|
|
Progress towards revealing the mechanism of herpesvirus capsid maturation and genome packaging |
Zhihai Li1, Xuekui Yu1,2( ) |
1. Cryo-Electron Microscopy Research Center, the CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China 2. University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
|
Corresponding Author(s):
Xuekui Yu
|
Issue Date: 02 June 2020
|
|
1 |
K Aathavan, AT Politzer, A Kaplan, JR Moffitt, YR Chemla, S Grimes, PJ Jardine, DL Anderson, C Bustamante (2009) Substrate interactions and promiscuity in a viral DNA packaging motor. Nature 461:669–673
https://doi.org/10.1038/nature08443
|
2 |
W Chen, H Xiao, X Wang, S Song, Z Han, X Li, F Yang, L Wang, Song, H Liuet al. (2020) Structural changes of a bacteriophage upon DNA packaging and maturation. Protein Cell.
https://doi.org/10.1007/s13238-020-00715-9
|
3 |
X Dai, ZH Zhou (2018) Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. Science 360:6384
https://doi.org/10.1126/science.aao7298
|
4 |
X Dai, D Gong, H Lim, J Jih, TT Wu, R Sun, ZH Zhou (2018) Structure and mutagenesis reveal essential capsid protein interactions for KSHV replication. Nature 553:521–525
https://doi.org/10.1038/nature25438
|
5 |
D Gong, X Dai, J Jih, YT Liu, GQ Bi, R Sun, ZH Zhou (2019) DNA- packing portal and capsid-associated tegument complexes in the tumor herpesvirus KSHV. Cell 178(1329–1343):e1312
https://doi.org/10.1016/j.cell.2019.07.035
|
6 |
P Guo, H Noji, CM Yengo, Z Zhao, I Grainge (2016) Biological nanomotors with a revolution, linear, or rotation motion mecha- nism. Microbiol Mol Biol Rev 80:161–186
https://doi.org/10.1128/MMBR.00056-15
|
7 |
JD Heming, JF Conway, FL Homa (2017) Herpesvirus capsid assembly and DNA packaging. Adv Anat Embryol Cell Biol 223:119–142
https://doi.org/10.1007/978-3-319-53168-7_6
|
8 |
BJ Hilbert, JA Hayes, NP Stone, CM Duffy, B Sankaran, BA Kelch (2015) Structure and mechanism of the ATPase that powers viral genome packaging. Proc Natl Acad Sci U S A 112:E3792–3799
https://doi.org/10.1073/pnas.1506951112
|
9 |
YT Liu, J Jih, X Dai, GQ Bi, ZH Zhou (2019) Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome. Nature 570:257–261
https://doi.org/10.1038/s41586-019-1248-6
|
10 |
JR Moffitt, YR Chemla, K Aathavan, S Grimes, PJ Jardine, DL Anderson, C Bustamante (2009) Intersubunit coordination in a homomeric ring ATPase. Nature 457:446–450
https://doi.org/10.1038/nature07637
|
11 |
WC Nan Wang, Ling Zhu, Rui Feng, Jialing Wang, Dongjie Zhu, Xinzheng Zhang, Hongrong Liu, Zihe Rao, Xiangxi Wang (2020) Structures of the portal vertex reveal essential protein-protein interactions for Herpesvirus assembly and maturation. Protein Cell. 16:6.
https://doi.org/10.1007/s13238-020-00711-z
|
12 |
C Schwartz, GM De Donatis, H Zhang, H Fang, P Guo (2013) Revolution rather than rotation of AAA+ hexameric phi29 nanomotor for viral dsDNA packaging without coiling. Virology 443:28–39
https://doi.org/10.1016/j.virol.2013.04.019
|
13 |
J Wang, S Yuan, D Zhu, H Tang, N Wang, W Chen, Q Gao, Y Li, J Wang, H Liuet al. (2018) Structure of the herpes simplex virus type 2 C-capsid with capsid-vertex-specific component. Nat Commun 9:3668
https://doi.org/10.1038/s41467-018-06078-4
|
14 |
N Wang, D Zhao, J Wang, Y Zhang, M Wang, Y Gao, F Li, Z Bu, Z Rao, X Wang (2019) Architecture of African swine fever virus and implications for viral assembly. Science 366:640–644
https://doi.org/10.1126/science.aaz1439
|
15 |
X Yu, J Jih, J Jiang, ZH Zhou (2017) Atomic structure of the human cytomegalovirus capsid with its securing tegument layer of pp150. Science. https://doi.org/10.1126/science.aam6892
https://doi.org/10.1126/science.aam6892
|
16 |
S Yuan, J Wang, D Zhu, N Wang, Q Gao, W Chen, H Tang, J Wang, X Zhang, H Liuet al. (2018) Cryo-EM structure of a herpesvirus capsid at 3.1 A. Science.
https://doi.org/10.1126/science
|
17 |
PY Yunxiang Yang, N Wang, L Zhu, Y Zeng, Z Rao, X Wang (2020) Architecture of the herpesvirus genome-packaging complex and implications for DNA translocation. Protein Cell.
https://doi.org/10.1007/s13238-020-00710-0
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|