|
|
|
PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation |
Tong Li, Jinbo Han, Liangjie Jia, Xiao Hu, Liqun Chen, Yiguo Wang( ) |
| MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China |
|
|
|
|
Abstract A change in the metabolic flux of glucose from mitochondrial oxidative phosphorylation (OXPHOS) to aerobic glycolysis is regarded as one hallmark of cancer. However, the mechanisms underlying the metabolic switch between aerobic glycolysis and OXPHOS are unclear. Here we show that the M2 isoform of pyruvate kinase (PKM2), one of the rate-limiting enzymes in glycolysis, interacts with mitofusin 2 (MFN2), a key regulator of mitochondrial fusion, to promote mitochondrial fusion and OXPHOS, and attenuate glycolysis. mTOR increases the PKM2:MFN2 interaction by phosphorylating MFN2 and thereby modulates the effect of PKM2: MFN2 on glycolysis, mitochondrial fusion and OXPHOS. Thus, an mTOR-MFN2-PKM2 signaling axis couples glycolysis and OXPHOS to modulate cancer cell growth.
|
| Keywords
PKM2
MFN2
mTOR
glycolysis
oxidative phosphorylation
|
|
Corresponding Author(s):
Yiguo Wang
|
|
Issue Date: 22 August 2019
|
|
| 1 |
D Anastasiou, Y Yu, WJ Israelsen, JK Jiang, MB Boxer, BS Hong, W Tempel, S Dimov, M Shen, A Jhaet al. (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 8:839–847
https://doi.org/10.1038/nchembio.1060
|
| 2 |
MD Buck, D O’Sullivan, RI Klein Geltink, JD Curtis, CH Chang, DE Sanin, J Qiu, O Kretz, D Braas, GJ van der Windtet al. (2016) Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166:63–76
https://doi.org/10.1016/j.cell.2016.05.035
|
| 3 |
B Chaneton, P Hillmann, L Zheng, ACL Martin, ODK Maddocks, A Chokkathukalam, JE Coyle, A Jankevics, FP Holding, KH Vousdenet al. (2012) Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 491:458–462
https://doi.org/10.1038/nature11540
|
| 4 |
H Chen, DC Chan (2017) Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab 26:39–48
https://doi.org/10.1016/j.cmet.2017.05.016
|
| 5 |
Y Chen, GW Dorn 2nd (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340:471–475
https://doi.org/10.1126/science.1231031
|
| 6 |
H Chen, A Chomyn, DC Chan (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192
https://doi.org/10.1074/jbc.M503062200
|
| 7 |
L Chen, K Wang, A Long, L Jia, Y Zhang, H Deng, Y Li, J Han, Y Wang (2017) Fasting-induced hormonal regulation of lysosomal function. Cell Res 27:748–763
https://doi.org/10.1038/cr.2017.45
|
| 8 |
HR Christofk, MG Vander Heiden, MH Harris, A Ramanathan, RE Gerszten, R Wei, MD Fleming, SL Schreiber, LC Cantley (2008a) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233
https://doi.org/10.1038/nature06734
|
| 9 |
HR Christofk, MG Vander Heiden, N Wu, JM Asara, LC Cantley (2008b) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186
https://doi.org/10.1038/nature06667
|
| 10 |
M Cornu, V Albert, MN Hall (2013) mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 23:53–62
https://doi.org/10.1016/j.gde.2012.12.005
|
| 11 |
TL Dayton, T Jacks, MG Vander Heiden (2016) PKM2, cancer metabolism, and the road ahead. EMBO Rep 17:1721–1730
https://doi.org/10.15252/embr.201643300
|
| 12 |
VR Fantin, J St-Pierre, P Leder (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9:425–434
https://doi.org/10.1016/j.ccr.2006.04.023
|
| 13 |
D Garcia, RJ Shaw (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66:789–800
https://doi.org/10.1016/j.molcel.2017.05.032
|
| 14 |
V Gogvadze, S Orrenius, B Zhivotovsky (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 18:165–173
https://doi.org/10.1016/j.tcb.2008.01.006
|
| 15 |
G Gong, M Song, G Csordas, DP Kelly, SJ Matkovich, GW Dorn 2nd (2015) Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science 350:aad2459
https://doi.org/10.1126/science.aad2459
|
| 16 |
J, Han E Li, L Chen, Y Zhang, F Wei, J Liu, H Deng, Y Wang (2015) The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1. Nature 524:243–246
https://doi.org/10.1038/nature14557
|
| 17 |
D Hanahan, RA Weinberg (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
https://doi.org/10.1016/j.cell.2011.02.013
|
| 18 |
PP Hsu, SA Kang, J Rameseder, Y Zhang, KA Ottina, D Lim, TR Peterson, Y, Choi NS Gray, MB Yaffeet al. (2011) The mTORregulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332:1317–1322
https://doi.org/10.1126/science.1199498
|
| 19 |
WJ Israelsen, TL Dayton, SM Davidson, BP Fiske, AM Hosios, G Bellinger, J Li, Y Yu, M Sasaki, JW Horneret al. (2013) PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155:397–409
https://doi.org/10.1016/j.cell.2013.09.025
|
| 20 |
KE Keller, IS Tan, YS Lee (2012) SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucoselimited conditions. Science 338:1069–1072
https://doi.org/10.1126/science.1224409
|
| 21 |
M Lazarou, DA Sliter, LA Kane, SA Sarraf, C Wang, JL Burman, DP Sideris, AI Fogel, RJ Youle (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524:309–314
https://doi.org/10.1038/nature14893
|
| 22 |
M Liesa, OS Shirihai (2013) Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab 17:491–506
https://doi.org/10.1016/j.cmet.2013.03.002
|
| 23 |
P Mishra, DC Chan (2014) Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 15:634–646
https://doi.org/10.1038/nrm3877
|
| 24 |
A Mourier, E Motori, T Brandt, M Lagouge, I Atanassov, A Galinier, G Rappl, S Brodesser, K Hultenby, C Dieterichet al.(2015) Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. J Cell Biol 208:429–442
https://doi.org/10.1083/jcb.201411100
|
| 25 |
J Rehman, HJ Zhang, PT Toth, Y Zhang, G Marsboom, Z Hong, R Salgia, AN Husain, C Wietholt, SL Archer (2012) Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J 26:2175–2186
https://doi.org/10.1096/fj.11-196543
|
| 26 |
RA Saxton, DM Sabatini (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976
https://doi.org/10.1016/j.cell.2017.02.004
|
| 27 |
MN Serasinghe, SY Wieder, TT Renault, R Elkholi, JJ Asciolla, JL Yao, O Jabado, K Hoehn, Y Kageyama, H Sesakiet al. (2015) Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol Cell 57:521–536
https://doi.org/10.1016/j.molcel.2015.01.003
|
| 28 |
Z Song, M Ghochani, JM McCaffery, TG Frey, DC Chan (2009) Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20:3525–3532
https://doi.org/10.1091/mbc.e09-03-0252
|
| 29 |
G Valentini, LR Chiarelli, R Fortin, M Dolzan, A Galizzi, DJ Abraham, C Wang, P Bianchi, A Zanella, A Mattevi (2002) Structure and function of human erythrocyte pyruvate kinase. Molecular basis of nonspherocytic hemolytic anemia. J Biol Chem 277:23807–23814
https://doi.org/10.1074/jbc.M202107200
|
| 30 |
MG Vander Heiden, RJ DeBerardinis (2017) Understanding the intersections between metabolism and cancer biology. Cell 168:657–669
https://doi.org/10.1016/j.cell.2016.12.039
|
| 31 |
MG, Vander Heiden LC Cantley, CB Thompson (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033
https://doi.org/10.1126/science.1160809
|
| 32 |
C Wang, LR Chiarelli, P Bianchi, DJ Abraham, A Galizzi, A Mattevi, A Zanella, G Valentini (2001) Human erythrocyte pyruvate kinase: characterization of the recombinant enzyme and a mutant form (R510Q) causing nonspherocytic hemolytic anemia. Blood 98:3113–3120
https://doi.org/10.1182/blood.V98.10.3113
|
| 33 |
W Yang, Z Lu (2015) Pyruvate kinase M2 at a glance. J Cell Sci 128:1655–1660
https://doi.org/10.1242/jcs.166629
|
| 34 |
RJ Youle, AM van der Bliek (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065
https://doi.org/10.1126/science.1219855
|
| 35 |
CS Zhang, SA Hawley, Y Zong, M Li, Z Wang, A Gray, T Ma, J Cui, JW Feng, M Zhuet al. (2017) Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548:112–116
https://doi.org/10.1038/nature23275
|
| 36 |
J Zhao, J Zhang, M Yu, Y Xie, Y Huang, DW Wolff, PW Abel, Y Tu (2013) Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32:4814–4824
https://doi.org/10.1038/onc.2012.494
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|