Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2020, Vol. 11 Issue (7) : 483-504    https://doi.org/10.1007/s13238-020-00728-4
RESEARCH ARTICLE
SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer
Shijia Bi1,7, Zunpeng Liu1,7, Zeming Wu1,7, Zehua Wang1,7, Xiaoqian Liu1,7, Si Wang2,3,6,7, Jie Ren4,5,6,7, Yan Yao8, Weiqi Zhang4,5,6,7(), Moshi Song2,6,7(), Guang-Hui Liu2,3,6,7(), Jing Qu1,6,7()
1. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2. State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
3. Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
4. CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
5. China National Center for Bioinformation, Beijing 100101, China
6. Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
7. University of Chinese Academy of Sciences, Beijing 100049, China
8. Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
 Download: PDF(3188 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

SIRT7, a sirtuin family member implicated in aging and disease, is a regulator of metabolism and stress responses. It remains elusive how human somatic stem cell populations might be impacted by SIRT7. Here, we found that SIRT7 expression declines during human mesenchymal stem cell (hMSC) aging and that SIRT7 deficiency accelerates senescence. Mechanistically, SIRT7 forms a complex with nuclear lamina proteins and heterochromatin proteins, thus maintaining the repressive state of heterochromatin at nuclear periphery. Accordingly, deficiency of SIRT7 results in loss of heterochromatin, de-repression of the LINE1 retrotransposon (LINE1), and activation of innate immune signaling via the cGAS-STING pathway. These agingassociated cellular defects were reversed by overexpression of heterochromatin proteins or treatment with a LINE1 targeted reverse-transcriptase inhibitor. Together, these findings highlight how SIRT7 safeguards chromatin architecture to control innate immune regulation and ensure geroprotection during stem cell aging.

Keywords SIRT7      stem cell      aging      LINE1      cGAS      STING     
Corresponding Author(s): Weiqi Zhang,Moshi Song,Guang-Hui Liu,Jing Qu   
Issue Date: 31 July 2020
 Cite this article:   
Shijia Bi,Zunpeng Liu,Zeming Wu, et al. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer[J]. Protein Cell, 2020, 11(7): 483-504.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-020-00728-4
https://academic.hep.com.cn/pac/EN/Y2020/V11/I7/483
1 S Anders, PT Pyl, W Huber (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England) 31:166–169
https://doi.org/10.1093/bioinformatics/btu638
2 S Araki, Y Izumiya, T Rokutanda, A Ianni, S Hanatani, Y Kimura, Y Onoue, T Senokuchi, T Yoshizawa, O Yasudaet al. (2015) Sirt7 contributes to myocardial tissue repair by maintaining transforming growth factor-beta signaling pathway. Circulation 132:1081–1093
https://doi.org/10.1161/CIRCULATIONAHA.114.014821
3 X Bao, Z Liu, W Zhang, K Gladysz, YME Fung, G Tian, Y Xiong, JWH Wong, KWY Yuen, XD Li (2019) Glutarylation of Histone H4 Lysine 91 regulates chromatin dynamics. Mol Cell 76(660–675):e669
https://doi.org/10.1016/j.molcel.2019.08.018
4 MF Barber, E Michishita-Kioi, Y Xi, L Tasselli, M Kioi, Z Moqtaderi, RI Tennen, S Paredes, NL Young, K Chenet al. (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114–118
https://doi.org/10.1038/nature11043
5 WA Bickmore, B van Steensel (2013) Genome architecture: domain organization of interphase chromosomes. Cell 152:1270–1284
https://doi.org/10.1016/j.cell.2013.02.001
6 NA Bishop, L Guarente (2007) Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 8:835–844
https://doi.org/10.1038/nrg2188
7 G Bourque, KH Burns, M Gehring, V Gorbunova, A Seluanov, M Hammell, M Imbeault, Z Izsvak, HL Levin, TS Macfarlanet al. (2018) Ten things you should know about transposable elements. Genome Biol 19:199
https://doi.org/10.1186/s13059-018-1577-z
8 JD Buenrostro, PG Giresi, LC Zaba, HY Chang, WJ Greenleaf (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218
https://doi.org/10.1038/nmeth.2688
9 N Castro-Diaz, G Ecco, A Coluccio, A Kapopoulou, B Yazdanpanah, M Friedli, J Duc, SM Jang, P Turelli, D Trono (2014) Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev 28:1397–1409
https://doi.org/10.1101/gad.241661.114
10 J Chen, EE Bardes, BJ Aronow, AG Jegga (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucl Acids Res 37:W305–311
https://doi.org/10.1093/nar/gkp427
11 S Chen, MF Blank, A Iyer, B Huang, L Wang, I Grummt, R Voit (2016) SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing. Nat Commun 7:10734
https://doi.org/10.1038/ncomms10734
12 F Cheng, S Wang, M Song, Z Liu, P Liu, L Wang, Y Wang, Q Zhao, K Yan, P Chanet al.(2019) DJ-1 is dispensable for human stem cell homeostasis. Protein Cell 10:846–853
https://doi.org/10.1007/s13238-019-00659-9
13 M Cioffi, M Vallespinos-Serrano, SM Trabulo, PJ Fernandez-Marcos, AN Firment, BN Vazquez, CR Vieira, F Mulero, JA Camara, UP Croninet al. (2015) MiR-93 controls adiposity via inhibition of Sirt7 and Tbx3. Cell Rep 12:1594–1605
https://doi.org/10.1016/j.celrep.2015.08.006
14 L Dai, Q Huang, JD Boeke (2011) Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem 12:18
https://doi.org/10.1186/1471-2091-12-18
15 M De Cecco, SW Criscione, EJ Peckham, S Hillenmeyer, EA Hamm, J, Manivannan AL Peterson, JA Kreiling, N Neretti, JM Sedivy (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12:247–256
https://doi.org/10.1111/acel.12047
16 M De Cecco, T Ito, AP Petrashen, AE Elias, NJ Skvir, SW Criscione, A Caligiana, G Brocculi, EM Adney, JD Boekeet al. (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78
https://doi.org/10.1038/s41586-018-0784-9
17 L Deng, R Ren, Z Liu, M Song, J Li, Z Wu, X Ren, L Fu, W Li, W Zhanget al. (2019) Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat Commun 10:3329
https://doi.org/10.1038/s41467-019-10831-8
18 AM Dimarino, AI Caplan, TL Bonfield (2013) Mesenchymal stem cells in tissue repair. Front Immunol 4:201
https://doi.org/10.3389/fimmu.2013.00201
19 T Finkel, CX Deng, R Mostoslavsky (2009) Recent progress in the biology and physiology of sirtuins. Nature 460:587–591
https://doi.org/10.1038/nature08197
20 L Fu, Y Hu, M Song, Z Liu, W Zhang, FX Yu, J Wu, S Wang, JC Izpisua Belmonte, P Chanet al.(2019) Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol 17:e3000201
https://doi.org/10.1371/journal.pbio.3000201
21 JL Garcia-Perez, M Morell, JO Scheys, DA Kulpa, S Morell, CC Carter, GD Hammer, KL Collins, KS O’Shea, P Menendezet al. (2010) Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466:769–773
https://doi.org/10.1038/nature09209
22 L Geng, Z Liu, S Wang, S Sun, S Ma, X Liu, P Chan, L Sun, M Song, W Zhanget al. (2019) Low-dose quercetin positively regulates mouse healthspan. Protein Cell 10:770–775
https://doi.org/10.1007/s13238-019-0646-8
23 V Gorbunova, JD Boeke, SL Helfand, JM Sedivy (2014) Human genomics. Sleeping dogs of the genome. Science 346:1187–1188
https://doi.org/10.1126/science.aaa3177
24 SI Grewal, S Jia(2007) Heterochromatin revisited. Nature reviews. Genetics 8:35–46
https://doi.org/10.1038/nrg2008
25 L Guelen, L Pagie, E Brasset, W Meuleman, MB Faza, W Talhout, BH Eussen, A de Klein, L Wessels, W de Laatet al. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951
https://doi.org/10.1038/nature06947
26 G Ha, A Roth, D Lai, A Bashashati, J Ding, R Goya, R Giuliany, J Rosner, A Oloumi, K Shumansky (2012) Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triplenegative breast cancer. Genome Res 22:1995–2007
https://doi.org/10.1101/gr.137570.112
27 X He, S Memczak, J Qu, JCI Belmonte, G-H Liu (2020) Single-cell omics in ageing: a young and growing field. Nat Metab 2:293–302
https://doi.org/10.1038/s42255-020-0196-7
28 AZ Herskovits, L Guarente (2013) Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Res 23:746–758
https://doi.org/10.1038/cr.2013.70
29 A Iyer-Bierhoff, N Krogh, P Tessarz, T Ruppert, H Nielsen, I Grummt (2018) SIRT7-dependent deacetylation of fibrillarin controls histone H2A methylation and rRNA synthesis during the cell cycle. Cell Rep 25(2946–2954):e2945
https://doi.org/10.1016/j.celrep.2018.11.051
30 RB Jones, KE Garrison, JC Wong, EH Duan, DF Nixon, MA Ostrowski (2008) Nucleoside analogue reverse transcriptase inhibitors differentially inhibit human LINE-1 retrotransposition. PLoS ONE 3:e1547
https://doi.org/10.1371/journal.pone.0001547
31 D Kim, B Langmead, SL Salzberg (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360
https://doi.org/10.1038/nmeth.3317
32 S Kiran, V Oddi, G Ramakrishna (2015) Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response. Exp Cell Res 331:123–141
https://doi.org/10.1016/j.yexcr.2014.11.001
33 N Kubben, T Misteli (2017) Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol 18:595–609
https://doi.org/10.1038/nrm.2017.68
34 N Kubben, W Zhang, L Wang, TC Voss, J Yang, J Qu, GH Liu, T Misteli (2016) Repression of the antioxidant NRF2 pathway in premature aging. Cell 165:1361–1374
https://doi.org/10.1016/j.cell.2016.05.017
35 BA Kudlow, BK Kennedy, RJ Jr Monnat (2007) Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 8:394–404
https://doi.org/10.1038/nrm2161
36 B Langmead, SL Salzberg (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
https://doi.org/10.1038/nmeth.1923
37 L Li, L Shi, S Yang, R Yan, D Zhang, J Yang, L He, W Li, X Yi, L Sunet al. (2016) SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun 7:12235
https://doi.org/10.1038/ncomms12235
38 GH Liu, BZ Barkho, S Ruiz, D Diep, J Qu, SL Yang, AD Panopoulos, K Suzuki, L Kurian, C Walshet al. (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221–225
https://doi.org/10.1038/nature09879
39 GH Liu, J Qu, K Suzuki, E Nivet, M Li, N Montserrat, F Yi, X Xu, S Ruiz, W Zhanget al. (2012) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 491:603–607
https://doi.org/10.1038/nature11557
40 C Lopez-Otin, MA Blasco, L Partridge, M Serrano, G Kroemer (2013) The hallmarks of aging. Cell 153:1194–1217
https://doi.org/10.1016/j.cell.2013.05.039
41 E Michishita, JY Park, JM Burneskis, JC Barrett, I Horikawa (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16:4623–4635
https://doi.org/10.1091/mbc.e05-01-0033
42 Y Miura (2016) Human bone marrow mesenchymal stromal/stem cells: current clinical applications and potential for hematology. Int J Hematol 103:122–128
https://doi.org/10.1007/s12185-015-1920-z
43 M Mohrin, J Shin, Y Liu, K Brown, H Luo, Y Xi, CM Haynes, D Chen (2015) Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347:1374–1377
https://doi.org/10.1126/science.aaa2361
44 M Obeid, D Saber Sel, D Ismael Ael, E Hassanien (2013) Mesenchymal stem cells promote hard-tissue repair after direct pulp capping. J Endod 39:626–631
https://doi.org/10.1016/j.joen.2012.12.012
45 PL Olive, JP Banath (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1:23–29
https://doi.org/10.1038/nprot.2006.5
46 H Pan, D Guan, X Liu, J Li, L Wang, J Wu, J Zhou, W Zhang, R Ren, W Zhanget al. (2016) SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res 26:190–205
https://doi.org/10.1038/cr.2016.4
47 S Paredes, M Angulo-Ibanez, L Tasselli, SM Carlson, W Zheng, TM Li, KF Chua (2018) The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. The Journal of biological chemistry 293:11242–11250
https://doi.org/10.1074/jbc.AC118.003325
48 M Percharde, CJ Lin, Y Yin, J Guan, GA Peixoto, A Bulut-Karslioglu, S Biechele, B Huang, X Shen, M Ramalho-Santos (2018) A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174(391–405):e319
https://doi.org/10.1016/j.cell.2018.05.043
49 M Pertea, GM Pertea, CM Antonescu, TC Chang, JT Mendell, SL Salzberg (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295
https://doi.org/10.1038/nbt.3122
50 R Ren, A Ocampo, GH Liu, JC Izpisua Belmonte (2017) Regulation of stem cell aging by metabolism and epigenetics. Cell Metab 26:460–474
https://doi.org/10.1016/j.cmet.2017.07.019
51 X Ren, B Hu, M Song, Z Ding, Y Dang, Z Liu, W Zhang, Q Ji, R Ren, J Dinget al. (2019) Maintenance of nucleolar homeostasis by CBX4 alleviates senescence and osteoarthritis. Cell Rep 26 (3643–3656):e3647
https://doi.org/10.1016/j.celrep.2019.02.088
52 NE Sanjana, O Shalem, F Zhang (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784
https://doi.org/10.1038/nmeth.3047
53 R Secunda, R Vennila, AM Mohanashankar, M Rajasundari, S Jeswanth, R Surendran (2015) Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology 67:793–807
https://doi.org/10.1007/s10616-014-9718-z
54 J Shin, M He, Y Liu, S Paredes, L Villanova, K Brown, X Qiu, N Nabavi, M Mohrin, K Wojnoonskiet al. (2013) SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep 5:654–665
https://doi.org/10.1016/j.celrep.2013.10.007
55 M Simon, M Van Meter, J Ablaeva, Z Ke, RS Gonzalez, T Taguchi, M De Cecco, KI Leonova, V Kogan, SL Helfandet al. (2019) LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab 29(871–885):e875
https://doi.org/10.1016/j.cmet.2019.02.014
56 PP Singh, BA Demmitt, RD Nath, A Brunet (2019) The genetics of aging: a vertebrate perspective. Cell 177:200–220
https://doi.org/10.1016/j.cell.2019.02.038
57 R Sridharan, M Gonzales-Cope, C Chronis, G Bonora, R McKee, C Huang, S Patel, D Lopez, N Mishra, M Pellegriniet al. (2013) Proteomic and genomic approaches reveal critical functions of developmental retardation in cynomolgus monkeys. Nature 560:661–665
58 , W. Zhang, , J. Qu, , G.H. Liu, and , J.C.I. Belmonte (2020). The ageing epigenome and its rejuvenation. Nature reviews Molecular cell biology.
https://doi.org/10.1038/s41580-019-0204-5
59 S Zhou, JS Greenberger, MW Epperly, JP Goff, C Adler, MS Leboff, J Glowacki (2008) Age-related intrinsic changes in human bonemarrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7:335–343
https://doi.org/10.1111/j.1474-9726.2008.00377.x
[1] PAC-0483-20227-LGH_suppl_1 Download
[2] PAC-0483-20227-LGH_suppl_2 Download
[3] PAC-0483-20227-LGH_suppl_3 Download
[4] PAC-0483-20227-LGH_suppl_4 Download
[5] PAC-0483-20227-LGH_suppl_5 Download
[1] Ermin Li, Xiuya Li, Jie Huang, Chen Xu, Qianqian Liang, Kehan Ren, Aobing Bai, Chao Lu, Ruizhe Qian, Ning Sun. BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy[J]. Protein Cell, 2020, 11(9): 661-679.
[2] Kun Liu, Jiani Cao, Xingxing Shi, Liang Wang, Tongbiao Zhao. Cellular metabolism and homeostasis in pluripotency regulation[J]. Protein Cell, 2020, 11(9): 630-640.
[3] Mi Li, Hong-Bing Shu. Dephosphorylation of cGAS by PPP6C impairs its substrate binding activity and innate antiviral response[J]. Protein Cell, 2020, 11(8): 584-599.
[4] Jianwei Liu, Mengdi Wang, Le Sun, Na Clara Pan, Changjiang Zhang, Junjing Zhang, Zhentao Zuo, Sheng He, Qian Wu, Xiaoqun Wang. Integrative analysis of in vivo recording with single-cell RNA-seq data reveals molecular properties of light-sensitive neurons in mouse V1[J]. Protein Cell, 2020, 11(6): 417-432.
[5] Yunxiang Yang, Pan Yang, Nan Wang, Zhonghao Chen, Dan Su, Z. Hong Zhou, Zihe Rao, Xiangxi Wang. Architecture of the herpesvirus genomepackaging complex and implications for DNA translocation[J]. Protein Cell, 2020, 11(5): 339-351.
[6] Rui Fu, Dawei Yu, Jilong Ren, Chongyang Li, Jing Wang, Guihai Feng, Xuepeng Wang, Haifeng Wan, Tianda Li, Libin Wang, Ying Zhang, Tang Hai, Wei Li, Qi Zhou. Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs[J]. Protein Cell, 2020, 11(2): 97-107.
[7] Yingfeng Zheng, Xiuxing Liu, Wenqing Le, Lihui Xie, He Li, Wen Wen, Si Wang, Shuai Ma, Zhaohao Huang, Jinguo Ye, Wen Shi, Yanxia Ye, Zunpeng Liu, Moshi Song, Weiqi Zhang, Jing-Dong J. Han, Juan Carlos Izpisua Belmonte, Chuanle Xiao, Jing Qu, Hongyang Wang, Guang-Hui Liu, Wenru Su. A human circulating immune cell landscape in aging and COVID-19[J]. Protein Cell, 2020, 11(10): 740-770.
[8] Hua Qin, Andong Zhao. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics[J]. Protein Cell, 2020, 11(10): 707-722.
[9] Xuemei Fu, Shouhai Wu, Bo Li, Yang Xu, Jingfeng Liu. Functions of p53 in pluripotent stem cells[J]. Protein Cell, 2020, 11(1): 71-78.
[10] Feng Li, Yuanlong Ge, Dan Liu, Zhou Songyang. The role of telomere-binding modulators in pluripotent stem cells[J]. Protein Cell, 2020, 11(1): 60-70.
[11] Hui Cheng, Zhaofeng Zheng, Tao Cheng. New paradigms on hematopoietic stem cell differentiation[J]. Protein Cell, 2020, 11(1): 34-44.
[12] Si Wang, Zheying Min, Qianzhao Ji, Lingling Geng, Yao Su, Zunpeng Liu, Huifang Hu, Lixia Wang, Weiqi Zhang, Keiichiro Suzuiki, Yu Huang, Puyao Zhang, Tie-Shan Tang, Jing Qu, Yang Yu, Guang-Hui Liu, Jie Qiao. Rescue of premature aging defects in Cockayne syndrome stem cells by CRISPR/Cas9-mediated gene correction[J]. Protein Cell, 2020, 11(1): 1-22.
[13] Lili Yu, Kai-yuan Ji, Jian Zhang, Yanxia Xu, Yue Ying, Taoyi Mai, Shuxiang Xu, Qian-bing Zhang, Kai-tai Yao, Yang Xu. Core pluripotency factors promote glycolysis of human embryonic stem cells by activating GLUT1 enhancer[J]. Protein Cell, 2019, 10(9): 668-680.
[14] Xing Zhang, Zunpeng Liu, Xiaoqian Liu, Si Wang, Yiyuan Zhang, Xiaojuan He, Shuhui Sun, Shuai Ma, Ng Shyh-Chang, Feng Liu, Qiang Wang, Xiaoqun Wang, Lin Liu, Weiqi Zhang, Moshi Song, Guang-Hui Liu, Jing Qu. Telomere-dependent and telomereindependent roles of RAP1 in regulating human stem cell homeostasis[J]. Protein Cell, 2019, 10(9): 649-667.
[15] Lingling Geng, Zunpeng Liu, Weiqi Zhang, Wei Li, Zeming Wu, Wei Wang, Ruotong Ren, Yao Su, Peichang Wang, Liang Sun, Zhenyu Ju, Piu Chan, Moshi Song, Jing Qu, Guang-Hui Liu. Chemical screen identifies a geroprotective role of quercetin in premature aging[J]. Protein Cell, 2019, 10(6): 417-435.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed