|
|
|
New avenues for systematically inferring cellcell communication: through single-cell transcriptomics data |
Xin Shao1, Xiaoyan Lu1, Jie Liao1, Huajun Chen2,3, Xiaohui Fan1,4( ) |
1. College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China 2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China 3. The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China 4. The Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia |
|
|
|
|
Abstract For multicellular organisms, cell-cell communication is essential to numerous biological processes. Drawing upon the latest development of single-cell RNA-sequencing (scRNA-seq), high-resolution transcriptomic data have deepened our understanding of cellular phenotype heterogeneity and composition of complex tissues, which enables systematic cell-cell communication studies at a single-cell level. We first summarize a common workflow of cell-cell communication study using scRNA-seq data, which often includes data preparation, construction of communication networks, and result validation. Two common strategies taken to uncover cell-cell communications are reviewed, e.g., physically vicinal structure-based and ligand-receptor interaction-based one. To conclude, challenges and current applications of cell-cell communication studies at a single-cell resolution are discussed in details and future perspectives are proposed.
|
| Keywords
cell-cell communication
single-cell RNA sequencing
physical contact-dependent communication
chemical signal-dependent communication
ligand-receptor interaction
network biology
|
|
Corresponding Author(s):
Xiaohui Fan
|
|
Online First Date: 14 September 2020
Issue Date: 22 December 2020
|
|
| 1 |
R Albert, H Jeong, AL Barabasi (2000) Error and attack tolerance of complex networks. Nature 406:378–382
https://doi.org/10.1038/35019019
|
| 2 |
D Aran, AP Looney, L Liu, E Wu, V Fong, A Hsu, S Chak, RP Naikawadi, PJ Wolters, AR Abateet al. (2019) Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20:163–172
https://doi.org/10.1038/s41590-018-0276-y
|
| 3 |
DR Bandura, VI Baranov, OI Ornatsky, A Antonov, R Kinach, X Lou, S Pavlov, S Vorobiev, JE Dick, SD Tanner (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81:6813–6822
https://doi.org/10.1021/ac901049w
|
| 4 |
AL Barabasi, ZN Oltvai (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113
https://doi.org/10.1038/nrg1272
|
| 5 |
M Bessis(1958) Erythroblastic island, functional unity of bone marrow. Rev Hematol 13:8–11
|
| 6 |
JC Boisset, J Vivie, D Grun, MJ Muraro, A Lyubimova, A van Oudenaarden(2018) Mapping the physical network of cellular interactions. Nat Methods 15:547–553
https://doi.org/10.1038/s41592-018-0009-z
|
| 7 |
VM Braga (2002) Cell-cell adhesion and signalling. Curr Opin Cell Biol 14:546–556
https://doi.org/10.1016/S0955-0674(02)00373-3
|
| 8 |
B Budnik, E Levy, G Harmange, N Slavov (2018) SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol 19:161
https://doi.org/10.1186/s13059-018-1547-5
|
| 9 |
JC Burns, MC Kelly, M Hoa, RJ Morell, MW Kelley (2015) Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nat Commun 6:8557
https://doi.org/10.1038/ncomms9557
|
| 10 |
JG Camp, K Sekine, T Gerber, H Loeffler-Wirth, H Binder, M Gac, S Kanton, J Kageyama, G Damm, D Seehoferet al. (2017) Multilineage communication regulates human liver bud development from pluripotency. Nature 546:533–538
https://doi.org/10.1038/nature22796
|
| 11 |
J Cao, JS Packer, V Ramani, DA Cusanovich, C Huynh, R Daza, X Qiu, C Lee, SN Furlan, FJ Steemerset al. (2017) Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357:661–667
https://doi.org/10.1126/science.aam8940
|
| 12 |
J Cao, DA Cusanovich, V Ramani, D Aghamirzaie, HA Pliner, AJ Hill, RM Daza, JL McFaline-Figueroa, JS Packer, L Christiansenet al. (2018) Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361:1380–1385
https://doi.org/10.1126/science.aau0730
|
| 13 |
LF Cheow, ET Courtois, Y Tan, R Viswanathan, Q Xing, RZ Tan, DS Tan, P, Robson YH Loh, SR Quakeet al.(2016) Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat Methods 13:833–836
https://doi.org/10.1038/nmeth.3961
|
| 14 |
M Cohen, A Giladi, AD Gorki, DG Solodkin, M Zada, A Hladik, A Miklosi, TM Salame, KB Halpern, E Davidet al. (2018) Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell 175:1031–1044 e1018
https://doi.org/10.1016/j.cell.2018.09.009
|
| 15 |
BC Collins, R Aebersold (2018) Proteomics goes parallel. Nat Biotechnol 36:1051–1053
https://doi.org/10.1038/nbt.4288
|
| 16 |
L Duan, XD Zhang, WY Miao, YJ Sun, G Xiong, Q, Wu G, Li P Yang, H Yu, H Liet al. (2018) PDGFRbeta cells rapidly relay inflammatory signal from the circulatory system to neurons via chemokine CCL2. Neuron 100:183–200 e188
https://doi.org/10.1016/j.neuron.2018.08.030
|
| 17 |
M Efremova, M Vento-Tormo , SA Teichmann, R Vento-Tormo (2020) CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc 15(4):1484–1506
https://doi.org/10.1038/s41596-020-0292-x
|
| 18 |
CL Eng, M Lawson, Q Zhu, R Dries, N Koulena, Y Takei, J Yun, C Cronin, C, Karp GC Yuanet al. (2019) Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568:235–239
https://doi.org/10.1038/s41586-019-1049-y
|
| 19 |
WH Evans (2015) Cell communication across gap junctions: a historical perspective and current developments. Biochem Soc Trans 43:450–459
https://doi.org/10.1042/BST20150056
|
| 20 |
DM Fernandez, AH Rahman, NF Fernandez, A Chudnovskiy, ED Amir, L Amadori, NS Khan, CK Wong, R Shamailova, CA Hillet al. (2019) Single-cell immune landscape of human atherosclerotic plaques. Nat Med 25:1576–1588
https://doi.org/10.1038/s41591-019-0590-4
|
| 21 |
S, Gao L Yan, R Wang, J Li, J Yong, X Zhou, Y Wei, X Wu, X Wang, X Fanet al. (2018) Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing. Nat Cell Biol 20:721–734
https://doi.org/10.1038/s41556-018-0105-4
|
| 22 |
ZJ Gartner, JA Prescher, LD Lavis (2017) Unraveling cell-to-cell signaling networks with chemical biology. Nat Chem Biol 13:564–568
https://doi.org/10.1038/nchembio.2391
|
| 23 |
D Grun, A Lyubimova, L, Kester K Wiebrands, O Basak, N Sasaki, H Clevers, A van Oudenaarden (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525:251–255
https://doi.org/10.1038/nature14966
|
| 24 |
KB Halpern, R Shenhav, O, Matcovitch-Natan B Toth, D Lemze, M Golan, EE Massasa, S, Baydatch S Landen, AE Mooret al. (2017) Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542:352–356
https://doi.org/10.1038/nature21065
|
| 25 |
T, Hashimshony F, Wagner N Sher, I Yanai (2012) CEL-Seq: singlecell RNA-Seq by multiplexed linear amplification. Cell Rep 2:666–673
https://doi.org/10.1016/j.celrep.2012.08.003
|
| 26 |
Y, Hu X Wang, B Hu, Y Mao, Y Chen, L, Yan J Yong, J Dong, Y Wei, W Wanget al. (2019) Dissecting the transcriptome landscape of the human fetal neural retina and retinal pigment epithelium by single-cell RNA-seq analysis. PLoS Biol 17:e3000365
https://doi.org/10.1371/journal.pbio.3000365
|
| 27 |
DA Jaitin, E Kenigsberg, H Keren-Shaul, N Elefant, F Paul, I, Zaretsky A Mildner, N, Cohen S Jung, A Tanayet al. (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776–779
https://doi.org/10.1126/science.1247651
|
| 28 |
DC Kirouac, GJ Madlambayan, M Yu, EA Sykes, C Ito, PW Zandstra (2009) Cell-cell interaction networks regulate blood stem and progenitor cell fate. Mol Syst Biol 5:293
https://doi.org/10.1038/msb.2009.49
|
| 29 |
VY Kiselev, A Yiu, M Hemberg (2018) scmap: projection of singlecell RNA-seq data across data sets. Nat Methods 15:359–362
https://doi.org/10.1038/nmeth.4644
|
| 30 |
AM Klein, L Mazutis, I Akartuna, N Tallapragada, A Veres, V, Li L Peshkin, DA Weitz, MW Kirschner (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–1201
https://doi.org/10.1016/j.cell.2015.04.044
|
| 31 |
V Kumar, L Donthireddy, D Marvel, T Condamine, F, Wang S Lavilla-Alonso, A Hashimoto, P Vonteddu, R Behera, MA Goinset al. (2017) Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32:654–668 e655
https://doi.org/10.1016/j.ccell.2017.10.005
|
| 32 |
MP Kumar, J Du, G, Lagoudas Y Jiao, A Sawyer, DC Drummond, DA Lauffenburger, A Raue (2018) Analysis of single-cell RNASeq identifies cell-cell communication associated with tumor characteristics. Cell Rep 25:1458–1468e1454
https://doi.org/10.1016/j.celrep.2018.10.047
|
| 33 |
L Li, J, Dong L Yan, J Yong, X Liu, Y, Hu X Fan, X Wu, H Guo, X Wanget al. (2017) Single-cell RNA-Seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20:858–873 e854
https://doi.org/10.1016/j.stem.2017.03.007
|
| 34 |
J Liao, C, Hao W, Huang X Shao, Y, Song L Liu, N Ai, X Fan (2018) Network pharmacology study reveals energy metabolism and apoptosis pathways-mediated cardioprotective effects of Shenqi Fuzheng. J Ethnopharmacol 227:155–165
https://doi.org/10.1016/j.jep.2018.08.029
|
| 35 |
X Lin, TJ Spindler, MA de Souza Fonseca, RI Corona, JH Seo, FS Dezem, L Li, JM, Lee HW Long, TA Sellerset al. (2019) Superenhancer-associated LncRNA UCA1 interacts directly with AMOT to activate YAP target genes in epithelial ovarian cancer. iScience 17:242–255
https://doi.org/10.1016/j.isci.2019.06.025
|
| 36 |
EZ Macosko, A Basu, R Satija, J Nemesh, K Shekhar, M Goldman, I Tirosh, AR Bialas, N Kamitaki, EM Marterstecket al. (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214
https://doi.org/10.1016/j.cell.2015.05.002
|
| 37 |
D Manwani, JJ Bieker (2008) The erythroblastic island. Curr Top Dev Biol 82:23–53
https://doi.org/10.1016/S0070-2153(07)00002-6
|
| 38 |
JC Martin, C Chang, G, Boschetti R Ungaro, M Giri, JA Grout, K Gettler, LS Chuang, S Nayar, AJ Greensteinet al. (2019) Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti- TNF therapy. Cell 178:1493–1508e1420
https://doi.org/10.1016/j.cell.2019.08.008
|
| 39 |
V Marx (2019) A dream of single-cell proteomics. Nat Methods 16:809–812
https://doi.org/10.1038/s41592-019-0540-6
|
| 40 |
K Mittal, E Eremenko, O Berner, Y Elyahu, I Strominger, D Apelblat, A Nemirovsky, I Spiegel, A Monsonego (2019) CD4 T cells induce a subset of MHCII-expressing microglia that attenuates Alzheimer pathology. iScience 16:298–311
https://doi.org/10.1016/j.isci.2019.05.039
|
| 41 |
S Nestorowa, FK Hamey, B Pijuan Sala, E Diamanti, M Shepherd, E Laurenti, NK Wilson, DG Kent, B Gottgens (2016) A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128:e20–31
https://doi.org/10.1182/blood-2016-05-716480
|
| 42 |
M Nitzan, N Karaiskos, N Friedman, N Rajewsky (2019) Gene expression cartography. Nature 576:132–137
https://doi.org/10.1038/s41586-019-1773-3
|
| 43 |
G Pan, M Cavalli, B Carlsson, S Skrtic, C Kumar, C Wadelius (2020) rs953413 Regulates polyunsaturated fatty acid metabolism by modulating ELOVL2 expression. iScience 23:100808
https://doi.org/10.1016/j.isci.2019.100808
|
| 44 |
F Petersen, L Bock, HD Flad, E Brandt (1999) Platelet factor 4-induced neutrophil-endothelial cell interaction: involvement of mechanisms and functional consequences different from those elicited by interleukin-8. Blood 94:4020–4028
https://doi.org/10.1182/blood.V94.12.4020
|
| 45 |
VM Peterson, KX Zhang, N Kumar, J Wong, L Li, DC Wilson, R Moore, TK, McClanahan S Sadekova, JA Klappenbach (2017) Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol 35:936–939
https://doi.org/10.1038/nbt.3973
|
| 46 |
DW Pfaff, MJ Baum (2018) Hormone-dependent medial preoptic/ lumbar spinal cord/autonomic coordination supporting male sexual behaviors. Mol Cell Endocrinol 467:21–30
https://doi.org/10.1016/j.mce.2017.10.018
|
| 47 |
S Picelli, AK Bjorklund, OR Faridani, S Sagasser, G Winberg, R Sandberg (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098
https://doi.org/10.1038/nmeth.2639
|
| 48 |
P Rajbhandari, D Arneson, SK Hart, IS Ahn, G Diamante, LC Santos, N Zaghari, AC Feng, BJ Thomas, L Vergneset al. (2019) Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes. Elife 8:e49501
https://doi.org/10.7554/eLife.49501.021
|
| 49 |
JA Ramilowski, T Goldberg, J Harshbarger, E Kloppmann, M Lizio, VP Satagopam, M Itoh, H Kawaji, P Carninci, B Rostet al. (2015) A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun 6:7866
https://doi.org/10.1038/ncomms8866
|
| 50 |
P, Ramos C Casu, S Gardenghi, L, Breda BJ Crielaard, E, Guy MF Marongiu, R Gupta, RL Levine, O Abdel-Wahabet al. (2013) Macrophages support pathological erythropoiesis in polycythemia vera and beta-thalassemia. Nat Med 19:437–445
https://doi.org/10.1038/nm.3126
|
| 51 |
SG Rodriques, RR Stickels, A Goeva, CA Martin, E Murray, CR Vanderburg, J, Welch LM Chen, F Chen, EZ Macosko (2019) Slide-seq: a scalable technology for measuring genomewide expression at high spatial resolution. Science 363:1463–1467
https://doi.org/10.1126/science.aaw1219
|
| 52 |
M Rothbauer, H Zirath, P Ertl (2018) Recent advances in microfluidic technologies for cell-to-cell interaction studies. Lab Chip 18:249–270
https://doi.org/10.1039/C7LC00815E
|
| 53 |
R Satija, JA Farrell, D Gennert, AF Schier, A Regev (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33:495–502
https://doi.org/10.1038/nbt.3192
|
| 54 |
CL Scott, M Guilliams (2018) Tissue unit-ed: lung cells team up to drive alveolar macrophage development. Cell 175:898–900
https://doi.org/10.1016/j.cell.2018.10.031
|
| 55 |
AK Shalek, R Satija, J Shuga, JJ Trombetta, D Gennert, D Lu, P, Chen RS Gertner, JT Gaublomme, N Yosefet al. (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510:363–369
https://doi.org/10.1038/nature13437
|
| 56 |
X Shao, N Ai, D Xu, X Fan (2016) Exploring the interaction between Salvia miltiorrhiza and human serum albumin: Insights from herbdrug interaction reports, computational analysis and experimental studies. Spectrochim Acta A Mol Biomol Spectrosc 161:1–7
https://doi.org/10.1016/j.saa.2016.02.015
|
| 57 |
X Shao, N Lv, J, Liao J, Long R Xue, N Ai, D Xu, X Fan (2019) Copy number variation is highly correlated with differential gene expression: a pan-cancer study. BMC Med Genet 20:175
https://doi.org/10.1186/s12881-019-0909-5
|
| 58 |
X Shao, J Liao, X Lu, R Xue, N Ai, X Fan (2020) scCATCH: automatic annotation on cell types of clusters from single-cell RNA sequencing data. iScience 23:100882
https://doi.org/10.1016/j.isci.2020.100882
|
| 59 |
BR Shrestha, C Chia, L Wu, SG Kujawa, MC Liberman, LV Goodrich (2018) Sensory neuron diversity in the inner ear is shaped by activity. Cell 174:1229–1246 e1217
https://doi.org/10.1016/j.cell.2018.07.007
|
| 60 |
RE Sicard (1986) Hormones, neurosecretions, and growth factors as signal molecules for intercellular communication. Dev Comp Immunol 10:269–272
https://doi.org/10.1016/0145-305X(86)90011-X
|
| 61 |
SJ Singer (1992) Intercellular communication and cell-cell adhesion. Science 255:1671–1677
https://doi.org/10.1126/science.1313187
|
| 62 |
DA Skelly, GT Squiers, MA McLellan, MT Bolisetty, P Robson, NA Rosenthal, AR Pinto (2018) Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep 22:600–610
https://doi.org/10.1016/j.celrep.2017.12.072
|
| 63 |
Y, Song X, Xu W Wang, T Tian, Z Zhu, C Yang (2019) Single cell transcriptomics: moving towards multi-omics. Analyst 144:3172–3189
https://doi.org/10.1039/C8AN01852A
|
| 64 |
RB Stagg, WH Fletcher (1990) The hormone-induced regulation of contact-dependent cell-cell communication by phosphorylation. Endocr Rev 11:302–325
https://doi.org/10.1210/edrv-11-2-302
|
| 65 |
M Stoeckius, C Hafemeister, W, Stephenson B, Houck-Loomis PK Chattopadhyay, H Swerdlow, R Satija, P Smibert (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 14:865–868
https://doi.org/10.1038/nmeth.4380
|
| 66 |
T Stuart, R Satija (2019) Integrative single-cell analysis. Nat Rev Genet 20:257–272
https://doi.org/10.1038/s41576-019-0093-7
|
| 67 |
E Sugiyama, MM Guerrini, K Honda, Y Hattori, M Abe, P Kallback, PE Andren, KF Tanaka, M Setou, S Fagarasanet al. (2019) Detection of a high-turnover serotonin circuit in the mouse brain using mass spectrometry imaging. iScience 20:359–372
https://doi.org/10.1016/j.isci.2019.09.036
|
| 68 |
J Swaminathan, AA Boulgakov, ET Hernandez, AM Bardo, JL Bachman, J Marotta, AM Johnson, EV Anslyn, EM Marcotte (2018) Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat Biotechnol 36:1076–1082
https://doi.org/10.1038/nbt.4278
|
| 69 |
BM Szczerba, F Castro-Giner , M Vetter, I, Krol S Gkountela, J Landin, MC Scheidmann, C Donato, R, Scherrer J Singeret al. (2019) Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566:553–557
https://doi.org/10.1038/s41586-019-0915-y
|
| 70 |
I Tirosh, B Izar, SM Prakadan, MH 2nd Wadsworth, D Treacy, JJ Trombetta, A Rotem, C Rodman, C Lian, G Murphyet al. (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:189–196
https://doi.org/10.1126/science.aad0501
|
| 71 |
R Vento-Tormo, M Efremova, RA Botting, MY Turco, M Vento-Tormo, KB Meyer, JE Park, E Stephenson, K Polanski, A Goncalveset al. (2018) Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563:347–353
https://doi.org/10.1038/s41586-018-0698-6
|
| 72 |
SA Vitak, KA Torkenczy, JL Rosenkrantz, AJ Fields, L Christiansen, MH Wong, L Carbone, FJ Steemers, A Adey (2017) Sequencing thousands of single-cell genomes with combinatorial indexing. Nat Methods 14:302–308
https://doi.org/10.1038/nmeth.4154
|
| 73 |
C Vogel, EM Marcotte (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232
https://doi.org/10.1038/nrg3185
|
| 74 |
X Wang, W Song, N Kawazoe, G Chen (2013) The osteogenic differentiation of mesenchymal stem cells by controlled cell-cell interaction on micropatterned surfaces. J Biomed Mater Res A 101:3388–3395
https://doi.org/10.1002/jbm.a.34645
|
| 75 |
X Wang, WE Allen, MA Wright, EL Sylwestrak, N Samusik, S Vesuna, K Evans, C Liu, C Ramakrishnan, J Liuet al. (2018) Threedimensional intact-tissue sequencing of single-cell transcriptional states. Science 361:eaat5691
https://doi.org/10.1126/science.aat5691
|
| 76 |
S Wang, M Karikomi, AL MacLean, Q Nie(2019) Cell lineage and communication network inference via optimization for single-cell transcriptomics. Nucleic Acids Res 47(11):e66
https://doi.org/10.1093/nar/gky882
|
| 77 |
X Xiong, H Kuang, S Ansari, T Liu, J Gong, S Wang, XY Zhao, Y Ji, C Li, L Guoet al.(2019) Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell 75:644–660e645
https://doi.org/10.1016/j.molcel.2019.07.028
|
| 78 |
Y Xu, K Ji, M Wu, B Hao, KT Yao, Y Xu (2019) A miRNA-HERC4 pathway promotes breast tumorigenesis by inactivating tumor suppressor LATS1. Protein Cell 10:595–605
https://doi.org/10.1007/s13238-019-0607-2
|
| 79 |
R Xue, J, Liao X Shao, K Han, J Long, L Shao, N Ai, X Fan (2020) Prediction of adverse drug reactions by combining biomedical tripartite network and graph representation model. Chem Res Toxicol 33:202–210
https://doi.org/10.1021/acs.chemrestox.9b00238
|
| 80 |
JA Zepp, WJ Zacharias, DB Frank, CA Cavanaugh, S Zhou, MP Morley, EE Morrisey (2017) Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell 170:1134–1148 e1110
https://doi.org/10.1016/j.cell.2017.07.034
|
| 81 |
L Zhang, A Vertes (2018) Single-cell mass spectrometry approaches to explore cellular heterogeneity. Angew Chem Int Ed Engl 57:4466–4477
https://doi.org/10.1002/anie.201709719
|
| 82 |
Y Zhang, Z Yan, Q Qin, V Nisenblat, HM Chang, Y Yu, T Wang, C, Lu M Yang, S Yanget al.(2018) Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell 72:1021–1034 e1024
https://doi.org/10.1016/j.molcel.2018.10.029
|
| 83 |
X Zhang, Y, Lan J Xu, F Quan, E Zhao, C Deng, T Luo, L Xu, G Liao, M Yanet al. (2019) CellMarker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res 47:D721–D728
https://doi.org/10.1093/nar/gky900
|
| 84 |
L Zhang, A Vertes (2018) Single-cell mass spectrometry approaches to explore cellular heterogeneity. Angew Chem Int Ed Engl 57:4466–4477
https://doi.org/10.1002/anie.201709719
|
| 85 |
GX Zheng, JM Terry, P, Belgrader P, Ryvkin ZW Bent, R Wilson, SB Ziraldo, TD Wheeler, GP McDermott, J Zhuet al. (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049
https://doi.org/10.1038/ncomms14049
|
| 86 |
G Zheng, C Jiang, Y, Li D Yang, Y, Ma B Zhang, X Li, P Zhang, X Hu, X Zhaoet al.(2019) TMEM43-S358L mutation enhances NFkappaB- TGFbeta signal cascade in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Protein Cell 10:104–119
https://doi.org/10.1007/s13238-018-0563-2
|
| 87 |
B Zhou, C Liu, L Xu, Y Yuan, J Zhao, W Zhao, Y Chen, J Qiu, M Meng, Y Zhenget al.(2020) N(6)-methyladenosine reader protein Ythdc2 suppresses liver steatosis via regulation of mRNA stability of lipogenic genes. Hepatology.
https://doi.org/10.1002/hep.31220
|
| 88 |
C, Zhu S Preissl, B Ren (2020) Single-cell multimodal omics: the power of many. Nat Methods 17:11–14
https://doi.org/10.1038/s41592-019-0691-5
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|