|
|
Mapping the epigenetic modifications of DNA and RNA |
Lin-Yong Zhao1,2,3, Jinghui Song4,5, Yibin Liu2,3, Chun-Xiao Song2,3( ), Chengqi Yi4,5,6( ) |
1. Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China 2. Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK 3. Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK 4. State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China 5. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China 6. Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China |
|
|
Abstract Over 17 and 160 types of chemical modifications have been identified in DNA and RNA, respectively. The interest in understanding the various biological functions of DNA and RNA modifications has lead to the cutting-edged fields of epigenomics and epitranscriptomics. Developing chemical and biological tools to detect specific modifications in the genome or transcriptome has greatly facilitated their study. Here, we review the recent technological advances in this rapidly evolving field. We focus on high-throughput detection methods and biological findings for these modifications, and discuss questions to be addressed as well. We also summarize third-generation sequencing methods, which enable long-read and single-molecule sequencing of DNA and RNA modification.
|
Keywords
DNA modification
DNA methylation
RNA modification
epitranscriptomics
epigenetics
long read sequencing
|
Corresponding Author(s):
Chun-Xiao Song,Chengqi Yi
|
Online First Date: 14 September 2020
Issue Date: 07 December 2020
|
|
1 |
A Adey, J Shendure (2012) Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res 22:1139–1143
https://doi.org/10.1101/gr.136242.111
|
2 |
S Akichika, S Hirano, Y Shichino, T Suzuki, H Nishimasu, R Ishitani, A Sugita, Y Hirose, S Iwasaki, O Nurekiet al. (2019) Cap-specific terminal N (6)-methylation of RNA by an RNA polymerase IIassociated methyltransferase. Science (New York, NY).
https://doi.org/10.1126/science.aav0080
|
3 |
CR Alarcon, H Goodarzi, H Lee, X Liu, S, Tavazoie SF Tavazoie (2015) HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162:1299–1308
https://doi.org/10.1016/j.cell.2015.08.011
|
4 |
D, Arango D Sturgill, N Alhusaini, AA Dillman, TJ Sweet, G Hanson, M Hosogane, WR Sinclair, KK Nanan, MD Mandleret al. (2018) Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175:1872–1886.e1824
https://doi.org/10.1016/j.cell.2018.10.030
|
5 |
S Ardui, A Ameur, JR Vermeesch, MS Hestand (2018) Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 46:2159–2168
https://doi.org/10.1093/nar/gky066
|
6 |
M Bartosovic, HC Molares, P Gregorova, D Hrossova, G Kudla, S Vanacova (2017) N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res 45:11356–11370
https://doi.org/10.1093/nar/gkx778
|
7 |
P Boccaletto, MA Machnicka, E Purta, P Piatkowski, B Baginski, TK Wirecki, V, de Crecy-Lagard R Ross, PA Limbach, A Kotteret al. (2018) MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46:D303–d307
https://doi.org/10.1093/nar/gkx1030
|
8 |
JA Bokar, ME Rath-Shambaugh, R Ludwiczak, P Narayan, F Rottman (1994) Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem 269:17697–17704
|
9 |
MJ Booth, MR Branco, G Ficz, D Oxley, F Krueger, W, Reik S Balasubramanian (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science (New York, NY) 336:934–937
https://doi.org/10.1126/science.1220671
|
10 |
MJ Booth, TW Ost, D Beraldi, NM Bell, MR Branco, W Reik, S Balasubramanian (2013) Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nat Protoc 8:1841–1851
https://doi.org/10.1038/nprot.2013.115
|
11 |
MJ Booth, G Marsico, M Bachman, D Beraldi, S Balasubramanian (2014) Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nat Chem 6:435–440
https://doi.org/10.1038/nchem.1893
|
12 |
MJ Booth, EA Raiber, S Balasubramanian (2015) Chemical methods for decoding cytosine modifications in DNA. Chem Rev 115:2240–2254
https://doi.org/10.1021/cr5002904
|
13 |
K Boulias, D, Toczydlowska-Socha BR Hawley, N Liberman, K Takashima, S Zaccara, T Guez, JJ Vasseur, F Debart, L Aravindet al. (2019) Identification of the m(6)Am methyltransferase PCIF1 reveals the location and functions of m(6)Am in the transcriptome. Mol Cell 75(3):631.e8–643.e8
https://doi.org/10.1016/j.molcel.2019.06.006
|
14 |
G Cao, HB Li (2016) Recent advances in dynamic m6A RNA modification. Open Biol 6:160003
https://doi.org/10.1098/rsob.160003
|
15 |
TM Carlile, MF Rojas-Duran, B Zinshteyn, H Shin, KM Bartoli, WV Gilbert (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–146
https://doi.org/10.1038/nature13802
|
16 |
K Chen, Z Lu, X Wang, Y Fu, GZ Luo, N Liu, D Han, D Dominissini, Q Dai, T Panet al.(2015) High-resolution N(6) -methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing. Angew Chem Int Ed Engl 54:1587–1590
https://doi.org/10.1002/anie.201410647
|
17 |
X Chen, A Li, BF Sun, Y Yang, YN Han, X Yuan, RX Chen, WS Wei, Y Liu, CC Gaoet al.(2019) 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol 21(8):978–990
https://doi.org/10.1038/s41556-019-0361-y
|
18 |
JM Chu, TT Ye, CJ Ma, MD Lan, T Liu, BF Yuan, YQ Feng (2018) Existence of Internal N7-methylguanosine modification in mRNA determined by differential enzyme treatment coupled with mass spectrometry analysis. ACS Chem Biol 13:3243–3250
https://doi.org/10.1021/acschembio.7b00906
|
19 |
SJ Clark, SA Smallwood, HJ Lee, F Krueger, W Reik, G Kelsey (2017) Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat Protoc 12:534–547
https://doi.org/10.1038/nprot.2016.187
|
20 |
J Clarke, HC Wu, L, Jayasinghe A Patel, S Reid, H Bayley (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270
https://doi.org/10.1038/nnano.2009.12
|
21 |
DG Courtney, EM Kennedy, RE Dumm, HP Bogerd, K Tsai, NS Heaton, BR Cullen (2017) Epitranscriptomic enhancement of influenza A virus gene expression and replication. Cell Host Microbe 22:377–386.e375
https://doi.org/10.1016/j.chom.2017.08.004
|
22 |
Q Cui, H Shi, P, Ye L Li, Q Qu, G, Sun G Sun, Z Lu, Y Huang, CG Yanget al. (2017a) m(6)A RNA methylation regulates the selfrenewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18:2622–2634
https://doi.org/10.1016/j.celrep.2017.02.059
|
23 |
X Cui, Z Liang, L Shen, Q Zhang, S, Bao Y, Geng B Zhang, V Leo, LA Vardy, T Luet al. (2017b) 5-Methylcytosine RNA methylation in Arabidopsis thaliana. Molecular plant 10:1387–1399
https://doi.org/10.1016/j.molp.2017.09.013
|
24 |
B Delatte, F Wang, LV Ngoc, E Collignon, E Bonvin, R Deplus, E Calonne, B Hassabi, P Putmans, S Aweet al. (2016) RNA biochemistry. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science (New York, NY) 351:282–285
https://doi.org/10.1126/science.aac5253
|
25 |
D Dominissini, S Moshitch-Moshkovitz, S Schwartz, M Salmon-Divon, L Ungar, S Osenberg, K Cesarkas, J Jacob-Hirsch, N Amariglio, M Kupiecet al. (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206
https://doi.org/10.1038/nature11112
|
26 |
D Dominissini, S Nachtergaele, S Moshitch-Moshkovitz, E Peer, N Kol, MS Ben-Haim, Q Dai, A Di Segni, M Salmon-Divon, WC Clarket al. (2016) The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530:441–446
https://doi.org/10.1038/nature16998
|
27 |
C Dong, L Niu, W Song, X Xiong, X Zhang, Z Zhang, Y Yang, F Yi, J Zhan, H Zhanget al. (2016) tRNA modification profiles of the fast-proliferating cancer cells. Biochem Biophys Res Commun 476:340–345
https://doi.org/10.1016/j.bbrc.2016.05.124
|
28 |
K Douvlataniotis, M Bensberg, A Lentini, B Gylemo, CE Nestor (2020) No evidence for DNA N (6)-methyladenine in mammals. Sci Adv 6:eaay3335
https://doi.org/10.1126/sciadv.aay3335
|
29 |
DT Dubin, RH Taylor (1975) The methylation state of poly A-containing messenger RNA from cultured hamster cells. Nucleic Acids Res 2:1653–1668
https://doi.org/10.1093/nar/2.10.1653
|
30 |
S Edelheit, S Schwartz, MR Mumbach, O Wurtzel, R Sorek (2013) Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet 9:e1003602
https://doi.org/10.1371/journal.pgen.1003602
|
31 |
G Ficz, MR Branco, S Seisenberger, F Santos, F Krueger, TA Hore, CJ Marques, S Andrews, W Reik (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398–402
https://doi.org/10.1038/nature10008
|
32 |
BA Flusberg, DR Webster, JH Lee, KJ Travers, EC Olivares, TA Clark, J Korlach, SW Turner (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465
https://doi.org/10.1038/nmeth.1459
|
33 |
M Frye, SR Jaffrey, T Pan, G, Rechavi T Suzuki (2016) RNA modifications: what have we learned and where are we headed? Nat Rev Genet 17:365–372
https://doi.org/10.1038/nrg.2016.47
|
34 |
Y Fu, G Jia, X Pang, RN Wang, X Wang, CJ Li, S Smemo, Q Dai, KA Bailey, MA Nobregaet al. (2013) FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Commun 4:1798
https://doi.org/10.1038/ncomms2822
|
35 |
L Fu, CR Guerrero, N Zhong, NJ Amato, Y, Liu S Liu, Q Cai, D Ji, SG Jin, LJ Niedernhoferet al. (2014) Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J Am Chem Soc 136:11582–11585
https://doi.org/10.1021/ja505305z
|
36 |
Y Fu, GZ Luo, K Chen, X Deng, M Yu, D Han, Z Hao, J Liu, X Lu, LC Doreet al. (2015) N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas. Cell 161:879–892
https://doi.org/10.1016/j.cell.2015.04.010
|
37 |
DR Garalde, EA Snell, D Jachimowicz, B Sipos, JH Lloyd, M Bruce, N Pantic, T Admassu, P James, A Warlandet al. (2018) Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods 15:201–206
https://doi.org/10.1038/nmeth.4577
|
38 |
MA Garcia-Campos, S Edelheit, U Toth, M Safra, R Shachar, S Viukov, R Winkler, R Nir, L Lasman, A Brandiset al. (2019) Deciphering the “m(6)A code” via antibody-independent quantitative profiling. Cell 178:731–747.e716
https://doi.org/10.1016/j.cell.2019.06.013
|
39 |
S Geula, S Moshitch-Moshkovitz, D Dominissini, AA Mansour, N Kol, M Salmon-Divon, V Hershkovitz, E Peer, N Mor, YS Manoret al. (2015) Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science (New York, NY) 347:1002–1006
https://doi.org/10.1126/science.1261417
|
40 |
WV Gilbert, TA Bell, C Schaening (2016) Messenger RNA modifications: form, distribution, and function. Science (New York, NY) 352:1408–1412
https://doi.org/10.1126/science.aad8711
|
41 |
NS Gokhale, AB McIntyre, MJ McFadden, AE Roder, EM Kennedy, JA Gandara, SE Hopcraft, KM Quicke, C Vazquez, J Willeret al. (2016) N6-methyladenosine in flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 20:654–665
https://doi.org/10.1016/j.chom.2016.09.015
|
42 |
MVC Greenberg, D Bourc’his (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607
https://doi.org/10.1038/s41580-019-0159-6
|
43 |
EL Greer, MA Blanco, L Gu, E Sendinc, J Liu, D Aristizabal-Corrales, CH Hsu, L Aravind, C He, Y Shi (2015) DNA methylation on N6-adenine in C. elegans. Cell 161:868–878
https://doi.org/10.1016/j.cell.2015.04.005
|
44 |
F Guo, X Li, D Liang, T Li, P Zhu, H Guo, X Wu, L, Wen TP Gu, B Huet al. (2014) Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 15:447–459
https://doi.org/10.1016/j.stem.2014.08.003
|
45 |
Z Hao, T Wu, X Cui, P Zhu, C Tan, X Dou, KW Hsu, YT Lin, PH Peng, LS Zhanget al. (2020) N(6)-deoxyadenosine methylation in mammalian mitochondrial DNA. Mol Cell 78(3):382–395.e8
https://doi.org/10.1016/j.molcel.2020.02.018
|
46 |
JE Harper, SM Miceli, RJ Roberts, JL Manley (1990) Sequence specificity of the human mRNA N6-adenosine methylase in vitro. Nucleic Acids Res 18:5735–5741
https://doi.org/10.1093/nar/18.19.5735
|
47 |
C He (2010) Grand challenge commentary: RNA epigenetics? Nat Chem Biol 6:863–865
https://doi.org/10.1038/nchembio.482
|
48 |
YF He, BZ Li, Z Li, P Liu, Y Wang, Q Tang, J Ding, Y Jia, Z Chen, L Liet al. (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–1307
https://doi.org/10.1126/science.1210944
|
49 |
S Hussain, J Aleksic, S Blanco, S Dietmann, M Frye (2013a) Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biol 14:215
https://doi.org/10.1186/gb4143
|
50 |
S Hussain, AA Sajini, S Blanco, S Dietmann, P Lombard, Y Sugimoto, M Paramor, JG Gleeson, DT Odom, J Uleet al. (2013b) NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 4:255–261
https://doi.org/10.1016/j.celrep.2013.06.029
|
51 |
S Ito, L Shen, Q Dai, SC Wu, LB Collins, JA Swenberg, C He, Y Zhang (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science (New York, NY) 333:1300–1303
https://doi.org/10.1126/science.1210597
|
52 |
M Jain, HE Olsen, B Paten, M Akeson (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17:239
https://doi.org/10.1186/s13059-016-1103-0
|
53 |
M Jain, S Koren, KH Miga, J Quick, AC Rand, TA Sasani, JR Tyson, AD Beggs, AT Dilthey, IT Fiddeset al. (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36:338–345
https://doi.org/10.1038/nbt.4060
|
54 |
G Jia, Y Fu, X Zhao, Q Dai, G Zheng, Y Yang, C Yi, T Lindahl, T Pan, YG Yanget al. (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7:885–887
https://doi.org/10.1038/nchembio.687
|
55 |
J Karijolich, C Yi, YT Yu (2015) Transcriptome-wide dynamics of RNA pseudouridylation. Nat Rev Mol Cell Biol 16:581–585
https://doi.org/10.1038/nrm4040
|
56 |
S Ke, EA Alemu, C Mertens, EC Gantman, JJ Fak, A Mele, B Haripal, I Zucker-Scharff, MJ Moore, CY Parket al. (2015) A majority of m6A residues are in the last exons, allowing the potential for 3’ UTR regulation. Genes Dev 29:2037–2053
https://doi.org/10.1101/gad.269415.115
|
57 |
S Ke, A Pandya-Jones, Y Saito, JJ Fak, CB Vagbo, S Geula, JH Hanna, DL Black, JE Jr Darnell, RB Darnell (2017) m(6)A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev 31:990–1006
https://doi.org/10.1101/gad.301036.117
|
58 |
EM Kennedy, HP Bogerd, AV Kornepati, D Kang, D Ghoshal, JB Marshall, BC Poling, K Tsai, NS Gokhale, SM Horneret al. (2016) Posttranscriptional m(6)A editing of HIV-1 mRNAs enhances viral gene expression. Cell Host Microbe 19:675–685
https://doi.org/10.1016/j.chom.2016.04.002
|
59 |
V Khoddami, BR Cairns (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 31:458–464
https://doi.org/10.1038/nbt.2566
|
60 |
V Khoddami, A Yerra, TL Mosbruger, AM Fleming, CJ Burrows, BR Cairns (2019) Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proc Natl Acad Sci USA 116:6784–6789
https://doi.org/10.1073/pnas.1817334116
|
61 |
H Kobayashi, T Kono (2012) DNA methylation analysis of germ cells by using bisulfite-based sequencing methods. Methods Mol Biol (Clifton, NJ) 825:223–235
https://doi.org/10.1007/978-1-61779-436-0_17
|
62 |
H Kobayashi, T Sakurai, F, Miura M Imai, K Mochiduki, E, Yanagisawa A Sakashita, T Wakai, Y Suzuki, T Itoet al. (2013) Highresolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome Res 23:616–627
https://doi.org/10.1101/gr.148023.112
|
63 |
A Koch, SC Joosten, Z Feng, TC de Ruijter, MX Draht, V Melotte, KM Smits, J Veeck, JG Herman, L Van Nesteet al. (2018) Author correction: analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol 15:467
https://doi.org/10.1038/s41571-018-0028-9
|
64 |
S Kriaucionis, N Heintz (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930
https://doi.org/10.1126/science.1169786
|
65 |
Z Lei, C Yi (2017) A radiolabeling-free, qPCR-based method for locus-specific pseudouridine detection. Angew Chem Int Ed Engl 56:14878–14882
https://doi.org/10.1002/anie.201708276
|
66 |
A Lentini, C Lagerwall, S Vikingsson, HK Mjoseng, K Douvlataniotis, H Vogt, H Green, RR Meehan, M Benson, CE Nestor (2018) A reassessment of DNA-immunoprecipitation-based genomic profiling. Nat Methods 15:499–504
https://doi.org/10.1038/s41592-018-0038-7
|
67 |
E Li, Y Zhang (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6:a019133
https://doi.org/10.1101/cshperspect.a019133
|
68 |
WW Li, L Gong, H Bayley (2013) Single-molecule detection of 5-hydroxymethylcytosine in DNA through chemical modification and nanopore analysis. Angew Chem Int Ed Engl 52:4350–4355
https://doi.org/10.1002/anie.201300413
|
69 |
X Li, P Zhu, S Ma, J Song, J Bai, F Sun, C Yi (2015) Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 11:592–597
https://doi.org/10.1038/nchembio.1836
|
70 |
X Li, X Xiong, K Wang, L Wang, X Shu, S Ma, C Yi (2016a) Transcriptome-wide mapping reveals reversible and dynamic N (1)-methyladenosine methylome. Nat Chem Biol 12:311–316
https://doi.org/10.1038/nchembio.2040
|
71 |
X Li, X Xiong, C Yi (2016b) Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods 14:23–31
https://doi.org/10.1038/nmeth.4110
|
72 |
W Li, X Zhang, X Lu, L, You Y Song, Z Luo, J Zhang, J Nie, W Zheng, D Xuet al. (2017a) 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers. Cell Res 27:1243–1257
https://doi.org/10.1038/cr.2017.121
|
73 |
X Li, X Xiong, M Zhang, K Wang, Y Chen, J Zhou, Y Mao, J Lv, D Yi, XW Chenet al.(2017b) Base-resolution mapping reveals distinct m(1)A methylome in nuclear- and mitochondrial-encoded transcripts. Mol Cell 68:993–1005.e1009
https://doi.org/10.1016/j.molcel.2017.10.019
|
74 |
Z Li, H Weng, R Su, X, Weng Z, Zuo C Li, H Huang, S Nachtergaele, L, Dong C Huet al. (2017c) FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell 31:127–141
https://doi.org/10.1016/j.ccell.2016.11.017
|
75 |
QY Li, NB Xie, J Xiong, BF Yuan, YQ Feng (2018) Single-nucleotide resolution analysis of 5-hydroxymethylcytosine in DNA by enzyme-mediated deamination in combination with sequencing. Anal Chem 90:14622–14628
https://doi.org/10.1021/acs.analchem.8b04833
|
76 |
G Lichinchi, S Gao, Y Saletore, GM Gonzalez (2016a) Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol 1:16011
https://doi.org/10.1038/nmicrobiol.2016.11
|
77 |
G Lichinchi, BS Zhao, Y Wu, Z Lu, Y Qin, C He, TM Rana (2016b) Dynamics of human and viral RNA methylation during Zika virus infection. Cell Host Microbe 20:666–673
https://doi.org/10.1016/j.chom.2016.10.002
|
78 |
S Lin, Q Liu, VS Lelyveld, J Choe, JW Szostak, RI Gregory (2018) Mettl1/Wdr4-mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol Cell 71:244–255.e245
https://doi.org/10.1016/j.molcel.2018.06.001
|
79 |
B Linder, AV Grozhik, AO Olarerin-George, C Meydan, CE Mason, SR Jaffrey (2015) Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12:767–772
https://doi.org/10.1038/nmeth.3453
|
80 |
J Liu, Y, Yue D Han, X Wang, Y Fu, L Zhang, G, Jia M Yu, Z Lu, X Denget al. (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10:93–95
https://doi.org/10.1038/nchembio.1432
|
81 |
N Liu, Q Dai, G Zheng, C He, M Parisien, T Pan (2015) N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518:560–564
https://doi.org/10.1038/nature14234
|
82 |
F Liu, W Clark, G Luo, X Wang, Y, Fu J, Wei X Wang, Z Hao, Q Dai, G Zhenget al. (2016) ALKBH1-mediated tRNA demethylation regulates translation. Cell 167(3):816–828
https://doi.org/10.1016/j.cell.2016.09.038
|
83 |
N Liu, KI Zhou, M Parisien, Q Dai, L Diatchenko, T Pan (2017) N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res 45:6051–6063
https://doi.org/10.1093/nar/gkx141
|
84 |
H Liu, O Begik, MC Lucas, JM Ramirez, CE Mason, D Wiener, S Schwartz, JS Mattick, MA Smith, EM Novoa (2019a) Accurate detection of m6A RNA modifications in native RNA sequences. Nat Commun 10:4079
https://doi.org/10.1038/s41467-019-11713-9
|
85 |
J Liu, BT Harada, C He (2019b) Regulation of gene expression by N (6)-methyladenosine in cancer. Trends Cell Biol 29(6):487–489
https://doi.org/10.1016/j.tcb.2019.02.008
|
86 |
J Liu, K Li, J Cai, M Zhang, X Zhang, X Xiong, H Meng, X Xu, Z, Huang J Penget al.(2019c) Landscape and regulation of m(6)A and m (6)Am methylome across human and mouse tissues. Mol Cell 77 (2):426.e6–440.e6
https://doi.org/10.1016/j.molcel.2019.09.032
|
87 |
Y Liu, Y You, Z Lu, J Yang, P, Li L Liu, H Xu, Y Niu, X Cao (2019d) N (6)-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication. Science (New York, NY) 365:1171–1176
https://doi.org/10.1126/science.aax4468
|
88 |
Y Liu, J Cheng, P Siejka-Zielinska, C Weldon, H Roberts, M Lopopolo, A Magri, V D’Arienzo , JM Harris, JA McKeatinget al. (2020) Accurate targeted long-read DNA methylation and hydroxymethylation sequencing with TAPS. Genome Biol 21:54
https://doi.org/10.1186/s13059-020-01969-6
|
89 |
A Louloupi, E Ntini, T Conrad, UAV Orom (2018) Transient N-6-methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency. Cell Rep 23:3429–3437
https://doi.org/10.1016/j.celrep.2018.05.077
|
90 |
AF Lovejoy, DP Riordan, PO Brown (2014) Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS ONE 9:e110799
https://doi.org/10.1371/journal.pone.0110799
|
91 |
X Lu, CX Song, K Szulwach, Z Wang, P Weidenbacher, P Jin, C He (2013) Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. J Am Chem Soc 135:9315–9317
https://doi.org/10.1021/ja4044856
|
92 |
X Lu, D Han, BS Zhao, CX Song, LS Zhang, LC Dore, C He(2015) Base-resolution maps of 5-formylcytosine and 5-carboxylcytosine reveal genome-wide DNA demethylation dynamics. Cell Res 25:386–389
https://doi.org/10.1038/cr.2015.5
|
93 |
W Lu, N Tirumuru, C St Gelais, PC Koneru, C Liu, M Kvaratskhelia, C He, L Wu (2018) N(6)-methyladenosine-binding proteins suppress HIV-1 infectivity and viral production. J Biol Chem 293:12992–13005
https://doi.org/10.1074/jbc.RA118.004215
|
94 |
L Malbec, T Zhang, YS Chen, Y Zhang, BF Sun, BY Shi, YL Zhao, Y, Yang YG Yang (2019) Dynamic methylome of internal mRNA N (7)-methylguanosine and its regulatory role in translation. Cell Res.
https://doi.org/10.1016/j.molp.2019.12.007
|
95 |
J Mauer, X Luo, A Blanjoie, X Jiao, AV Grozhik, DP Patil, B Linder, BF Pickering, JJ Vasseur, Q Chenet al. (2017) Reversible methylation of m(6)Am in the 5′ cap controls mRNA stability. Nature 541:371–375
https://doi.org/10.1038/nature21022
|
96 |
KD Meyer (2019) DART-seq: an antibody-free method for global m (6)A detection. Nat Methods 16:1275–1280
https://doi.org/10.1038/s41592-019-0570-0
|
97 |
KD Meyer, Y Saletore, P Zumbo, O Elemento, CE Mason, SR Jaffrey (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149:1635–1646
https://doi.org/10.1016/j.cell.2012.05.003
|
98 |
B Molinie, J Wang, KS Lim, R Hillebrand, ZX Lu (2016) m(6)A-LAICseq reveals the census and complexity of the m(6)A epitranscriptome. Nat Methods 13:692–698
https://doi.org/10.1038/nmeth.3898
|
99 |
MU Musheev, A Baumgärtner, L Krebs, C Niehrs (2020) The origin of genomic N6-methyl-deoxyadenosine in mammalian cells. Nat Chem Biol.
https://doi.org/10.1038/s41589-020-0504-2
|
100 |
F, Neri D Incarnato, A Krepelova, S Rapelli, F, Anselmi C Parlato, C Medana, F Dal Bello, S Oliviero (2015) Single-base resolution analysis of 5-formyl and 5-carboxyl cytosine reveals promoter DNA methylation dynamics. Cell Rep 10:674–683
https://doi.org/10.1016/j.celrep.2015.01.008
|
101 |
ZK O’Brown, K Boulias, J Wang, SY Wang, NM O’Brown, Z Hao, H Shibuya, PE Fady, Y Shi, C Heet al. (2019) Sources of artifact in measurements of 6mA and 4mC abundance in eukaryotic genomic DNA. BMC Genom 20:445
https://doi.org/10.1186/s12864-019-5754-6
|
102 |
DP Patil, CK Chen, BF Pickering, A Chow, C Jackson, M Guttman, SR Jaffrey (2016) m(6)A RNA methylation promotes XISTmediated transcriptional repression. Nature 537:369–373
https://doi.org/10.1038/nature19342
|
103 |
KE Pendleton, B Chen, K Liu, OV Hunter, Y Xie, BP Tu, NK Conrad (2017) The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169:824–835. e814
https://doi.org/10.1016/j.cell.2017.05.003
|
104 |
T Pfaffeneder, B Hackner, M Truss, M Munzel, M Muller, CA Deiml, C Hagemeier, T Carell (2011) The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew Chem 50:7008–7012
https://doi.org/10.1002/anie.201103899
|
105 |
XL Ping, BF Sun, L Wang, W Xiao, X, Yang WJ Wang, S Adhikari, Y Shi, Y Lv, YS Chenet al. (2014) Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24:177–189
https://doi.org/10.1038/cr.2014.3
|
106 |
E-A Raiber, R Hardisty, P, van Delft S Balasubramanian (2017) Mapping and elucidating the function of modified bases in DNA. Nat Rev Chem 1:0069
https://doi.org/10.1038/s41570-017-0069
|
107 |
AC Rand, M Jain, JM Eizenga, A Musselman-Brown, HE Olsen, M Akeson, B Paten (2017) Mapping DNA methylation with highthroughput nanopore sequencing. Nat Methods 14:411–413
https://doi.org/10.1038/nmeth.4189
|
108 |
IA Roundtree, ME Evans, T, Pan C He (2017) Dynamic RNA modifications in gene expression regulation. Cell 169:1187–1200
https://doi.org/10.1016/j.cell.2017.05.045
|
109 |
M Safra, A Sas-Chen, R Nir, R Winkler, A Nachshon, D Bar-Yaacov, M Erlacher, W Rossmanith, N Stern-Ginossar, S Schwartz (2017) The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551:251–255
https://doi.org/10.1038/nature24456
|
110 |
M Schaefer, T Pollex, K Hanna, F Lyko (2009) RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 37:e12
https://doi.org/10.1093/nar/gkn954
|
111 |
EK Schutsky, JE DeNizio, P Hu, MY Liu, CS Nabel, EB Fabyanic, Y Hwang, FD Bushman, H Wu, RM Kohli (2018) Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase. Nat Biotechnol.
https://doi.org/10.1038/nbt.4204
|
112 |
S Schwartz, SD Agarwala, MR Mumbach, M Jovanovic, P Mertins, A Shishkin, Y, Tabach TS Mikkelsen, R Satija, G Ruvkunet al. (2013) High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155:1409–1421
https://doi.org/10.1016/j.cell.2013.10.047
|
113 |
S Schwartz, DA Bernstein, MR Mumbach, M Jovanovic, RH Herbst, BX Leon-Ricardo, JM Engreitz, M Guttman, R Satija, ES Landeret al. (2014a) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–162
https://doi.org/10.1016/j.cell.2014.08.028
|
114 |
S Schwartz, R Mumbach Maxwell, M Jovanovic, T Wang, K Maciag, GG Bushkin, P Mertins, D Ter-Ovanesyan, N Habib, D Cacchiarelliet al. (2014b) Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep 8:284–296
https://doi.org/10.1016/j.celrep.2014.05.048
|
115 |
E Sendinc, D Valle-Garcia, A Dhall, H Chen, T Henriques, J Navarrete-Perea, W Sheng, SP Gygi, K Adelman, Y Shi (2019) PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression. Mol Cell 75(3):620.e9–630.e9
https://doi.org/10.1016/j.molcel.2019.05.030
|
116 |
A Shafik, U Schumann, M Evers, T Sibbritt, T Preiss (2016) The emerging epitranscriptomics of long noncoding RNAs. Biochim Biophys Acta 1859:59–70
https://doi.org/10.1016/j.bbagrm.2015.10.019
|
117 |
L Shen, H Wu, D Diep, S Yamaguchi, AC D’Alessio, HL Fung, K Zhang, Y Zhang (2013) Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153:692–706
https://doi.org/10.1016/j.cell.2013.04.002
|
118 |
Q Shen, Q Zhang, Y, Shi Q Shi, Y Jiang, Y Gu, Z Li, X Li, K Zhao, C Wanget al. (2018) Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature 554:123–127
https://doi.org/10.1038/nature25434
|
119 |
K Shirane, H Toh, H Kobayashi, F Miura, H Chiba, T Ito, T Kono, H Sasaki (2013) Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet 9:e1003439
https://doi.org/10.1371/journal.pgen.1003439
|
120 |
X Shu, J Cao, M Cheng, S Xiang, M Gao, T Li, X Ying, F Wang, Y Yue, Z Luet al. (2020) A metabolic labeling method detects m6A transcriptome-wide at single base resolution. Nat Chem Biol.
https://doi.org/10.1038/s41589-020-0526-9
|
121 |
JT Simpson, RE Workman, PC Zuzarte, M David, LJ Dursi, W Timp (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14:407–410
https://doi.org/10.1038/nmeth.4184
|
122 |
SA Smallwood, HJ Lee, C, Angermueller F Krueger, H Saadeh, J Peat, SR Andrews, O Stegle, W Reik, G Kelsey (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11:817–820
https://doi.org/10.1038/nmeth.3035
|
123 |
AM Smith, M Jain, L Mulroney, DR Garalde, M Akeson (2019) Reading canonical and modified nucleobases in 16S ribosomal RNA using nanopore native RNA sequencing. PLoS ONE 14: e0216709
https://doi.org/10.1371/journal.pone.0216709
|
124 |
J Song, C Yi (2019) Reading chemical modifications in the transcriptome. J Mol Biol.
https://doi.org/10.1016/j.jmb.2019.10.006
|
125 |
CX Song, TA Clark, XY Lu, A Kislyuk, Q Dai, SW Turner, C He, J Korlach (2011a) Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat Methods 9:75–77
https://doi.org/10.1038/nmeth.1779
|
126 |
CX Song, KE Szulwach, Y Fu, Q Dai, C Yi, X Li, Y Li, CH Chen, W Zhang, X Jianet al. (2011b) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29:68–72
https://doi.org/10.1038/nbt.1732
|
127 |
CX Song, KE Szulwach, Q Dai, Y Fu, SQ Mao, L Lin, C Street, Y Li, M Poidevin, H Wuet al. (2013) Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153:678–691
https://doi.org/10.1016/j.cell.2013.04.001
|
128 |
CX Song, S Yin, L Ma, A Wheeler, Y Chen, Y Zhang, B Liu, J Xiong, W Zhang, J Huet al. (2017) 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Res 27:1231–1242
https://doi.org/10.1038/cr.2017.106
|
129 |
J Song, Y Zhuang, C, Zhu H Meng, B Lu, B Xie, J Peng, M Li, C Yi (2019) Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat Chem Biol 16(2):160–169
https://doi.org/10.1038/s41589-019-0420-5
|
130 |
JE Squires, HR Patel, M Nousch, T Sibbritt, DT Humphreys, BJ Parker, CM Suter, T Preiss (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40:5023–5033
https://doi.org/10.1093/nar/gks144
|
131 |
H Stroud, S Feng, S Morey Kinney, S Pradhan, SE Jacobsen (2011) 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol 12:R54
https://doi.org/10.1186/gb-2011-12-6-r54
|
132 |
R Su, L Dong, C Li, S, Nachtergaele M Wunderlich, Y Qing, X Deng, Y Wang, X Weng, C Huet al. (2018) R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell 172:90–105.e123
https://doi.org/10.1016/j.cell.2017.11.031
|
133 |
H Sun, M Zhang, K Li, D Bai, C Yi (2019) Cap-specific, terminal N(6)-methylation by a mammalian m(6)Am methyltransferase. Cell Res 29:80–82
https://doi.org/10.1038/s41422-018-0117-4
|
134 |
M Tahiliani, KP Koh, Y, Shen WA Pastor, H Bandukwala, Y Brudno, S Agarwal, LM Iyer, DR Liu, L Aravindet al. (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935
https://doi.org/10.1126/science.1170116
|
135 |
K Tanaka, A Okamoto (2007) Degradation of DNA by bisulfite treatment. Bioorg Med Chem Lett 17:1912–1915
https://doi.org/10.1016/j.bmcl.2007.01.040
|
136 |
N Tirumuru, BS Zhao, W Lu, Z Lu, C He, L Wu (2016) N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. Elife 5:e15528
https://doi.org/10.7554/eLife.15528
|
137 |
K Tsai, DG Courtney, BR Cullen (2018) Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication. PLoS Pathog 14:e1006919
https://doi.org/10.1371/journal.ppat.1006919
|
138 |
Y Ueda, I Ooshio, Y Fusamae, K Kitae, M Kawaguchi, K Jingushi, H Hase, K Harada, K Hirata, K Tsujikawa (2017) AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep 7:42271
https://doi.org/10.1038/srep42271
|
139 |
A Unnikrishnan, WM Freeman, J Jackson, JD Wren, H Porter, A Richardson (2019) The role of DNA methylation in epigenetics of aging. Pharmacol Therapeut 195:172–185
https://doi.org/10.1016/j.pharmthera.2018.11.001
|
140 |
R Vaisvila, VKC Ponnaluri, Z Sun, BW Langhorst, L Saleh, S Guan, N Dai, MA Campbell, B Sexton, K Markset al. (2019) EM-seq: detection of DNA methylation at single base resolution from picograms of DNA. BioRxiv Dec 23:2019.
https://doi.org/10.1101/2019.12.20.884692
|
141 |
BM Venkatesan, R Bashir (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624
https://doi.org/10.1038/nnano.2011.129
|
142 |
A Viehweger, S Krautwurst, K Lamkiewicz, R Madhugiri, J Ziebuhr, M Holzer, M Marz (2019) Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res 29:1545–1554
https://doi.org/10.1101/gr.247064.118
|
143 |
ID Vilfan, YC Tsai, TA Clark, J Wegener, Q Dai, C Yi, T Pan, SW Turner, J Korlach (2013) Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. J Nanobiotechnol 11:8
https://doi.org/10.1186/1477-3155-11-8
|
144 |
Y Wang, Y Li, JI Toth, MD Petroski, Z Zhang, JC Zhao (2014) N6- methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16:191–198
https://doi.org/10.1038/ncb2902
|
145 |
L Wang, M Wen, X Cao (2019) Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science.
https://doi.org/10.1126/science.aav0758
|
146 |
Y Wang, Y, Xiao S, Dong Q, Yu G Jia (2020) Antibody-free enzymeassisted chemical approach for detection of N6-methyladenosine. Nat Chem Biol.
https://doi.org/10.1038/s41589-020-0525-x
|
147 |
M Weber, JJ Davies, D Wittig, EJ Oakeley, M Haase, WL Lam, D Schubeler (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862
https://doi.org/10.1038/ng1598
|
148 |
J Wei, F Liu, Z Lu, Q Fei, Y Ai, PC He, H, Shi X Cui, R Su, A Klunglandet al. (2018) Differential m(6)A, m(6)Am, and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell 71:973–985.e975
https://doi.org/10.1016/j.molcel.2018.08.011
|
149 |
J Wen, R Lv, H Ma, H Shen, C He, J, Wang F, Jiao H Liu, P Yang, L Tanet al. (2018) Zc3h13 regulates nuclear RNA m(6)A methylation and mouse embryonic stem cell self-renewal. Mol Cell 69:1028–1038.e1026
https://doi.org/10.1016/j.molcel.2018.02.015
|
150 |
AM Wenger, P Peluso, WJ Rowell, PC Chang, RJ Hall, GT Concepcion, J, Ebler A Fungtammasan, A Kolesnikov, ND Olsonet al. (2019) Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol 37:1155–1162
https://doi.org/10.1038/s41587-019-0217-9
|
151 |
T Wongsurawat, P Jenjaroenpun, TM Wassenaar, TD Wadley, V Wanchai, NS Akel, AT Franco, ML Jennings, DW Ussery, I Nookaew (2018) Decoding the epitranscriptional landscape from native RNA sequences. bioRxiv.
https://doi.org/10.1101/487819
|
152 |
RE Workman, AD Tang, PS Tang, M Jain, JR Tyson, R Razaghi, PC Zuzarte, T Gilpatrick, A, Payne J Quicket al. (2019) Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat Methods 16:1297–1305
https://doi.org/10.1038/s41592-019-0617-2
|
153 |
H Wu, X, Wu L Shen, Y Zhang (2014) Single-base resolution analysis of active DNA demethylation using methylase-assisted bisulfite sequencing. Nat Biotechnol 32:1231–1240
https://doi.org/10.1038/nbt.3073
|
154 |
H Wu, X, Wu Y Zhang (2016) Base-resolution profiling of active DNA demethylation using MAB-seq and caMAB-seq. Nat Protoc 11:1081–1100
https://doi.org/10.1038/nprot.2016.069
|
155 |
B Xia, D Han, X Lu, Z Sun, A Zhou, Q Yin, H Zeng, M Liu, X Jiang, W Xieet al. (2015) Bisulfite-free, base-resolution analysis of 5-formylcytosine at the genome scale. Nat Methods 12:1047–1050
https://doi.org/10.1038/nmeth.3569
|
156 |
Y Xiang, B Laurent, CH Hsu, S Nachtergaele, Z Lu, W Sheng, C Xu, H Chen, J Ouyang, S Wanget al. (2017) RNA m(6)A methylation regulates the ultraviolet-induced DNA damage response. Nature 543:573–576
https://doi.org/10.1038/nature21671
|
157 |
W Xiao, S Adhikari, U Dahal, YS Chen, YJ Hao, BF Sun, HY Sun, A Li, XL Ping, WY Laiet al. (2016) Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell 61:507–519
https://doi.org/10.1016/j.molcel.2016.01.012
|
158 |
S Xiao, S Cao, Q Huang, L Xia, M Deng, M Yang, G Jia, X Liu, J Shi, W Wanget al. (2019) The RNA N(6)-methyladenosine modification landscape of human fetal tissues. Nat Cell Biol 21:651–661
https://doi.org/10.1038/s41556-019-0315-4
|
159 |
X Xiong, X Li, K Wang, C Yi (2018) Perspectives on topology of the human m(1)A methylome at single nucleotide resolution. RNA (New York, NY) 24:1437–1442
https://doi.org/10.1261/rna.067694.118
|
160 |
L Xu, X Liu, N Sheng, KS Oo, J Liang, YH Chionh, J Xu, F Ye, YG Gao, PC Dedonet al.(2017) Three distinct 3-methylcytidine (m(3) C) methyltransferases modify tRNA and mRNA in mice and humans. J Biol Chem 292:14695–14703
https://doi.org/10.1074/jbc.M117.798298
|
161 |
S Yamaguchi, K Hong, R Liu, L Shen, A Inoue, D Diep, K Zhang, Y Zhang (2012) Tet1 controls meiosis by regulating meiotic gene expression. Nature 492:443–447
https://doi.org/10.1038/nature11709
|
162 |
X Yang, Y Yang, BF Sun, YS Chen, JW Xu, WY Lai, A Li, X Wang, DP Bhattarai, W Xiaoet al. (2017) 5-methylcytosine promotes mRNA export- NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res 27:606–625
https://doi.org/10.1038/cr.2017.55
|
163 |
Y Yang, L Wang, X Han, WL Yang, M Zhang, HL Ma, BF Sun, A Li, J Xia, J Chenet al. (2019) RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol Cell 75:1188–1202.e1111
https://doi.org/10.1016/j.molcel.2019.06.033
|
164 |
M Yu, GC Hon, KE Szulwach, CX Song, P Jin, B Ren, C He (2012a) Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc 7:2159–2170
https://doi.org/10.1038/nprot.2012.137
|
165 |
M Yu, GC Hon, KE Szulwach, CX Song, L Zhang, A Kim, X Li, Q Dai, Y Shen, B Parket al.(2012b) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149:1368–1380
https://doi.org/10.1016/j.cell.2012.04.027
|
166 |
J Yu, M Chen, H Huang, J Zhu, H Song, J Zhu, J Park, SJ Ji (2018) Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res 46:1412–1423
https://doi.org/10.1093/nar/gkx1182
|
167 |
F Yuan, Y Bi, P Siejka-Zielinska, YL Zhou, XX Zhang, CX Song (2019) Bisulfite-free and base-resolution analysis of 5-methylcytidine and 5-hydroxymethylcytidine in RNA with peroxotungstate. Chem Commun (Camb) 55:2328–2331
https://doi.org/10.1039/C9CC00274J
|
168 |
Y Yue, J Liu, X Cui, J Cao, G Luo, Z Zhang, T Cheng, M Gao, X Shu, H Maet al. (2018) VIRMA mediates preferential m(6)A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation. Cell Discov 4:10
https://doi.org/10.1038/s41421-018-0019-0
|
169 |
M Zaringhalam, FN Papavasiliou (2016) Pseudouridylation meets next-generation sequencing. Methods (San Diego, Calif) 107:63–72
https://doi.org/10.1016/j.ymeth.2016.03.001
|
170 |
H Zeng, B He, B Xia, D Bai, X Lu, J Cai, L Chen, A Zhou, C Zhu, H Menget al. (2018) Bisulfite-free, nanoscale analysis of 5-hydroxymethylcytosine at single base resolution. J Am Chem Soc 140:13190–13194
https://doi.org/10.1021/jacs.8b08297
|
171 |
G Zhang, H Huang, D Liu, Y Cheng, X Liu, W Zhang, R Yin, D Zhang, P, Zhang J Liuet al.(2015) N6-methyladenine DNA modification in Drosophila. Cell 161:893–906
https://doi.org/10.1016/j.cell.2015.04.018
|
172 |
LS Zhang, C Liu, H Ma, Q Dai, HL Sun, G Luo, Z Zhang, L Zhang, L Hu, X Donget al. (2019a) Transcriptome-wide mapping of internal N(7)-methylguanosine methylome in mammalian mRNA. Mol Cell 4(6):1304.e8–1316.e8
https://doi.org/10.1016/j.molcel.2019.03.036
|
173 |
Z Zhang, LQ Chen, YL Zhao, CG Yang, IA Roundtree, Z Zhang, J Ren, W Xie, C He, GZ Luo (2019b) Single-base mapping of m(6)A by an antibody-independent method. Sci Adv 5:250
https://doi.org/10.1101/575555
|
174 |
X Zhao, Y Yang, BF Sun, Y Shi, X Yang, W Xiao, YJ Hao, XL Ping, YS Chen, WJ Wanget al. (2014) FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res 24:1403–1419
https://doi.org/10.1038/cr.2014.151
|
175 |
G Zheng, JA Dahl, Y Niu, P Fedorcsak, CM Huang, CJ Li, CB Vagbo, Y Shi, WL Wang, SH Songet al. (2013) ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49:18–29
https://doi.org/10.1016/j.molcel.2012.10.015
|
176 |
J Zhou, J, Wan X Gao, X Zhang, SR Jaffrey, SB Qian (2015) Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature 526:591–594
https://doi.org/10.1038/nature15377
|
177 |
J Zhou, J Wan, XE Shu, Y Mao, XM Liu, X Yuan, X Zhang, ME Hess, JC Bruning, SB Qian (2018) N(6)-methyladenosine guides mRNA alternative translation during integrated stress response. Mol Cell 69:636–647.e637
https://doi.org/10.1016/j.molcel.2018.01.019
|
178 |
H Zhou, S Rauch, Q Dai, X Cui, Z Zhang, S Nachtergaele, C Sepich, C He, BC Dickinson (2019) Evolution of a reverse transcriptase to map N(1)-methyladenosine in human messenger RNA. Nat Methods 16:1281–1288
https://doi.org/10.1038/s41592-019-0550-4
|
179 |
C Zhu, Y Gao, H Guo, B Xia, J Song, X Wu, H Zeng, K Kee, F Tang, C Yi (2017) Single-Cell 5-formylcytosine landscapes of mammalian early embryos and ESCs at single-base resolution. Cell Stem Cell 20:720–731.e725
https://doi.org/10.1016/j.stem.2017.02.013
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|