|
|
SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer |
Shijia Bi1,7, Zunpeng Liu1,7, Zeming Wu1,7, Zehua Wang1,7, Xiaoqian Liu1,7, Si Wang2,3,6,7, Jie Ren4,5,6,7, Yan Yao8, Weiqi Zhang4,5,6,7( ), Moshi Song2,6,7( ), Guang-Hui Liu2,3,6,7( ), Jing Qu1,6,7( ) |
1. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 2. State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 3. Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China 4. CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China 5. China National Center for Bioinformation, Beijing 100101, China 6. Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China 7. University of Chinese Academy of Sciences, Beijing 100049, China 8. Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China |
|
|
Abstract SIRT7, a sirtuin family member implicated in aging and disease, is a regulator of metabolism and stress responses. It remains elusive how human somatic stem cell populations might be impacted by SIRT7. Here, we found that SIRT7 expression declines during human mesenchymal stem cell (hMSC) aging and that SIRT7 deficiency accelerates senescence. Mechanistically, SIRT7 forms a complex with nuclear lamina proteins and heterochromatin proteins, thus maintaining the repressive state of heterochromatin at nuclear periphery. Accordingly, deficiency of SIRT7 results in loss of heterochromatin, de-repression of the LINE1 retrotransposon (LINE1), and activation of innate immune signaling via the cGAS-STING pathway. These agingassociated cellular defects were reversed by overexpression of heterochromatin proteins or treatment with a LINE1 targeted reverse-transcriptase inhibitor. Together, these findings highlight how SIRT7 safeguards chromatin architecture to control innate immune regulation and ensure geroprotection during stem cell aging.
|
Keywords
SIRT7
stem cell
aging
LINE1
cGAS
STING
|
Corresponding Author(s):
Weiqi Zhang,Moshi Song,Guang-Hui Liu,Jing Qu
|
Issue Date: 31 July 2020
|
|
1 |
S Anders, PT Pyl, W Huber (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England) 31:166–169
https://doi.org/10.1093/bioinformatics/btu638
|
2 |
S Araki, Y Izumiya, T Rokutanda, A Ianni, S Hanatani, Y Kimura, Y Onoue, T Senokuchi, T Yoshizawa, O Yasudaet al. (2015) Sirt7 contributes to myocardial tissue repair by maintaining transforming growth factor-beta signaling pathway. Circulation 132:1081–1093
https://doi.org/10.1161/CIRCULATIONAHA.114.014821
|
3 |
X Bao, Z Liu, W Zhang, K Gladysz, YME Fung, G Tian, Y Xiong, JWH Wong, KWY Yuen, XD Li (2019) Glutarylation of Histone H4 Lysine 91 regulates chromatin dynamics. Mol Cell 76(660–675):e669
https://doi.org/10.1016/j.molcel.2019.08.018
|
4 |
MF Barber, E Michishita-Kioi, Y Xi, L Tasselli, M Kioi, Z Moqtaderi, RI Tennen, S Paredes, NL Young, K Chenet al. (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114–118
https://doi.org/10.1038/nature11043
|
5 |
WA Bickmore, B van Steensel (2013) Genome architecture: domain organization of interphase chromosomes. Cell 152:1270–1284
https://doi.org/10.1016/j.cell.2013.02.001
|
6 |
NA Bishop, L Guarente (2007) Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 8:835–844
https://doi.org/10.1038/nrg2188
|
7 |
G Bourque, KH Burns, M Gehring, V Gorbunova, A Seluanov, M Hammell, M Imbeault, Z Izsvak, HL Levin, TS Macfarlanet al. (2018) Ten things you should know about transposable elements. Genome Biol 19:199
https://doi.org/10.1186/s13059-018-1577-z
|
8 |
JD Buenrostro, PG Giresi, LC Zaba, HY Chang, WJ Greenleaf (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218
https://doi.org/10.1038/nmeth.2688
|
9 |
N Castro-Diaz, G Ecco, A Coluccio, A Kapopoulou, B Yazdanpanah, M Friedli, J Duc, SM Jang, P Turelli, D Trono (2014) Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev 28:1397–1409
https://doi.org/10.1101/gad.241661.114
|
10 |
J Chen, EE Bardes, BJ Aronow, AG Jegga (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucl Acids Res 37:W305–311
https://doi.org/10.1093/nar/gkp427
|
11 |
S Chen, MF Blank, A Iyer, B Huang, L Wang, I Grummt, R Voit (2016) SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing. Nat Commun 7:10734
https://doi.org/10.1038/ncomms10734
|
12 |
F Cheng, S Wang, M Song, Z Liu, P Liu, L Wang, Y Wang, Q Zhao, K Yan, P Chanet al.(2019) DJ-1 is dispensable for human stem cell homeostasis. Protein Cell 10:846–853
https://doi.org/10.1007/s13238-019-00659-9
|
13 |
M Cioffi, M Vallespinos-Serrano, SM Trabulo, PJ Fernandez-Marcos, AN Firment, BN Vazquez, CR Vieira, F Mulero, JA Camara, UP Croninet al. (2015) MiR-93 controls adiposity via inhibition of Sirt7 and Tbx3. Cell Rep 12:1594–1605
https://doi.org/10.1016/j.celrep.2015.08.006
|
14 |
L Dai, Q Huang, JD Boeke (2011) Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem 12:18
https://doi.org/10.1186/1471-2091-12-18
|
15 |
M De Cecco, SW Criscione, EJ Peckham, S Hillenmeyer, EA Hamm, J, Manivannan AL Peterson, JA Kreiling, N Neretti, JM Sedivy (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12:247–256
https://doi.org/10.1111/acel.12047
|
16 |
M De Cecco, T Ito, AP Petrashen, AE Elias, NJ Skvir, SW Criscione, A Caligiana, G Brocculi, EM Adney, JD Boekeet al. (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78
https://doi.org/10.1038/s41586-018-0784-9
|
17 |
L Deng, R Ren, Z Liu, M Song, J Li, Z Wu, X Ren, L Fu, W Li, W Zhanget al. (2019) Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat Commun 10:3329
https://doi.org/10.1038/s41467-019-10831-8
|
18 |
AM Dimarino, AI Caplan, TL Bonfield (2013) Mesenchymal stem cells in tissue repair. Front Immunol 4:201
https://doi.org/10.3389/fimmu.2013.00201
|
19 |
T Finkel, CX Deng, R Mostoslavsky (2009) Recent progress in the biology and physiology of sirtuins. Nature 460:587–591
https://doi.org/10.1038/nature08197
|
20 |
L Fu, Y Hu, M Song, Z Liu, W Zhang, FX Yu, J Wu, S Wang, JC Izpisua Belmonte, P Chanet al.(2019) Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol 17:e3000201
https://doi.org/10.1371/journal.pbio.3000201
|
21 |
JL Garcia-Perez, M Morell, JO Scheys, DA Kulpa, S Morell, CC Carter, GD Hammer, KL Collins, KS O’Shea, P Menendezet al. (2010) Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466:769–773
https://doi.org/10.1038/nature09209
|
22 |
L Geng, Z Liu, S Wang, S Sun, S Ma, X Liu, P Chan, L Sun, M Song, W Zhanget al. (2019) Low-dose quercetin positively regulates mouse healthspan. Protein Cell 10:770–775
https://doi.org/10.1007/s13238-019-0646-8
|
23 |
V Gorbunova, JD Boeke, SL Helfand, JM Sedivy (2014) Human genomics. Sleeping dogs of the genome. Science 346:1187–1188
https://doi.org/10.1126/science.aaa3177
|
24 |
SI Grewal, S Jia(2007) Heterochromatin revisited. Nature reviews. Genetics 8:35–46
https://doi.org/10.1038/nrg2008
|
25 |
L Guelen, L Pagie, E Brasset, W Meuleman, MB Faza, W Talhout, BH Eussen, A de Klein, L Wessels, W de Laatet al. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951
https://doi.org/10.1038/nature06947
|
26 |
G Ha, A Roth, D Lai, A Bashashati, J Ding, R Goya, R Giuliany, J Rosner, A Oloumi, K Shumansky (2012) Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triplenegative breast cancer. Genome Res 22:1995–2007
https://doi.org/10.1101/gr.137570.112
|
27 |
X He, S Memczak, J Qu, JCI Belmonte, G-H Liu (2020) Single-cell omics in ageing: a young and growing field. Nat Metab 2:293–302
https://doi.org/10.1038/s42255-020-0196-7
|
28 |
AZ Herskovits, L Guarente (2013) Sirtuin deacetylases in neurodegenerative diseases of aging. Cell Res 23:746–758
https://doi.org/10.1038/cr.2013.70
|
29 |
A Iyer-Bierhoff, N Krogh, P Tessarz, T Ruppert, H Nielsen, I Grummt (2018) SIRT7-dependent deacetylation of fibrillarin controls histone H2A methylation and rRNA synthesis during the cell cycle. Cell Rep 25(2946–2954):e2945
https://doi.org/10.1016/j.celrep.2018.11.051
|
30 |
RB Jones, KE Garrison, JC Wong, EH Duan, DF Nixon, MA Ostrowski (2008) Nucleoside analogue reverse transcriptase inhibitors differentially inhibit human LINE-1 retrotransposition. PLoS ONE 3:e1547
https://doi.org/10.1371/journal.pone.0001547
|
31 |
D Kim, B Langmead, SL Salzberg (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360
https://doi.org/10.1038/nmeth.3317
|
32 |
S Kiran, V Oddi, G Ramakrishna (2015) Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response. Exp Cell Res 331:123–141
https://doi.org/10.1016/j.yexcr.2014.11.001
|
33 |
N Kubben, T Misteli (2017) Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol 18:595–609
https://doi.org/10.1038/nrm.2017.68
|
34 |
N Kubben, W Zhang, L Wang, TC Voss, J Yang, J Qu, GH Liu, T Misteli (2016) Repression of the antioxidant NRF2 pathway in premature aging. Cell 165:1361–1374
https://doi.org/10.1016/j.cell.2016.05.017
|
35 |
BA Kudlow, BK Kennedy, RJ Jr Monnat (2007) Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 8:394–404
https://doi.org/10.1038/nrm2161
|
36 |
B Langmead, SL Salzberg (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359
https://doi.org/10.1038/nmeth.1923
|
37 |
L Li, L Shi, S Yang, R Yan, D Zhang, J Yang, L He, W Li, X Yi, L Sunet al. (2016) SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun 7:12235
https://doi.org/10.1038/ncomms12235
|
38 |
GH Liu, BZ Barkho, S Ruiz, D Diep, J Qu, SL Yang, AD Panopoulos, K Suzuki, L Kurian, C Walshet al. (2011) Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472:221–225
https://doi.org/10.1038/nature09879
|
39 |
GH Liu, J Qu, K Suzuki, E Nivet, M Li, N Montserrat, F Yi, X Xu, S Ruiz, W Zhanget al. (2012) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 491:603–607
https://doi.org/10.1038/nature11557
|
40 |
C Lopez-Otin, MA Blasco, L Partridge, M Serrano, G Kroemer (2013) The hallmarks of aging. Cell 153:1194–1217
https://doi.org/10.1016/j.cell.2013.05.039
|
41 |
E Michishita, JY Park, JM Burneskis, JC Barrett, I Horikawa (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16:4623–4635
https://doi.org/10.1091/mbc.e05-01-0033
|
42 |
Y Miura (2016) Human bone marrow mesenchymal stromal/stem cells: current clinical applications and potential for hematology. Int J Hematol 103:122–128
https://doi.org/10.1007/s12185-015-1920-z
|
43 |
M Mohrin, J Shin, Y Liu, K Brown, H Luo, Y Xi, CM Haynes, D Chen (2015) Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347:1374–1377
https://doi.org/10.1126/science.aaa2361
|
44 |
M Obeid, D Saber Sel, D Ismael Ael, E Hassanien (2013) Mesenchymal stem cells promote hard-tissue repair after direct pulp capping. J Endod 39:626–631
https://doi.org/10.1016/j.joen.2012.12.012
|
45 |
PL Olive, JP Banath (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1:23–29
https://doi.org/10.1038/nprot.2006.5
|
46 |
H Pan, D Guan, X Liu, J Li, L Wang, J Wu, J Zhou, W Zhang, R Ren, W Zhanget al. (2016) SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res 26:190–205
https://doi.org/10.1038/cr.2016.4
|
47 |
S Paredes, M Angulo-Ibanez, L Tasselli, SM Carlson, W Zheng, TM Li, KF Chua (2018) The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. The Journal of biological chemistry 293:11242–11250
https://doi.org/10.1074/jbc.AC118.003325
|
48 |
M Percharde, CJ Lin, Y Yin, J Guan, GA Peixoto, A Bulut-Karslioglu, S Biechele, B Huang, X Shen, M Ramalho-Santos (2018) A LINE1-nucleolin partnership regulates early development and ESC identity. Cell 174(391–405):e319
https://doi.org/10.1016/j.cell.2018.05.043
|
49 |
M Pertea, GM Pertea, CM Antonescu, TC Chang, JT Mendell, SL Salzberg (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295
https://doi.org/10.1038/nbt.3122
|
50 |
R Ren, A Ocampo, GH Liu, JC Izpisua Belmonte (2017) Regulation of stem cell aging by metabolism and epigenetics. Cell Metab 26:460–474
https://doi.org/10.1016/j.cmet.2017.07.019
|
51 |
X Ren, B Hu, M Song, Z Ding, Y Dang, Z Liu, W Zhang, Q Ji, R Ren, J Dinget al. (2019) Maintenance of nucleolar homeostasis by CBX4 alleviates senescence and osteoarthritis. Cell Rep 26 (3643–3656):e3647
https://doi.org/10.1016/j.celrep.2019.02.088
|
52 |
NE Sanjana, O Shalem, F Zhang (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784
https://doi.org/10.1038/nmeth.3047
|
53 |
R Secunda, R Vennila, AM Mohanashankar, M Rajasundari, S Jeswanth, R Surendran (2015) Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology 67:793–807
https://doi.org/10.1007/s10616-014-9718-z
|
54 |
J Shin, M He, Y Liu, S Paredes, L Villanova, K Brown, X Qiu, N Nabavi, M Mohrin, K Wojnoonskiet al. (2013) SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep 5:654–665
https://doi.org/10.1016/j.celrep.2013.10.007
|
55 |
M Simon, M Van Meter, J Ablaeva, Z Ke, RS Gonzalez, T Taguchi, M De Cecco, KI Leonova, V Kogan, SL Helfandet al. (2019) LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab 29(871–885):e875
https://doi.org/10.1016/j.cmet.2019.02.014
|
56 |
PP Singh, BA Demmitt, RD Nath, A Brunet (2019) The genetics of aging: a vertebrate perspective. Cell 177:200–220
https://doi.org/10.1016/j.cell.2019.02.038
|
57 |
R Sridharan, M Gonzales-Cope, C Chronis, G Bonora, R McKee, C Huang, S Patel, D Lopez, N Mishra, M Pellegriniet al. (2013) Proteomic and genomic approaches reveal critical functions of developmental retardation in cynomolgus monkeys. Nature 560:661–665
|
58 |
, W. Zhang, , J. Qu, , G.H. Liu, and , J.C.I. Belmonte (2020). The ageing epigenome and its rejuvenation. Nature reviews Molecular cell biology.
https://doi.org/10.1038/s41580-019-0204-5
|
59 |
S Zhou, JS Greenberger, MW Epperly, JP Goff, C Adler, MS Leboff, J Glowacki (2008) Age-related intrinsic changes in human bonemarrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7:335–343
https://doi.org/10.1111/j.1474-9726.2008.00377.x
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|