
|
17 |
M Guha, NG Avadhani (2013) Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion 13:577–591
https://doi.org/10.1016/j.mito.2013.08.007
|
18 |
N Hachiya, R Alam, Y Sakasegawa, M Sakaguchi, K Mihara, T Omura (1993) A mitochondrial import factor purified from rat liver cytosol is an ATP-dependent conformational modulator for precursor proteins. EMBO J 12:1579–1586
https://doi.org/10.1002/j.1460-2075.1993.tb05802.x
|
19 |
MR Hara, N Agrawal, SF Kim, MB Cascio, M Fujimuro, Y Ozeki, M Takahashi, JH Cheah, SK Tankou, LD Hesteret al. (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7:665–674
https://doi.org/10.1038/ncb1268
|
20 |
M Jaskelioff, FL Muller, JH Paik, E Thomas, S Jiang, AC Adams, E Sahin, M Kost-Alimova, A Protopopov, J Cadinanoset al. (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469:102–106
https://doi.org/10.1038/nature09603
|
21 |
J Jozefczuk, K Drews, J Adjaye (2012) Preparation of mouse embryonic fibroblast cells suitable for culturing human embryonic and induced pluripotent stem cells. J Vis Exp.
https://doi.org/10.3791/3854
|
22 |
VN Kotiadis, MR Duchen, LD Osellame (2014) Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochim Biophys Acta 1840:1254–1265
https://doi.org/10.1016/j.bbagen.2013.10.041
|
23 |
N Li, Q Li, X Cao, G Zhao, L Xue, T Tong (2011) The tumor suppressor p33ING1b upregulates p16INK4a expression and induces cellular senescence. FEBS Lett 585:3106–3112
https://doi.org/10.1016/j.febslet.2011.08.044
|
24 |
P Liu, J Huang, Q Zheng, L Xie, X Lu, J Jin, G Wang (2017) Mammalian mitochondrial RNAs are degraded in the mitochon- drial intermembrane space by RNASET2. Protein Cell 8:735–749
https://doi.org/10.1007/s13238-017-0448-9
|
25 |
C Lopez-Otin, MA Blasco, L Partridge, M Serrano, G Kroemer (2013) The hallmarks of aging. Cell 153:1194–1217
https://doi.org/10.1016/j.cell.2013.05.039
|
26 |
C Lopez-Otin, L Galluzzi, JM Freije, F Madeo, G Kroemer (2016) Metabolic control of longevity. Cell 166:802–821
https://doi.org/10.1016/j.cell.2016.07.031
|
27 |
T Lu, Y Pan, SY Kao, C Li, I Kohane, J Chan, BA Yankner (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891
https://doi.org/10.1038/nature02661
|
28 |
KM McAvoy, KN Scobie, S Berger, C Russo, N Guo, P Decharatanachart, H Vega-Ramirez, S Miake-Lye, M Whalen, M Nelsonet al. (2016) Modulating neuronal competition dynamics in the dentate gyrus to rejuvenate aging memory circuits. Neuron 91:1356–1373
https://doi.org/10.1016/j.neuron.2016.08.009
|
29 |
TR Mercer, S Neph, ME Dinger, J Crawford, MA Smith, AM Shearwood, E Haugen, CP Bracken, O Rackham, JA Stamatoyannopouloset al. (2011) The human mitochondrial transcriptome. Cell 146:645–658
https://doi.org/10.1016/j.cell.2011.06.051
|
30 |
B Min, M Park, K Jeon, JS Park, H Seo, S Jeong, YK Kang (2018) Age-associated bimodal transcriptional drift reduces intergenic disparities in transcription. Aging 10:789–807
https://doi.org/10.18632/aging.101428
|
31 |
E Nagy, T Henics, M Eckert, A Miseta, RN Lightowlers, M Kellermayer (2000) Identification of the NAD(+)-binding fold of glyceralde-hyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem Biophys Res Commun 275:253–260
https://doi.org/10.1006/bbrc.2000.3246
|
32 |
C Nicholls, AR Pinto, H Li, L Li, L Wang, R Simpson, JP Liu (2012) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induces cancer cell senescence by interacting with telomerase RNA component. Proc Natl Acad Sci USA 109:13308–13313
https://doi.org/10.1073/pnas.1206672109
|
33 |
M Phadke, N Krynetskaia, A Mishra, E Krynetskiy (2011) Acceler-ated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells. Biochem Biophys Res Commun 411:409–415
https://doi.org/10.1016/j.bbrc.2011.06.165
|
34 |
CR Reczek, NS Chandel (2015) ROS-dependent signal transduction. Curr Opin Cell Biol 33:8–13
https://doi.org/10.1016/j.ceb.2014.09.010
|
35 |
KL Rudolph, S Chang, HW Lee, M Blasco, GJ Gottlieb, C Greider, RA DePinho (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96:701–712
https://doi.org/10.1016/S0092-8674(00)80580-2
|
36 |
D Sarkar, M Leszczyniecka, DC Kang, IV Lebedeva, K Valerie, S Dhar, TK Pandita, PB Fisher (2003) Down-regulation of Myc as a potential target for growth arrest induced by human polynu-cleotide phosphorylase (hPNPaseold-35) in human melanoma cells. J Biol Chem 278:24542–24551
https://doi.org/10.1074/jbc.M302421200
|
37 |
R Sato, N Arai-Ichinoi, A Kikuchi, T Matsuhashi, Y Numata-Uematsu, M Uematsu, Y Fujii, K Murayama, A Ohtake, T Abeet al. (2017) Novel biallelic mutations in the PNPT1 gene encoding a mitochondrial-RNA-import protein PNPase cause delayed myeli-nation. Clin Genet.
https://doi.org/10.3791/3854
|
38 |
A Sawa, AA Khan, LD Hester, SH Snyder (1997) Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc Natl Acad Sci USA 94:11669–11674
https://doi.org/10.1073/pnas.94.21.11669
|
39 |
AM Schulz, CM Haynes (2015) UPR(mt)-mediated cytoprotection and organismal aging. Biochim Biophys Acta 1847:1448–1456
https://doi.org/10.1016/j.bbabio.2015.03.008
|
40 |
N Sen, MR Hara, MD Kornberg, MB Cascio, BI Bae, N Shahani, B Thomas, TM Dawson, VL Dawson, SH Snyderet al. (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10:866–873
https://doi.org/10.1038/ncb1747
|
41 |
LB Sullivan, NS Chandel (2014) Mitochondrial reactive oxygen species and cancer. Cancer Metab 2:17
https://doi.org/10.1186/2049-3002-2-17
|
42 |
N Sun, RJ Youle, T Finkel (2016) The mitochondrial basis of aging. Mol Cell 61:654–666
https://doi.org/10.1016/j.molcel.2016.01.028
|
43 |
C Trapnell, A Roberts, L Goff, G Pertea, D Kim, DR Kelley, H Pimentel, SL Salzberg, JL Rinn, L Pachter (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578
https://doi.org/10.1038/nprot.2012.016
|
44 |
V Vedrenne, A Gowher, P De Lonlay, P Nitschke, V Serre, N Boddaert, C Altuzarra, AM Mager-Heckel, F Chretien, N Enteliset al. (2012) Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency. Am J Hum Genet 91:912–918
https://doi.org/10.1016/j.ajhg.2012.09.001
|
45 |
S von Ameln, G Wang, R Boulouiz, MA Rutherford, GM Smith, Y Li, HM Pogoda, G Nurnberg, B Stiller, AE Volket al. (2012) A mutation in PNPT1, encoding mitochondrial-RNA-import protein PNPase, causes hereditary hearing loss. Am J Hum Genet 91:919–927
https://doi.org/10.1016/j.ajhg.2012.09.002
|
46 |
DC Wallace (2012) Mitochondria and cancer. Nature reviews. Cancer 12:685–698
https://doi.org/10.1038/nrc3365
|
47 |
G Wang, HW Chen, Y Oktay, J Zhang, EL Allen, GM Smith, KC Fan, JS Hong, SW French, JM McCafferyet al. (2010) PNPASE regulates RNA import into mitochondria. Cell 142:456–467
https://doi.org/10.1016/j.cell.2010.06.035
|
48 |
C Yee, W Yang, S Hekimi (2014) The intrinsic apoptosis pathway mediates the pro-longevity response to mitochondrial ROS in C. elegans. Cell 157:897–909
https://doi.org/10.1016/j.cell.2014.02.055
|
49 |
X Zhang, X Zuo, B Yang, Z Li, Y Xue, Y Zhou, J Huang, X Zhao, J Zhou, Y Yanet al. (2014) MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158:607
https://doi.org/10.1016/j.cell.2014.05.047
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|