|
|
|
How are MCPIP1 and cytokines mutually regulated in cancer-related immunity? |
Ruyi Xu1,2, Yi Li1,2, Yang Liu1,2, Jianwei Qu1,2, Wen Cao1,2, Enfan Zhang1,2, Jingsong He1,2( ), Zhen Cai1,2( ) |
1. Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China 2. Institution of Hematology, Zhejiang University, Hangzhou 310006, China |
|
|
|
|
Abstract Cytokines are secreted by various cell types and act as critical mediators in many physiological processes, including immune response and tumor progression. Cytokines production is precisely and timely regulated by multiple mechanisms at different levels, ranging from transcriptional to post-transcriptional and posttranslational processes. Monocyte chemoattractant protein-1 induced protein 1 (MCPIP1), a potent immunosuppressive protein, was first described as a transcription factor in monocytes treated with monocyte chemoattractant protein-1 (MCP-1) and subsequently found to possess intrinsic RNase and deubiquitinase activities. MCPIP1 tightly regulates cytokines expression via various functions. Furthermore, cytokines such as interleukin 1 beta (IL-1B) and MCP-1 and inflammatory cytokines inducer lipopolysaccharide (LPS) strongly induce MCPIP1 expression. Mutually regulated MCPIP1 and cytokines form a complicated network in the tumor environment. In this review, we summarize how MCPIP1 and cytokines reciprocally interact and elucidate the effect of the network formed by these components in cancer-related immunity with aim of exploring potential clinical benefits of their mutual regulation.
|
| Keywords
MCPIP1
cytokines
cancer-related immunity
RNase
deubiquitinase
|
|
Corresponding Author(s):
Jingsong He,Zhen Cai
|
|
Online First Date: 14 September 2020
Issue Date: 22 December 2020
|
|
| 1 |
AM Algra, PM Rothwell (2012) Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol 13(5):518–527
https://doi.org/10.1016/S1470-2045(12)70112-2
|
| 2 |
E Boratyn, I Nowak, I Horwacik, M Durbas, A Mistarz, M Kukla, P Kaczówka, M Łastowska, J Jura, H Rokita (2016) Monocyte chemoattractant protein-induced protein 1 overexpression modulates transcriptome, including microRNA, in human neuroblastoma cells. J Cell Biochem 117(3):694–707
https://doi.org/10.1002/jcb.25354
|
| 3 |
I Brana, A Calles, PM LoRusso, LK Yee, TA Puchalski, S Seetharam, B Zhong, CJ de Boer, J Tabernero, E Calvo (2015) Carlumab, an anti-CC chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Target Oncol 10(1):111–123
https://doi.org/10.1007/s11523-014-0320-2
|
| 4 |
V Chitu, ER Stanley (2006) Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol 18(1):39–48
https://doi.org/10.1016/j.coi.2005.11.006
|
| 5 |
SB Coffelt, KE De Visser (2014) Cancer: inflammation lights the way to metastasis. Nature 507(7490):48–49
https://doi.org/10.1038/nature13062
|
| 6 |
F Colotta, P Allavena, A Sica, C Garlanda, A Mantovani (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081
https://doi.org/10.1093/carcin/bgp127
|
| 7 |
S Costinean, SK Sandhu, IM Pedersen, E Tili, R Trotta, D Perrotti, D Ciarlariello, P Neviani, J Harb, LR Kauffmanet al. (2009) Src homology 2 domain–containing inositol-5-phosphatase and CCAAT enhancer-binding protein β are targeted by miR-155 in B cells of Eμ-MiR-155 transgenic mice. Blood JAmSoc Hematol 114(7):1374–1382
https://doi.org/10.1182/blood-2009-05-220814
|
| 8 |
LM Coussens, L Zitvogel, AK Palucka (2013) Neutralizing tumorpromoting chronic inflammation: a magic bullet? Science 339 (6117):286–291
https://doi.org/10.1126/science.1232227
|
| 9 |
L Deng, C Wang, E Spencer, L Yang, A Braun, J You, C Slaughter, C Pickart, ZJ Chen (2000) Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103(2):351–361
https://doi.org/10.1016/S0092-8674(00)00126-4
|
| 10 |
S Dhamija, R Winzen, A Doerrie, G Behrens, N Kuehne, C Schauerte, E Neumann, O Dittrich-Breiholz, M Kracht, H Holtmann (2013) Interleukin-17 (IL-17) and IL-1 activate translation of overlapping sets of mRNAs, including that of the negative regulator of inflammation, MCPIP1[J]. J Biol Chem 288(26):19250–19259
https://doi.org/10.1074/jbc.M113.452649
|
| 11 |
CI Diakos, KA Charles, DC McMillan, SJ Clarke (2014) Cancerrelated inflammation and treatment effectiveness. Lancet Oncol 15(11):e493–e503
https://doi.org/10.1016/S1470-2045(14)70263-3
|
| 12 |
E Dobosz, M Wilamowski, M Lech, B Bugara, J Jura, J Potempa, J Koziel (2016) MCPIP-1, alias regnase-1, controls epithelial inflammation by posttranscriptional regulation of IL-8 production [J]. J Innate Immun 8(6):564–578
https://doi.org/10.1159/000448038
|
| 13 |
M Dysthe, R Parihar (2020) Myeloid-derived suppressor cells in the tumor microenvironment. In: Tumor microenvironment 2020. Springer, Cham, pp 117–140
https://doi.org/10.1007/978-3-030-35723-8_8
|
| 14 |
E Elinav, R Nowarski, CA Thaiss, B Hu, C Jin, RA Flavell (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759
https://doi.org/10.1038/nrc3611
|
| 15 |
ME Fiori, S Di Franco, L Villanova, P Bianca, G Stassi, R De Maria (2019) Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer 18(1):70
https://doi.org/10.1186/s12943-019-0994-2
|
| 16 |
J Folkman (2002) Role of angiogenesis in tumor growth and metastasis. In: Seminars in oncology. WB Saunders, vol 29(6), pp 15–18
https://doi.org/10.1053/sonc.2002.37263
|
| 17 |
M Fu, PJ Blackshear (2017) RNA-binding proteins in immune regulation: a focus on CCCH zinc finger proteins. Nat Rev Immunol 17(2):130
https://doi.org/10.1038/nri.2016.129
|
| 18 |
MR Galdiero, G Marone, A Mantovani (2018) Cancer inflammation and cytokines. Cold Spring Harb Perspect Biol 10(8):a028662
https://doi.org/10.1101/cshperspect.a028662
|
| 19 |
L Garderet, F Kuhnowski, B Berge, M Roussel, M Escoffre-Barbe, I Lafon, T Facon, X Leleu, L Karlin, A Perrotet al. (2018) Pomalidomide, cyclophosphamide, and dexamethasone for relapsed multiple myeloma. Blood 132(24):2555–2563
https://doi.org/10.1182/blood-2018-07-863829
|
| 20 |
AV Garg, N Amatya, K Chen, JA Cruz, P Grover, N Whibley, HR Conti, GH Mir, T Sirakova, EC Childset al. (2015) MCPIP1 endoribonuclease activity negatively regulates interleukin-17-mediated signaling and inflammation. Immunity 43(3):475–487
https://doi.org/10.1016/j.immuni.2015.07.021
|
| 21 |
GL Gierach, JV Lacey, A Schatzkin, MF Leitzmann, D Richesson, AR Hollenbeck, LA Brinton (2008) Nonsteroidal anti-inflammatory drugs and breast cancer risk in the National Institutes of Health–AARP Diet and Health Study. Breast Cancer Res 10(2):R38
https://doi.org/10.1186/bcr2089
|
| 22 |
S Gordon, FO Martinez (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604
https://doi.org/10.1016/j.immuni.2010.05.007
|
| 23 |
J Houghton, C Stoicov, S Nomura, AB Rogers, J Carlson, H Li, X Cai, JG Fox, JR Goldenring, TC Wang (2004) Gastric cancer originating from bone marrow-derived cells. Science 306 (5701):1568–1571
https://doi.org/10.1126/science.1099513
|
| 24 |
S Huang, R Miao, Z Zhou, T Wang, J Liu, G Liu, YE Chen, HB Xin, J Zhang, M Fu (2013) MCPIP1 negatively regulates toll-like receptor 4 signaling and protects mice from LPS-induced septic shock. Cell Signal 25(5):1228–1234
https://doi.org/10.1016/j.cellsig.2013.02.009
|
| 25 |
S Huang, S Liu, JJ Fu, TT Wang, X Yao, A Kumar, G Liu, M Fu (2015) Monocyte chemotactic protein-induced protein 1 and 4 form a complex but act independently in regulation of interleukin-6 mRNA degradation. J Biol Chem 290(34):20782–20792
https://doi.org/10.1074/jbc.M114.635870
|
| 26 |
H Iwasaki, O Takeuchi, S Teraguchi, K Matsushita, T Uehata, K Kuniyoshi, T Satoh, T Saitoh, M Matsushita, DM Standleyet al. (2011) The IκB kinase complex regulates the stability of cytokineencoding mRNA induced by TLR–IL-1R by controlling degradation of regnase-1. Nat Immunol 12(12):1167
https://doi.org/10.1038/ni.2137
|
| 27 |
KM Jeltsch, D Hu, S Brenner, J Zöller, GA Heinz, D Nagel, KU Vogel, N Rehage, SC Warth, SL Edelmannet al. (2014) Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T H 17 differentiation. Nat Immunol 15(11):1079
https://doi.org/10.1038/ni.3008
|
| 28 |
H Jiang, X Lv, X Lei, Y Yang, X Yang, J Jiao (2016) Immune regulator MCPIP1 modulates TET expression during early neocortical development. Stem cell Rep 7(3):439–453
https://doi.org/10.1016/j.stemcr.2016.07.011
|
| 29 |
N Kapoor, J Niu, Y Saad, S Kumar, T Sirakova, E Becerra, X Li, PE Kolattukudy (2015) Transcription factors STAT6 and KLF4 implement macrophage polarization via the dual catalytic powers of MCPIP. J Immunol 194(12):6011–6023
https://doi.org/10.4049/jimmunol.1402797
|
| 30 |
M Karin, FR Greten (2005) NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759
https://doi.org/10.1038/nri1703
|
| 31 |
A Kasza, P Wyrzykowska, I Horwacik, P Tymoszuk, D Mizgalska, K Palmer, H Rokita, AD Sharrocks, J Jura (2010) Transcription factors Elk-1 and SRF are engaged in IL1-dependent regulation of ZC3H12A expression. BMC Mol Biol 11(1):14
https://doi.org/10.1186/1471-2199-11-14
|
| 32 |
M Leggas, KL Kuo, F Robert, G Cloud, M Deshazo, R Zhang, M Li, H Wang, S Davidson, J Rinehart (2009) Intensive anti-inflammatory therapy with dexamethasone in patients with non-small cell lung cancer: effect on chemotherapy toxicity and efficacy. Cancer Chemother Pharmacol 63(4):731–743
https://doi.org/10.1007/s00280-008-0767-x
|
| 33 |
M Li, W Cao, H Liu, W Zhang, X Liu, Z Cai, J Guo, X Wang, Z Hui, H Zhanget al. (2012) MCPIP1 down-regulates IL-2 expression through an ARE-independent pathway[J]. PLoS One 7(11): e49841
https://doi.org/10.1371/journal.pone.0049841
|
| 34 |
J Liang, J Wang, A Azfer, W Song, G Tromp, PE Kolattukudy, M Fu (2008) A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J Biol Chem 283(10):6337–6346
https://doi.org/10.1074/jbc.M707861200
|
| 35 |
J Liang, Y Saad, T Lei, J Wang, D Qi, Q Yang, PE Kolattukudy, M Fu (2010) MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-κB signaling. J Exp Med 207(13):2959–2973
https://doi.org/10.1084/jem.20092641
|
| 36 |
W Lu, H Ning, L Gu, H Peng, Q Wang, R Hou, M Fu, DF Hoft, J Liu (2016) MCPIP1 selectively destabilizes transcripts associated with an antiapoptotic gene expression program in breast cancer cells that can elicit complete tumor regression. Cancer Res 76(6):1429–1440
https://doi.org/10.1158/0008-5472.CAN-15-1115
|
| 37 |
S Maman, IP Witz (2018) A history of exploring cancer in context. Nat Rev Drug Discov 17(3):13–30
https://doi.org/10.1038/s41568-018-0006-7
|
| 38 |
A Mantovani, P Allavena, A Sica, F Balkwill (2008) Cancer-related inflammation. Nature 454(7203):436–444
https://doi.org/10.1038/nature07205
|
| 39 |
E Marcuzzi, R Angioni, B Molon, B Calì (2019) Chemokines and chemokine receptors: orchestrating tumor metastasization. Int J Mol Sci 20(1):96
https://doi.org/10.3390/ijms20010096
|
| 40 |
P Marona, J Górka, Z Mazurek, W Wilk, J Rys, M Majka, J Jura, K Miekus (2017) MCPIP1 downregulation in clear cell renal cell carcinoma promotes vascularization and metastatic progression. Cancer Res 77(18):4905–4920
https://doi.org/10.1158/0008-5472.CAN-16-3190
|
| 41 |
K Matsushita, O Takeuchi, DM Standley, Y Kumagai, T Kawagoe, T Miyake, T Satoh, H Kato, T Tsujimura, H Nakamuraet al. (2009) Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458(7242):1185–1190
https://doi.org/10.1038/nature07924
|
| 42 |
R Miao, S Huang, Z Zhou, T Quinn, B Van Treeck, T Nayyar, D Dim, Z Jiang, CJ Papasian, Y Eugene Chenet al. (2013) Targeted disruption of MCPIP1/Zc3h12a results in fatal inflammatory disease. Immunol Cell Biol 91(5):368–376
https://doi.org/10.1038/icb.2013.11
|
| 43 |
T Mino, Y Murakawa, A Fukao, A Vandenbon, HH Wessels, D Ori, T Uehata, S Tartey, S Akira, Y Suzukiet al. (2015) Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161(5):1058–1073
https://doi.org/10.1016/j.cell.2015.04.029
|
| 44 |
D Mizgalska, P Węgrzyn, K Murzyn, A Kasza, A Koj, J Jura, B Jarzab, J Jura (2009) Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1β mRNA. FEBS J 276(24):7386–7399
https://doi.org/10.1111/j.1742-4658.2009.07452.x
|
| 45 |
L Monin, JE Gudjonsson, EE Childs, N Amatya, X Xing, AH Verma, BM Coleman, AV Garg, M Killeen, A Matherset al. (2017) MCPIP1/regnase-1 restricts IL-17A–and IL-17C–dependent skin inflammation. J Immunol 198(2):767–775
https://doi.org/10.4049/jimmunol.1601551
|
| 46 |
PJ Murray (2017) Macrophage polarization. Annu Rev Physiol 10 (79):541–566
https://doi.org/10.1146/annurev-physiol-022516-034339
|
| 47 |
PJ Murray, JE Allen, SK Biswas, EA Fisher, DW Gilroy, S Goerdt, S Gordon, JA Hamilton, LB Ivashkiv, T Lawrenceet al. (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20
https://doi.org/10.1016/j.immuni.2014.06.008
|
| 48 |
M Muzio, G Natoli, S Saccani, M Levrero, A Mantovani (1998) The human Toll signaling pathway: divergence of nuclear factor κB and JNK/SAPK activation upstream of tumor necrosis factor receptor–associated factor 6 (TRAF6). J Exp Med 187(12):2097–2101
https://doi.org/10.1084/jem.187.12.2097
|
| 49 |
J Niu, A Azfer, O Zhelyabovska, S Fatma, PE Kolattukudy (2008) Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem 283(21):14542–14551
https://doi.org/10.1074/jbc.M802139200
|
| 50 |
J Niu, Y Shi, J Xue, R Miao, S Huang, T Wang, J Wu, M Fu, ZH Wu (2013) USP10 inhibits genotoxic NF-κB activation by MCPIP1-facilitated deubiquitination of NEMO. The EMBO journal. 32(24):3206–3219
https://doi.org/10.1038/emboj.2013.247
|
| 51 |
G O’Boyle, JG Brain, JA Kirby, S Ali (2007) Chemokine-mediated inflammation: identification of a possible regulatory role for CCR2. Mol Immunol 44(8):1944–1953
https://doi.org/10.1016/j.molimm.2006.09.033
|
| 52 |
YT Oh, G Qian, J Deng, SY Sun (2018) Monocyte chemotactic protein-induced protein-1 enhances DR5 degradation and negatively regulates DR5 activation-induced apoptosis through its deubiquitinase function. Oncogene 37(25):3415–3425
https://doi.org/10.1038/s41388-018-0200-9
|
| 53 |
M Ono (2008) Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci 99(8):1501–1506
https://doi.org/10.1111/j.1349-7006.2008.00853.x
|
| 54 |
AT Prach, TA MacDonald, DA Hopwood, DA Johnston (1997) Increasing incidence of Barrett’s oesophagus: education, enthusiasm, or epidemiology? The Lancet 350(9082):933
https://doi.org/10.1016/S0140-6736(05)63269-2
|
| 55 |
Y Qi, J Liang, ZG She, Y Cai, J Wang, T Lei, WB Stallcup, M Fu (2010) MCP-induced protein 1 suppresses TNFα-induced VCAM-1 expression in human endothelial cells[J]. FEBS Lett 584(14):3065–3072
https://doi.org/10.1016/j.febslet.2010.05.040
|
| 56 |
A Rodriguez, E Vigorito, S Clare, MV Warren, P Couttet, DR Soond, S Van Dongen, RJ Grocock, PP Das, EA Miskaet al. (2007) Requirement of bic/microRNA-155 for normal immune function. Science 316(5824):608–611
https://doi.org/10.1126/science.1139253
|
| 57 |
PM Rothwell, M Wilson, JF Price, JF Belch, TW Meade, Z Mehta (2012) Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. The Lancet. 379(9826):1591–1601
https://doi.org/10.1016/S0140-6736(12)60209-8
|
| 58 |
A Roy, M Zhang, Y Saad, PE Kolattukudy (2013) Antidicer RNAse activity of monocyte chemotactic protein-induced protein-1 is critical for inducing angiogenesis. Am J Physiol Cell Physiol 305(10):C1021–C1032
https://doi.org/10.1152/ajpcell.00203.2013
|
| 59 |
S Singhal, J Stadanlick, MJ Annunziata, AS Rao, PS Bhojnagarwala, S O’Brien, EK Moon, E Cantu, G Danet-Desnoyers, HJ Raet al. (2019) Human tumor-associated monocytes/macrophages and their regulation of Tcell responses in early-stage lung cancer. Sci Transl Med 11(479):eaat1500
https://doi.org/10.1126/scitranslmed.aat1500
|
| 60 |
L Skalniak, D Mizgalska, A Zarebski, P Wyrzykowska, A Koj, J Jura (2009) Regulatory feedback loop between NF-κB and MCP-1-induced protein 1 RNase. FEBS J 276(20):5892–5905
https://doi.org/10.1111/j.1742-4658.2009.07273.x
|
| 61 |
L Skalniak, A Koj, J Jura (2013) Proteasome inhibitor MG-132 induces MCPIP 1 expression. FEBS J 280(11):2665–2674
https://doi.org/10.1111/febs.12264
|
| 62 |
SU Sønder, S Saret, W Tang, DE Sturdevant, SF Porcella, U Siebenlist (2011) IL-17-induced NF-κB activation via CIKS/Act1 physiologic significance and signaling mechanisms. J Biol Chem 286(15):12881–12890
https://doi.org/10.1074/jbc.M110.199547
|
| 63 |
O Stoeltzing, F Meric-Bernstam, LM Ellis (2006) Intracellular signaling in tumor and endothelial cells: the expected and yet again, the unexpected. Cancer Cell 10(2):89–91
https://doi.org/10.1016/j.ccr.2006.07.013
|
| 64 |
HI Suzuki, M Arase, H Matsuyama, YL Choi, T Ueno, H Mano, K Sugimoto, K Miyazono (2011) MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell 44(3):424–436
https://doi.org/10.1016/j.molcel.2011.09.012
|
| 65 |
O Takeuchi (2018) Endonuclease regnase-1/monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in controlling immune responses and beyond. Wiley Interdiscip Rev RNA 9(1):e1449
https://doi.org/10.1002/wrna.1449
|
| 66 |
T Uehata, H Iwasaki, A Vandenbon, K Matsushita, E Hernandez-Cuellar, K Kuniyoshi, T Satoh, T Mino, Y Suzuki, DM Standleyet al. (2013) Malt1-induced cleavage of regnase-1 in CD4+ helper T cells regulates immune activation. Cell 153(5):1036–1049
https://doi.org/10.1016/j.cell.2013.04.034
|
| 67 |
E Voronov, DS Shouval, Y Krelin, E Cagnano, D Benharroch, Y Iwakura, CA Dinarello, RN Apte (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci 100 (5):2645–2650
https://doi.org/10.1073/pnas.0437939100
|
| 68 |
TA Wynn, A Chawla, JW Pollard (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455
https://doi.org/10.1038/nature12034
|
| 69 |
C Xiao, L Srinivasan, DP Calado, HC Patterson, B Zhang, J Wang, JM Henderson, JL Kutok, K Rajewsky (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9(4):405–414
https://doi.org/10.1038/ni1575
|
| 70 |
J Xu, W Peng, Y Sun, X Wang, Y Xu, X Li, G Gao, Z Rao (2012a) Structural study of MCPIP1 N-terminal conserved domain reveals a PIN-like RNase. Nucleic Acids Res 40(14):6957–6965
https://doi.org/10.1093/nar/gks359
|
| 71 |
J Xu, S Fu, W Peng, Z Rao (2012b) MCP-1-induced protein-1, an immune regulator. Protein Cell 3(12):903–910
https://doi.org/10.1007/s13238-012-2075-9
|
| 72 |
R Xu, Y Li, H Yan, E Zhang, X Huang, Q Chen, J Chen, J Qu, Y Liu, J Heet al. (2019) CCL2 promotes macrophages-associated chemoresistance via MCPIP1 dual catalytic activities in multiple myeloma. Cell Death Dis 10(10):1–7
https://doi.org/10.1038/s41419-019-2012-4
|
| 73 |
H Yao, R Ma, L Yang, G Hu, X Chen, M Duan, Y Kook, F Niu, K Liao, M Fuet al. (2014) MiR-9 promotes microglial activation by targeting MCPIP1. Nat Commun 5(1):1–2
https://doi.org/10.1038/ncomms5386
|
| 74 |
Y Zheng, J Yang, J Qian, P Qiu, S Hanabuchi, Y Lu, Z Wang, Z Liu, H Li, J Heet al. (2013) PSGL-1/selectin and ICAM-1/CD18 interactions are involved in macrophage-induced drug resistance in myeloma. Leukemia 27(3):702–710
https://doi.org/10.1038/leu.2012.272
|
| 75 |
L Zhou, A Azfer, J Niu, S Graham, M Choudhury, FM Adamski, C Younce, PF Binkley, PE Kolattukudy (2006) Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res 98(9):1177–1185
https://doi.org/10.1161/01.RES.0000220106.64661.71
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|