Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2021, Vol. 12 Issue (3) : 194-212    https://doi.org/10.1007/s13238-020-00750-6
RESEARCH ARTICLE
Therapeutic silencing miR-146b-5p improves cardiac remodeling in a porcine model of myocardial infarction by modulating the wound reparative phenotype
Yiteng Liao1,2, Hao Li1,2, Hao Cao3, Yun Dong4, Lei Gao1, Zhongmin Liu1,3(), Junbo Ge5(), Hongming Zhu1()
1. 1Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
2. Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
3. Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
4. Department of Ultrasound in Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
5. Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, China
 Download: PDF(4783 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fibrotic remodeling is an adverse consequence of immune response-driven phenotypic modulation of cardiac cells following myocardial infarction (MI). MicroRNA-146b (miR-146b) is an active regulator of immunomodulation, but its function in the cardiac inflammatory cascade and its clinical implication in fibrotic remodeling following MI remain largely unknown. Herein, miR-146b-5p was found to be upregulated in the infarcted myocardium of mice and the serum of myocardial ischemia patients. Gain- and loss-of-function experiments demonstrated that miR-146b-5p was a hypoxia-induced regulator that governed the pro-fibrotic phenotype transition of cardiac cells. Overexpression of miR-146b-5p activated fibroblast proliferation, migration, and fibroblast-to-myofibroblast transition, impaired endothelial cell function and stress survival, and disturbed macrophage paracrine signaling. Interestingly, the opposite effects were observed when miR-146b-5p expression was inhibited. Luciferase assays and rescue studies demonstrated that the miR-146b-5p target genes mediating the above phenotypic modulations included interleukin 1 receptor associated kinase 1 (IRAK1) and carcinoembryonic antigen related cell adhesion molecule 1 (CEACAM1). Local delivery of a miR-146b-5p antagomir significantly reduced fibrosis and cell death, and upregulated capillary and reparative macrophages in the infarcted myocardium to restore cardiac remodeling and function in both mouse and porcine MI models. Local inhibition of miR-146b-5p may represent a novel therapeutic approach to treat cardiac fibrotic remodeling and dysfunction following MI.

Keywords cardiac fibrosis      microRNA      porcine model      myocardial infarction     
Corresponding Author(s): Zhongmin Liu,Junbo Ge,Hongming Zhu   
Online First Date: 22 September 2020    Issue Date: 26 March 2021
 Cite this article:   
Yiteng Liao,Hao Li,Hao Cao, et al. Therapeutic silencing miR-146b-5p improves cardiac remodeling in a porcine model of myocardial infarction by modulating the wound reparative phenotype[J]. Protein Cell, 2021, 12(3): 194-212.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-020-00750-6
https://academic.hep.com.cn/pac/EN/Y2021/V12/I3/194
1 AB Aurora, ER Porrello, W Tan, AI Mahmoud, JA Hill, R Bassel-Duby, HA Sadek, EN Olson (2014) Macrophages are required for neonatal heart regeneration. J Clin Invest 124:1382–1392
https://doi.org/10.1172/JCI72181
2 D Baltimore, MP Boldin, RM O’Connell, DS Rao, KD Taganov (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845
https://doi.org/10.1038/ni.f.209
3 HS Cheng, N Sivachandran, A Lau, E Boudreau, JL Zhao, D Baltimore, P, Delgado-Olguin MI, Cybulsky JE Fish (2013) MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med 5:1017–1034
https://doi.org/10.1002/emmm.201202318
4 HS Cheng, R Besla, A Li, Z, Chen EA Shikatani, M Nazari-Jahantigh, A Hammoutène, M Nguyen, M Geoffrion, L Caiet al. (2017) Paradoxical suppression of atherosclerosis in the absence of microRNA-146a. Circ Res 121:354–367
https://doi.org/10.1161/CIRCRESAHA.116.310529
5 F Deng, S He, S Cui, Y Shi, Y Tan, Z Li, C Huang, D Liu, F Zhi, L Peng (2019) A molecular targeted immunotherapeutic strategy for ulcerative colitis via dual-targeting nanoparticles delivering miR-146b to intestinal macrophages. J Crohns Colitis 13:482–494
https://doi.org/10.1093/ecco-jcc/jjy181
6 M Desjarlais, S Dussault, F Rivard, S Harel, V Sanchez, SNA Hussain, A Rivard (2019) Forced expression of microRNA-146b reduces TRAF6-dependent inflammation and improves ischemiainduced neovascularization in hypercholesterolemic conditions. Atherosclerosis 289:73–84
https://doi.org/10.1016/j.atherosclerosis.2019.08.010
7 YF Di, DC Li, YQ Shen, CL Wang, DY Zhang, AQ Shang, T Hu(2017) MiR-146b protects cardiomyocytes injury in myocardial ischemia/reperfusion by targeting Smad4. Am J Transl Res 9:656–663
8 SA Dick, JA Macklin, S Nejat, A Momen, X Clemente-Casares, MG Althagafi, J Chen, C Kantores, S, Hosseinzadeh L Aronoffet al. (2019) Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat Immunol 20:29–39
https://doi.org/10.1038/s41590-018-0272-2
9 S Epelman, PP Liu, DL Mann (2015) Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol 15:117–129
https://doi.org/10.1038/nri3800
10 B Ferraro, G Leoni, R Hinkel, S Ormanns, N Paulin, A Ortega-Gomez, JR Viola, R, de Jong D Bongiovanni, T Bozogluet al. (2019) Pro-angiogenic macrophage phenotype to promote myocardial repair. J Am Coll Cardiol 73:2990–3002
https://doi.org/10.1016/j.jacc.2019.03.503
11 NG Frangogiannis (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110:159–173
https://doi.org/10.1161/CIRCRESAHA.111.243162
12 NG Frangogiannis (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11:255–265
https://doi.org/10.1038/nrcardio.2014.28
13 X Fu, H Khalil, O Kanisicak, JG Boyer, RJ Vagnozzi, BD Maliken, MA Sargent, V Prasad, I Valiente-Alandi, BC Blaxallet al. (2018) Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest 128:2127–2143
https://doi.org/10.1172/JCI98215
14 K Gabisonia, G, Prosdocimo GD Aquaro, L Carlucci, L Zentilin, I, Secco H Ali, L Braga, N Gorgodze, F Berniniet al. (2019) MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569:418–422
https://doi.org/10.1038/s41586-019-1191-6
15 M Gao, X Wang, X Zhang, T Ha, H Ma, L Liu, JH Kalbfleisch, X Gao, RL Kao, DL Williamset al. (2015) Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. J Immunol 195:672–682
https://doi.org/10.4049/jimmunol.1403155
16 X He, R Tang, Y Sun, YG Wang, KY Zhen, DM Zhang, WQ Pan (2016) MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis. eBiomedicine 13:339–347
https://doi.org/10.1016/j.ebiom.2016.10.024
17 R Hinkel, D Penzkofer, S Zühlke, A Fischer, W Husada, Q Xu, E Baloch, E van Rooij , AM Zeiher, C Kupattet al. (2013) Inhibition of MicroRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 128:1066–1075
https://doi.org/10.1161/CIRCULATIONAHA.113.001904
18 AK Horst (2006) Carcinoembryonic antigen-related cell adhesion molecule 1 modulates vascular remodeling in vitro and in vivo. J Clin Invest 116:1596–1605
https://doi.org/10.1172/JCI24340
19 S Huang, NG Frangogiannis (2018) Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br J Pharmacol 175:1377–1400
https://doi.org/10.1111/bph.14155
20 Y Huang, C, Zhu Y, Kondo AC Anderson, A Gandhi, A Russell, SK Dougan, B, Petersen E Melum, T Pertelet al. (2015) CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517:386–390
https://doi.org/10.1038/nature13848
21 S Huang, X Li, H Zheng, X Si, B Li, G Wei, C, Li Y Chen, Y Chen, W Liaoet al. (2019) Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation 139:2857–2876
https://doi.org/10.1161/CIRCULATIONAHA.118.038361
22 TG Hullinger, RL Montgomery, AG Seto, BA Dickinson, HM Semus, JM Lynch, CM Dalby, K Robinson, C Stack, PA Latimeret al. (2012) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110:71–81
https://doi.org/10.1161/CIRCRESAHA.111.244442
23 D Jia, H Jiang, X Weng, J, Wu P, Bai W Yang, Z Wang, K Hu, A Sun, J Ge (2019) Interleukin-35 promotes macrophage survival and improves wound healing after myocardial infarction in mice. Circ Res 124:1323–1336
https://doi.org/10.1161/CIRCRESAHA.118.314569
24 N, Kilic L Oliveira-Ferrer , J, Wurmbach S Loges, F Chalajour, SN Vahid, J Weil, M Fernando, S Ergun (2005) Pro-angiogenic signaling by the endothelial presence of CEACAM1. J Biol Chem 280:2361–2369
https://doi.org/10.1074/jbc.M409407200
25 J Krutzfeldt, N Rajewsky, R Braich, KG Rajeev, T Tuschl, M Manoharan, M Stoffel(2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689
https://doi.org/10.1038/nature04303
26 JW Li, SY He, ZZ Feng, L Zhao, WK Jia, P, Liu Y Zhu, Z Jian, YB Xiao (2015) MicroRNA-146b inhibition augments hypoxia-induced cardiomyocyte apoptosis. Mol Med Rep 12:6903–6910
https://doi.org/10.3892/mmr.2015.4333
27 H Li, Y Liao, L Gao, T Zhuang, Z Huang, H Zhu, J Ge (2018) Coronary serum exosomes derived from patients with myocardial ischemia regulate angiogenesis through the miR-939-mediated nitric oxide signaling pathway. Theranostics 8:2079–2093
https://doi.org/10.7150/thno.21895
28 J Liu, T Zhuang, J Pi, X Chen, Q, Zhang Y Li, H Wang, Y, Shen B Tomlinson, P Chanet al. (2019) Endothelial forkhead box transcription factor P1 regulates pathological cardiac remodeling through transforming growth factor-β1-endothelin-1 signal pathway . Circulation 140:665–680
https://doi.org/10.1161/CIRCULATIONAHA.119.039767
29 Y Ma, AJ Mouton, ML Lindsey (2018) Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction . Transl Res 191:15–28
https://doi.org/10.1016/j.trsl.2017.10.001
30 JT Mendell, EN Olson (2012) MicroRNAs in stress signaling and human disease. Cell 148:1172–1187
https://doi.org/10.1016/j.cell.2012.02.005
31 AL Mescher (2017) Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. Regeneration 4:39–53
https://doi.org/10.1002/reg2.77
32 IS Meyer, A, Jungmann C Dieterich, M Zhang, F Lasitschka, S Werkmeister, J Haas, OJ Müller , M Boutros, M Nahrendorfet al. (2017) The cardiac microenvironment uses non-canonicalWNT signaling to activate monocytes after myocardial infarction. EMBO Mol Med 9:1279–1293
https://doi.org/10.15252/emmm.201707565
33 V Nagpal, R Rai, AT Place, SB Murphy, SK Verma, AK Ghosh, DE Vaughan (2016) MiR-125b is critical for fibroblast-to-myofibroblast transition and cardiac fibrosis. Circulation 133:291–301
https://doi.org/10.1161/CIRCULATIONAHA.115.018174
34 M Nahrendorf, FK Swirski (2013) Monocyte and macrophage heterogeneity in the heart. Circ Res 112:1624–1633
https://doi.org/10.1161/CIRCRESAHA.113.300890
35 Y Nakada, DC Canseco, S, Thet S Abdisalaam, A Asaithamby, CX Santos, AM Shah, H Zhang, JE Faber, MT Kinteret al. (2017) Hypoxia induces heart regeneration in adult mice . Nature 541:222–227
https://doi.org/10.1038/nature20173
36 MR Paterson, AJ Kriegel (2017) MiR-146a/b: a family with shared seeds and different roots. Physiol Genomics 49:243–252
https://doi.org/10.1152/physiolgenomics.00133.2016
37 L Peng, H Zhang, Y Hao, F, Xu J, Yang R, Zhang G, Lu Z Zheng, M Cui, C Qiet al. (2016) Reprogramming macrophage orientation by microRNA 146b targeting transcription factor IRF5. eBiomedicine 14:83–96
https://doi.org/10.1016/j.ebiom.2016.10.041
38 DL Peres, ML Schuman, M Aisicovich, JE Toblli, CJ Pirola, MS Landa, SI Garcia(2018) Angiotensin II requires an intact cardiac thyrotropin-releasing hormone (TRH) system to induce cardiac hypertrophy in mouse. J Mol Cell Cardiol 124:1–11
https://doi.org/10.1016/j.yjmcc.2018.09.009
39 SD Prabhu, NG Frangogiannis (2016a) The biological basis for cardiac repair after myocardial infarction. Circ Res 119:91–112
https://doi.org/10.1161/CIRCRESAHA.116.303577
40 SD Prabhu, NG Frangogiannis (2016b) The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res 119:91–112
https://doi.org/10.1161/CIRCRESAHA.116.303577
41 BP Purcell, D Lobb, MB Charati, SM Dorsey, RJ Wade, KN Zellars, H, Doviak S, Pettaway CB Logdon, JA Shumanet al. (2014) Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat Mater 13:653–661
https://doi.org/10.1038/nmat3922
42 Y, Shen JJ Lynch, RP Shannon, RT Wiedmann (1999) A novel heart failure model induced by sequential coronary artery occlusions and tachycardiac stress in awake pigs. Am J Physiol-Heart C 277:H388–H398
https://doi.org/10.1152/ajpheart.1999.277.1.H388
43 M, Shiraishi Y Shintani, Y Shintani, H Ishida, R Saba, A Yamaguchi, H Adachi, K Yashiro, K Suzuki (2016) Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest 126:2151–2166
https://doi.org/10.1172/JCI85782
44 MG Sutton, N Sharpe (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988
https://doi.org/10.1161/01.CIR.101.25.2981
45 FK Swirski, M Nahrendorf (2013) Macrophage-stem cell crosstalk after myocardial infarction*. J Am Coll Cardiol 62:1902–1904
https://doi.org/10.1016/j.jacc.2013.07.058
46 KD Taganov, MP Boldin, KJ Chang, D Baltimore (2006) NF-kappaBdependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses . Proc Natl Acad Sci USA 103:12481–12486
https://doi.org/10.1073/pnas.0605298103
47 T Thum, C Gross, J Fiedler, T Fischer, S Kissler, M Bussen, P, Galuppo S Just, W, Rottbauer S Frantzet al. (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980–984
https://doi.org/10.1038/nature07511
48 WM Torres, J Jacobs, H Doviak, SC Barlow, MR Zile, T Shazly, FG Spinale (2018) Regional and temporal changes in left ventricular strain and stiffness in a porcine model of myocardial infarction. Am J Physiol Heart Circ Physiol 315:H958–H967
https://doi.org/10.1152/ajpheart.00279.2018
49 J Wang, Y, Wang J Han, Y Li, C Xie, L, Xie J, Shi J, Zhang B, Yang D Chenet al. (2015) Integrated analysis of microRNA and mRNA expression profiles in the left atrium of patients with nonvalvular paroxysmal atrial fibrillation: Role of miR-146b-5p in atrial fibrosis. Heart Rhythm 12:1018–1026
https://doi.org/10.1016/j.hrthm.2015.01.026
50 PC Westman, MJ Lipinski, D Luger, R Waksman, RO Bonow, E, Wu SE Epstein (2016) Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 67:2050–2060
https://doi.org/10.1016/j.jacc.2016.01.073
51 F, Yang Q Chen, S He, M Yang, EM Maguire, W, An TA Afzal, LA Luong, L, Zhang Q Xiao(2018a) miR-22 Is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation. Circulation 137:1824–1841
https://doi.org/10.1161/CIRCULATIONAHA.117.027799
52 L Yang, B Wang, Q, Zhou Y Wang, X, Liu Z, Liu Z Zhan (2018b) MicroRNA-21 prevents excessive inflammation and cardiac dysfunction after myocardial infarction through targeting KBTBD7. Cell Death Dis 9:769
https://doi.org/10.1038/s41419-018-0805-5
53 J Yuan, H Liu, W Gao, L Zhang, Y Ye, L Yuan, Z Ding, J Wu, L Kang, X Zhanget al. (2018) MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress. Theranostics 8:2565–2582
https://doi.org/10.7150/thno.22878
54 L Zhang, Y Fu, H Wang, Y Guan, W, Zhu M Guo, N Zheng, Z Wu (2019) Severe fever with thrombocytopenia syndrome virusinduced macrophage differentiation is regulated by miR-146. Front Immunol 10:1095
https://doi.org/10.3389/fimmu.2019.01095
55 H Zhu, A Sun, H Zhu, Z Li, Z Huang, S Zhang, X Ma, Y, Zou K Hu, J Ge (2014a) Aldehyde dehydrogenase-2 is a host factor required for effective bone marrow mesenchymal stem cell therapy. Arterioscler Thromb Vasc Biol 34:894–901
https://doi.org/10.1161/ATVBAHA.114.303241
56 H, Zhu A Sun, Y Zou, J Ge (2014b) Inducible metabolic adaptation promotes mesenchymal stem cell therapy for ischemia. Arterioscler Thromb Vasc Biol 34:870–876
https://doi.org/10.1161/ATVBAHA.114.303194
[1] PAC-0194-20196-ZHM_suppl_1 Download
[1] Xi Chen, Lin Wang, Rujin Huang, Hui Qiu, Peizhe Wang, Daren Wu, Yonglin Zhu, Jia Ming, Yangming Wang, Jianbin Wang, Jie Na. Dgcr8 deletion in the primitive heart uncovered novel microRNA regulating the balance of cardiac-vascular gene program[J]. Protein Cell, 2019, 10(5): 327-346.
[2] Na Qu, Zhao Ma, Mengrao Zhang, Muaz N. Rushdi, Christopher J. Krueger, Antony K. Chen. Inhibition of retroviral Gag assembly by non-silencing miRNAs promotes autophagic viral degradation[J]. Protein Cell, 2018, 9(7): 640-651.
[3] Yuanyuan Gu, Shuoxin Liu, Xiaodan Zhang, Guimin Chen, Hongwei Liang, Mengchao Yu, Zhicong Liao, Yong Zhou, Chen-Yu Zhang, Tao Wang, Chen Wang, Junfeng Zhang, Xi Chen. Oncogenic miR-19a and miR-19b co-regulate tumor suppressor MTUS1 to promote cell proliferation and migration in lung cancer[J]. Protein Cell, 2017, 8(6): 455-466.
[4] Shaohong Chen, Guangxia Gao. MicroRNAs recruit eIF4E2 to repress translation of target mRNAs[J]. Protein Cell, 2017, 8(10): 750-761.
[5] Haley Vaseghi, Jiandong Liu, Li Qian. Molecular barriers to direct cardiac reprogramming[J]. Protein Cell, 2017, 8(10): 724-734.
[6] Zhiju Zhao,Shu Li,Erwei Song,Suling Liu. The roles of ncRNAs and histone-modifiers in regulating breast cancer stem cells[J]. Protein Cell, 2016, 7(2): 89-99.
[7] Qian Fan,Xiangrui Meng,Hongwei Liang,Huilai Zhang,Xianming Liu,Lanfang Li,Wei Li,Wu Sun,Haiyang Zhang,Ke Zen,Chen-Yu Zhang,Zhen Zhou,Xi Chen,Yi Ba. miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma[J]. Protein Cell, 2016, 7(12): 899-912.
[8] Yanqing Liu,Uzair-ur-Rehman,Yu Guo,Hongwei Liang,Rongjie Cheng,Fei Yang,Yeting Hong,Chihao Zhao,Minghui Liu,Mengchao Yu,Xinyan Zhou,Kai Yin,Jiangning Chen,Junfeng Zhang,Chen-Yu Zhang,Feng Zhi,Xi Chen. miR-181b functions as an oncomiR in colorectal cancer by targeting PDCD4[J]. Protein Cell, 2016, 7(10): 722-734.
[9] Lin Lin,Qingqing Cai,Xiaoyan Zhang,Hongwei Zhang,Yang Zhong,Congjian Xu,Yanyun Li. Two less common human microRNAs miR-875 and miR-3144 target a conserved site of E6 oncogene in most high-risk human papillomavirus subtypes[J]. Protein Cell, 2015, 6(8): 575-588.
[10] Xiaokang Li,Hui Zhao,Chunxiao Qi,Yang Zeng,Feng Xu,Yanan Du. Direct intercellular communications dominate the interaction between adipose-derived MSCs and myofibroblasts against cardiac fibrosis[J]. Protein Cell, 2015, 6(10): 735-745.
[11] Hongwei Liang, Junfeng Zhang, Ke Zen, Chen-Yu Zhang, Xi Chen. Nuclear microRNAs and their unconventional role in regulating non-coding RNAs[J]. Prot Cell, 2013, 4(5): 325-330.
[12] Yongkui Li, Jiajia Xie, Xiupeng Xu, Jun Wang, Fang Ao, Yushun Wan, Ying Zhu. MicroRNA-548 down-regulates host antiviral response via direct targeting of IFN-λ1[J]. Prot Cell, 2013, 4(2): 130-141.
[13] Ya-Feng Li, Ying Jing, Jielu Hao, Nathan C Frankfort, Xiaoshuang Zhou, Bing Shen, Xinyan Liu, Lihua Wang, Rongshan Li. MicroRNA-21 in the pathogenesis of acute kidney injury[J]. Prot Cell, 2013, 4(11): 813-819.
[14] Yifan Zhan, Li Wu. Functional regulation of monocyte-derived dendritic cells by microRNAs[J]. Prot Cell, 2012, 3(7): 497-507.
[15] Munish Kumar, Sayantan Nath, Himanshu K Prasad, G D Sharma, Yong Li. MicroRNAs: a new ray of hope for diabetes mellitus[J]. Prot Cell, 2012, 3(10): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed