Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2020, Vol. 11 Issue (12) : 866-880    https://doi.org/10.1007/s13238-020-00727-5
REVIEW
New avenues for systematically inferring cellcell communication: through single-cell transcriptomics data
Xin Shao1, Xiaoyan Lu1, Jie Liao1, Huajun Chen2,3, Xiaohui Fan1,4()
1. College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
3. The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
4. The Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
 Download: PDF(1082 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

For multicellular organisms, cell-cell communication is essential to numerous biological processes. Drawing upon the latest development of single-cell RNA-sequencing (scRNA-seq), high-resolution transcriptomic data have deepened our understanding of cellular phenotype heterogeneity and composition of complex tissues, which enables systematic cell-cell communication studies at a single-cell level. We first summarize a common workflow of cell-cell communication study using scRNA-seq data, which often includes data preparation, construction of communication networks, and result validation. Two common strategies taken to uncover cell-cell communications are reviewed, e.g., physically vicinal structure-based and ligand-receptor interaction-based one. To conclude, challenges and current applications of cell-cell communication studies at a single-cell resolution are discussed in details and future perspectives are proposed.

Keywords cell-cell communication      single-cell RNA sequencing      physical contact-dependent communication      chemical signal-dependent communication      ligand-receptor interaction      network biology     
Corresponding Author(s): Xiaohui Fan   
Online First Date: 14 September 2020    Issue Date: 22 December 2020
 Cite this article:   
Xin Shao,Xiaoyan Lu,Jie Liao, et al. New avenues for systematically inferring cellcell communication: through single-cell transcriptomics data[J]. Protein Cell, 2020, 11(12): 866-880.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-020-00727-5
https://academic.hep.com.cn/pac/EN/Y2020/V11/I12/866
1 R Albert, H Jeong, AL Barabasi (2000) Error and attack tolerance of complex networks. Nature 406:378–382
https://doi.org/10.1038/35019019
2 D Aran, AP Looney, L Liu, E Wu, V Fong, A Hsu, S Chak, RP Naikawadi, PJ Wolters, AR Abateet al. (2019) Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20:163–172
https://doi.org/10.1038/s41590-018-0276-y
3 DR Bandura, VI Baranov, OI Ornatsky, A Antonov, R Kinach, X Lou, S Pavlov, S Vorobiev, JE Dick, SD Tanner (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81:6813–6822
https://doi.org/10.1021/ac901049w
4 AL Barabasi, ZN Oltvai (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113
https://doi.org/10.1038/nrg1272
5 M Bessis(1958) Erythroblastic island, functional unity of bone marrow. Rev Hematol 13:8–11
6 JC Boisset, J Vivie, D Grun, MJ Muraro, A Lyubimova, A van Oudenaarden(2018) Mapping the physical network of cellular interactions. Nat Methods 15:547–553
https://doi.org/10.1038/s41592-018-0009-z
7 VM Braga (2002) Cell-cell adhesion and signalling. Curr Opin Cell Biol 14:546–556
https://doi.org/10.1016/S0955-0674(02)00373-3
8 B Budnik, E Levy, G Harmange, N Slavov (2018) SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol 19:161
https://doi.org/10.1186/s13059-018-1547-5
9 JC Burns, MC Kelly, M Hoa, RJ Morell, MW Kelley (2015) Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nat Commun 6:8557
https://doi.org/10.1038/ncomms9557
10 JG Camp, K Sekine, T Gerber, H Loeffler-Wirth, H Binder, M Gac, S Kanton, J Kageyama, G Damm, D Seehoferet al. (2017) Multilineage communication regulates human liver bud development from pluripotency. Nature 546:533–538
https://doi.org/10.1038/nature22796
11 J Cao, JS Packer, V Ramani, DA Cusanovich, C Huynh, R Daza, X Qiu, C Lee, SN Furlan, FJ Steemerset al. (2017) Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357:661–667
https://doi.org/10.1126/science.aam8940
12 J Cao, DA Cusanovich, V Ramani, D Aghamirzaie, HA Pliner, AJ Hill, RM Daza, JL McFaline-Figueroa, JS Packer, L Christiansenet al. (2018) Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361:1380–1385
https://doi.org/10.1126/science.aau0730
13 LF Cheow, ET Courtois, Y Tan, R Viswanathan, Q Xing, RZ Tan, DS Tan, P, Robson YH Loh, SR Quakeet al.(2016) Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat Methods 13:833–836
https://doi.org/10.1038/nmeth.3961
14 M Cohen, A Giladi, AD Gorki, DG Solodkin, M Zada, A Hladik, A Miklosi, TM Salame, KB Halpern, E Davidet al. (2018) Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell 175:1031–1044 e1018
https://doi.org/10.1016/j.cell.2018.09.009
15 BC Collins, R Aebersold (2018) Proteomics goes parallel. Nat Biotechnol 36:1051–1053
https://doi.org/10.1038/nbt.4288
16 L Duan, XD Zhang, WY Miao, YJ Sun, G Xiong, Q, Wu G, Li P Yang, H Yu, H Liet al. (2018) PDGFRbeta cells rapidly relay inflammatory signal from the circulatory system to neurons via chemokine CCL2. Neuron 100:183–200 e188
https://doi.org/10.1016/j.neuron.2018.08.030
17 M Efremova, M Vento-Tormo , SA Teichmann, R Vento-Tormo (2020) CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat Protoc 15(4):1484–1506
https://doi.org/10.1038/s41596-020-0292-x
18 CL Eng, M Lawson, Q Zhu, R Dries, N Koulena, Y Takei, J Yun, C Cronin, C, Karp GC Yuanet al. (2019) Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568:235–239
https://doi.org/10.1038/s41586-019-1049-y
19 WH Evans (2015) Cell communication across gap junctions: a historical perspective and current developments. Biochem Soc Trans 43:450–459
https://doi.org/10.1042/BST20150056
20 DM Fernandez, AH Rahman, NF Fernandez, A Chudnovskiy, ED Amir, L Amadori, NS Khan, CK Wong, R Shamailova, CA Hillet al. (2019) Single-cell immune landscape of human atherosclerotic plaques. Nat Med 25:1576–1588
https://doi.org/10.1038/s41591-019-0590-4
21 S, Gao L Yan, R Wang, J Li, J Yong, X Zhou, Y Wei, X Wu, X Wang, X Fanet al. (2018) Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing. Nat Cell Biol 20:721–734
https://doi.org/10.1038/s41556-018-0105-4
22 ZJ Gartner, JA Prescher, LD Lavis (2017) Unraveling cell-to-cell signaling networks with chemical biology. Nat Chem Biol 13:564–568
https://doi.org/10.1038/nchembio.2391
23 D Grun, A Lyubimova, L, Kester K Wiebrands, O Basak, N Sasaki, H Clevers, A van Oudenaarden (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525:251–255
https://doi.org/10.1038/nature14966
24 KB Halpern, R Shenhav, O, Matcovitch-Natan B Toth, D Lemze, M Golan, EE Massasa, S, Baydatch S Landen, AE Mooret al. (2017) Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542:352–356
https://doi.org/10.1038/nature21065
25 T, Hashimshony F, Wagner N Sher, I Yanai (2012) CEL-Seq: singlecell RNA-Seq by multiplexed linear amplification. Cell Rep 2:666–673
https://doi.org/10.1016/j.celrep.2012.08.003
26 Y, Hu X Wang, B Hu, Y Mao, Y Chen, L, Yan J Yong, J Dong, Y Wei, W Wanget al. (2019) Dissecting the transcriptome landscape of the human fetal neural retina and retinal pigment epithelium by single-cell RNA-seq analysis. PLoS Biol 17:e3000365
https://doi.org/10.1371/journal.pbio.3000365
27 DA Jaitin, E Kenigsberg, H Keren-Shaul, N Elefant, F Paul, I, Zaretsky A Mildner, N, Cohen S Jung, A Tanayet al. (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776–779
https://doi.org/10.1126/science.1247651
28 DC Kirouac, GJ Madlambayan, M Yu, EA Sykes, C Ito, PW Zandstra (2009) Cell-cell interaction networks regulate blood stem and progenitor cell fate. Mol Syst Biol 5:293
https://doi.org/10.1038/msb.2009.49
29 VY Kiselev, A Yiu, M Hemberg (2018) scmap: projection of singlecell RNA-seq data across data sets. Nat Methods 15:359–362
https://doi.org/10.1038/nmeth.4644
30 AM Klein, L Mazutis, I Akartuna, N Tallapragada, A Veres, V, Li L Peshkin, DA Weitz, MW Kirschner (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–1201
https://doi.org/10.1016/j.cell.2015.04.044
31 V Kumar, L Donthireddy, D Marvel, T Condamine, F, Wang S Lavilla-Alonso, A Hashimoto, P Vonteddu, R Behera, MA Goinset al. (2017) Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32:654–668 e655
https://doi.org/10.1016/j.ccell.2017.10.005
32 MP Kumar, J Du, G, Lagoudas Y Jiao, A Sawyer, DC Drummond, DA Lauffenburger, A Raue (2018) Analysis of single-cell RNASeq identifies cell-cell communication associated with tumor characteristics. Cell Rep 25:1458–1468e1454
https://doi.org/10.1016/j.celrep.2018.10.047
33 L Li, J, Dong L Yan, J Yong, X Liu, Y, Hu X Fan, X Wu, H Guo, X Wanget al. (2017) Single-cell RNA-Seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20:858–873 e854
https://doi.org/10.1016/j.stem.2017.03.007
34 J Liao, C, Hao W, Huang X Shao, Y, Song L Liu, N Ai, X Fan (2018) Network pharmacology study reveals energy metabolism and apoptosis pathways-mediated cardioprotective effects of Shenqi Fuzheng. J Ethnopharmacol 227:155–165
https://doi.org/10.1016/j.jep.2018.08.029
35 X Lin, TJ Spindler, MA de Souza Fonseca, RI Corona, JH Seo, FS Dezem, L Li, JM, Lee HW Long, TA Sellerset al. (2019) Superenhancer-associated LncRNA UCA1 interacts directly with AMOT to activate YAP target genes in epithelial ovarian cancer. iScience 17:242–255
https://doi.org/10.1016/j.isci.2019.06.025
36 EZ Macosko, A Basu, R Satija, J Nemesh, K Shekhar, M Goldman, I Tirosh, AR Bialas, N Kamitaki, EM Marterstecket al. (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214
https://doi.org/10.1016/j.cell.2015.05.002
37 D Manwani, JJ Bieker (2008) The erythroblastic island. Curr Top Dev Biol 82:23–53
https://doi.org/10.1016/S0070-2153(07)00002-6
38 JC Martin, C Chang, G, Boschetti R Ungaro, M Giri, JA Grout, K Gettler, LS Chuang, S Nayar, AJ Greensteinet al. (2019) Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti- TNF therapy. Cell 178:1493–1508e1420
https://doi.org/10.1016/j.cell.2019.08.008
39 V Marx (2019) A dream of single-cell proteomics. Nat Methods 16:809–812
https://doi.org/10.1038/s41592-019-0540-6
40 K Mittal, E Eremenko, O Berner, Y Elyahu, I Strominger, D Apelblat, A Nemirovsky, I Spiegel, A Monsonego (2019) CD4 T cells induce a subset of MHCII-expressing microglia that attenuates Alzheimer pathology. iScience 16:298–311
https://doi.org/10.1016/j.isci.2019.05.039
41 S Nestorowa, FK Hamey, B Pijuan Sala, E Diamanti, M Shepherd, E Laurenti, NK Wilson, DG Kent, B Gottgens (2016) A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128:e20–31
https://doi.org/10.1182/blood-2016-05-716480
42 M Nitzan, N Karaiskos, N Friedman, N Rajewsky (2019) Gene expression cartography. Nature 576:132–137
https://doi.org/10.1038/s41586-019-1773-3
43 G Pan, M Cavalli, B Carlsson, S Skrtic, C Kumar, C Wadelius (2020) rs953413 Regulates polyunsaturated fatty acid metabolism by modulating ELOVL2 expression. iScience 23:100808
https://doi.org/10.1016/j.isci.2019.100808
44 F Petersen, L Bock, HD Flad, E Brandt (1999) Platelet factor 4-induced neutrophil-endothelial cell interaction: involvement of mechanisms and functional consequences different from those elicited by interleukin-8. Blood 94:4020–4028
https://doi.org/10.1182/blood.V94.12.4020
45 VM Peterson, KX Zhang, N Kumar, J Wong, L Li, DC Wilson, R Moore, TK, McClanahan S Sadekova, JA Klappenbach (2017) Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol 35:936–939
https://doi.org/10.1038/nbt.3973
46 DW Pfaff, MJ Baum (2018) Hormone-dependent medial preoptic/ lumbar spinal cord/autonomic coordination supporting male sexual behaviors. Mol Cell Endocrinol 467:21–30
https://doi.org/10.1016/j.mce.2017.10.018
47 S Picelli, AK Bjorklund, OR Faridani, S Sagasser, G Winberg, R Sandberg (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098
https://doi.org/10.1038/nmeth.2639
48 P Rajbhandari, D Arneson, SK Hart, IS Ahn, G Diamante, LC Santos, N Zaghari, AC Feng, BJ Thomas, L Vergneset al. (2019) Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes. Elife 8:e49501
https://doi.org/10.7554/eLife.49501.021
49 JA Ramilowski, T Goldberg, J Harshbarger, E Kloppmann, M Lizio, VP Satagopam, M Itoh, H Kawaji, P Carninci, B Rostet al. (2015) A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun 6:7866
https://doi.org/10.1038/ncomms8866
50 P, Ramos C Casu, S Gardenghi, L, Breda BJ Crielaard, E, Guy MF Marongiu, R Gupta, RL Levine, O Abdel-Wahabet al. (2013) Macrophages support pathological erythropoiesis in polycythemia vera and beta-thalassemia. Nat Med 19:437–445
https://doi.org/10.1038/nm.3126
51 SG Rodriques, RR Stickels, A Goeva, CA Martin, E Murray, CR Vanderburg, J, Welch LM Chen, F Chen, EZ Macosko (2019) Slide-seq: a scalable technology for measuring genomewide expression at high spatial resolution. Science 363:1463–1467
https://doi.org/10.1126/science.aaw1219
52 M Rothbauer, H Zirath, P Ertl (2018) Recent advances in microfluidic technologies for cell-to-cell interaction studies. Lab Chip 18:249–270
https://doi.org/10.1039/C7LC00815E
53 R Satija, JA Farrell, D Gennert, AF Schier, A Regev (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33:495–502
https://doi.org/10.1038/nbt.3192
54 CL Scott, M Guilliams (2018) Tissue unit-ed: lung cells team up to drive alveolar macrophage development. Cell 175:898–900
https://doi.org/10.1016/j.cell.2018.10.031
55 AK Shalek, R Satija, J Shuga, JJ Trombetta, D Gennert, D Lu, P, Chen RS Gertner, JT Gaublomme, N Yosefet al. (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510:363–369
https://doi.org/10.1038/nature13437
56 X Shao, N Ai, D Xu, X Fan (2016) Exploring the interaction between Salvia miltiorrhiza and human serum albumin: Insights from herbdrug interaction reports, computational analysis and experimental studies. Spectrochim Acta A Mol Biomol Spectrosc 161:1–7
https://doi.org/10.1016/j.saa.2016.02.015
57 X Shao, N Lv, J, Liao J, Long R Xue, N Ai, D Xu, X Fan (2019) Copy number variation is highly correlated with differential gene expression: a pan-cancer study. BMC Med Genet 20:175
https://doi.org/10.1186/s12881-019-0909-5
58 X Shao, J Liao, X Lu, R Xue, N Ai, X Fan (2020) scCATCH: automatic annotation on cell types of clusters from single-cell RNA sequencing data. iScience 23:100882
https://doi.org/10.1016/j.isci.2020.100882
59 BR Shrestha, C Chia, L Wu, SG Kujawa, MC Liberman, LV Goodrich (2018) Sensory neuron diversity in the inner ear is shaped by activity. Cell 174:1229–1246 e1217
https://doi.org/10.1016/j.cell.2018.07.007
60 RE Sicard (1986) Hormones, neurosecretions, and growth factors as signal molecules for intercellular communication. Dev Comp Immunol 10:269–272
https://doi.org/10.1016/0145-305X(86)90011-X
61 SJ Singer (1992) Intercellular communication and cell-cell adhesion. Science 255:1671–1677
https://doi.org/10.1126/science.1313187
62 DA Skelly, GT Squiers, MA McLellan, MT Bolisetty, P Robson, NA Rosenthal, AR Pinto (2018) Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep 22:600–610
https://doi.org/10.1016/j.celrep.2017.12.072
63 Y, Song X, Xu W Wang, T Tian, Z Zhu, C Yang (2019) Single cell transcriptomics: moving towards multi-omics. Analyst 144:3172–3189
https://doi.org/10.1039/C8AN01852A
64 RB Stagg, WH Fletcher (1990) The hormone-induced regulation of contact-dependent cell-cell communication by phosphorylation. Endocr Rev 11:302–325
https://doi.org/10.1210/edrv-11-2-302
65 M Stoeckius, C Hafemeister, W, Stephenson B, Houck-Loomis PK Chattopadhyay, H Swerdlow, R Satija, P Smibert (2017) Simultaneous epitope and transcriptome measurement in single cells. Nat Methods 14:865–868
https://doi.org/10.1038/nmeth.4380
66 T Stuart, R Satija (2019) Integrative single-cell analysis. Nat Rev Genet 20:257–272
https://doi.org/10.1038/s41576-019-0093-7
67 E Sugiyama, MM Guerrini, K Honda, Y Hattori, M Abe, P Kallback, PE Andren, KF Tanaka, M Setou, S Fagarasanet al. (2019) Detection of a high-turnover serotonin circuit in the mouse brain using mass spectrometry imaging. iScience 20:359–372
https://doi.org/10.1016/j.isci.2019.09.036
68 J Swaminathan, AA Boulgakov, ET Hernandez, AM Bardo, JL Bachman, J Marotta, AM Johnson, EV Anslyn, EM Marcotte (2018) Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat Biotechnol 36:1076–1082
https://doi.org/10.1038/nbt.4278
69 BM Szczerba, F Castro-Giner , M Vetter, I, Krol S Gkountela, J Landin, MC Scheidmann, C Donato, R, Scherrer J Singeret al. (2019) Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566:553–557
https://doi.org/10.1038/s41586-019-0915-y
70 I Tirosh, B Izar, SM Prakadan, MH 2nd Wadsworth, D Treacy, JJ Trombetta, A Rotem, C Rodman, C Lian, G Murphyet al. (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:189–196
https://doi.org/10.1126/science.aad0501
71 R Vento-Tormo, M Efremova, RA Botting, MY Turco, M Vento-Tormo, KB Meyer, JE Park, E Stephenson, K Polanski, A Goncalveset al. (2018) Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563:347–353
https://doi.org/10.1038/s41586-018-0698-6
72 SA Vitak, KA Torkenczy, JL Rosenkrantz, AJ Fields, L Christiansen, MH Wong, L Carbone, FJ Steemers, A Adey (2017) Sequencing thousands of single-cell genomes with combinatorial indexing. Nat Methods 14:302–308
https://doi.org/10.1038/nmeth.4154
73 C Vogel, EM Marcotte (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232
https://doi.org/10.1038/nrg3185
74 X Wang, W Song, N Kawazoe, G Chen (2013) The osteogenic differentiation of mesenchymal stem cells by controlled cell-cell interaction on micropatterned surfaces. J Biomed Mater Res A 101:3388–3395
https://doi.org/10.1002/jbm.a.34645
75 X Wang, WE Allen, MA Wright, EL Sylwestrak, N Samusik, S Vesuna, K Evans, C Liu, C Ramakrishnan, J Liuet al. (2018) Threedimensional intact-tissue sequencing of single-cell transcriptional states. Science 361:eaat5691
https://doi.org/10.1126/science.aat5691
76 S Wang, M Karikomi, AL MacLean, Q Nie(2019) Cell lineage and communication network inference via optimization for single-cell transcriptomics. Nucleic Acids Res 47(11):e66
https://doi.org/10.1093/nar/gky882
77 X Xiong, H Kuang, S Ansari, T Liu, J Gong, S Wang, XY Zhao, Y Ji, C Li, L Guoet al.(2019) Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell 75:644–660e645
https://doi.org/10.1016/j.molcel.2019.07.028
78 Y Xu, K Ji, M Wu, B Hao, KT Yao, Y Xu (2019) A miRNA-HERC4 pathway promotes breast tumorigenesis by inactivating tumor suppressor LATS1. Protein Cell 10:595–605
https://doi.org/10.1007/s13238-019-0607-2
79 R Xue, J, Liao X Shao, K Han, J Long, L Shao, N Ai, X Fan (2020) Prediction of adverse drug reactions by combining biomedical tripartite network and graph representation model. Chem Res Toxicol 33:202–210
https://doi.org/10.1021/acs.chemrestox.9b00238
80 JA Zepp, WJ Zacharias, DB Frank, CA Cavanaugh, S Zhou, MP Morley, EE Morrisey (2017) Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell 170:1134–1148 e1110
https://doi.org/10.1016/j.cell.2017.07.034
81 L Zhang, A Vertes (2018) Single-cell mass spectrometry approaches to explore cellular heterogeneity. Angew Chem Int Ed Engl 57:4466–4477
https://doi.org/10.1002/anie.201709719
82 Y Zhang, Z Yan, Q Qin, V Nisenblat, HM Chang, Y Yu, T Wang, C, Lu M Yang, S Yanget al.(2018) Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell 72:1021–1034 e1024
https://doi.org/10.1016/j.molcel.2018.10.029
83 X Zhang, Y, Lan J Xu, F Quan, E Zhao, C Deng, T Luo, L Xu, G Liao, M Yanet al. (2019) CellMarker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res 47:D721–D728
https://doi.org/10.1093/nar/gky900
84 L Zhang, A Vertes (2018) Single-cell mass spectrometry approaches to explore cellular heterogeneity. Angew Chem Int Ed Engl 57:4466–4477
https://doi.org/10.1002/anie.201709719
85 GX Zheng, JM Terry, P, Belgrader P, Ryvkin ZW Bent, R Wilson, SB Ziraldo, TD Wheeler, GP McDermott, J Zhuet al. (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049
https://doi.org/10.1038/ncomms14049
86 G Zheng, C Jiang, Y, Li D Yang, Y, Ma B Zhang, X Li, P Zhang, X Hu, X Zhaoet al.(2019) TMEM43-S358L mutation enhances NFkappaB- TGFbeta signal cascade in arrhythmogenic right ventricular dysplasia/cardiomyopathy. Protein Cell 10:104–119
https://doi.org/10.1007/s13238-018-0563-2
87 B Zhou, C Liu, L Xu, Y Yuan, J Zhao, W Zhao, Y Chen, J Qiu, M Meng, Y Zhenget al.(2020) N(6)-methyladenosine reader protein Ythdc2 suppresses liver steatosis via regulation of mRNA stability of lipogenic genes. Hepatology.
https://doi.org/10.1002/hep.31220
88 C, Zhu S Preissl, B Ren (2020) Single-cell multimodal omics: the power of many. Nat Methods 17:11–14
https://doi.org/10.1038/s41592-019-0691-5
[1] Yugong Ho, Peng Hu, Michael T. Peel, Sixing Chen, Pablo G. Camara, Douglas J. Epstein, Hao Wu, Stephen A. Liebhaber. Single-cell transcriptomic analysis of adult mouse pituitary reveals sexual dimorphism and physiologic demand-induced cellular plasticity[J]. Protein Cell, 2020, 11(8): 565-583.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed