Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2020, Vol. 11 Issue (9) : 630-640    https://doi.org/10.1007/s13238-020-00755-1
REVIEW
Cellular metabolism and homeostasis in pluripotency regulation
Kun Liu1,2,3, Jiani Cao1,2, Xingxing Shi1,2,3, Liang Wang1,2,3, Tongbiao Zhao1,2,3()
1. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
2. Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(498 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pluripotent stem cells (PSCs) can immortally self-renew in culture with a high proliferation rate, and they possess unique metabolic characteristics that facilitate pluripotency regulation. Here, we review recent progress in understanding the mechanisms that link cellular metabolism and homeostasis to pluripotency regulation, with particular emphasis on pathways involving amino acid metabolism, lipid metabolism, the ubiquitin-proteasome system and autophagy. Metabolism of amino acids and lipids is tightly coupled to epigenetic modification, organelle remodeling and cell signaling pathways for pluripotency regulation. PSCs harness enhanced proteasome and autophagy activity to meet the material and energy requirements for cellular homeostasis. These regulatory events reflect a fine balance between the intrinsic cellular requirements and the extrinsic environment. A more complete understanding of this balance will pave new ways to manipulate PSC fate.

Keywords autophagy      amino acid metabolism      lipidmetabolism      pluripotent stem cell (PSC)      ubiquitinproteasome system (UPS)     
Corresponding Author(s): Tongbiao Zhao   
Issue Date: 25 September 2020
 Cite this article:   
Kun Liu,Jiani Cao,Xingxing Shi, et al. Cellular metabolism and homeostasis in pluripotency regulation[J]. Protein Cell, 2020, 11(9): 630-640.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-020-00755-1
https://academic.hep.com.cn/pac/EN/Y2020/V11/I9/630
1 PB Alexander, J Wang, SL McKnight (2011) Targeted killing of a mammalian cell based upon its specialized metabolic state. Proc Natl Acad Sci USA 108:15828–15833
https://doi.org/10.1073/pnas.1111312108
2 YS Ang, SY Tsai, DF Lee, J Monk, J Su, K Ratnakumar, J Ding, Y Ge, H Darr, B Changet al. (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145:183–197
https://doi.org/10.1016/j.cell.2011.03.003
3 L Bedford, S Paine, PW Sheppard, RJ Mayer, J Roelofs (2010) Assembly, structure, and function of the 26S proteasome. Trends Cell Biol 20:391–401
https://doi.org/10.1016/j.tcb.2010.03.007
4 LA Boyer, TI Lee, MF Cole, SE Johnstone, SS Levine, JP Zucker, MG Guenther, RM Kumar, HL Murray, RG Jenneret al. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956
https://doi.org/10.1016/j.cell.2005.08.020
5 MD Buck, D O’Sullivan, RIK Geltink, JD Curtis, CH Chang, DE Sanin, J Qiu, O Kretz, D Braas, GJW van der Windtet al. (2016) Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166:63–76
https://doi.org/10.1016/j.cell.2016.05.035
6 SM Buckley, B Aranda-Orgilles, A Strikoudis, E Apostolou, E Loizou, K Moran-Crusio, CL Farnsworth, AA Koller, R Dasgupta, JC Silvaet al. (2012) Regulation of pluripotency and cellular reprogram ming by the ubiquitin-proteasome system. Cell Stem Cell 11:783–798
https://doi.org/10.1016/j.stem.2012.09.011
7 BW Carey, LW Finley, JR Cross, CD Allis, CB Thompson (2015) Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413–416
https://doi.org/10.1038/nature13981
8 L Casalino, S Comes, G Lambazzi, B De Stefano, S Filosa, S De Falco, D De Cesare, G Minchiotti, EJ Patriarca (2011) Control of embryonic stem cell metastability by L-proline catabolism. J Mol Cell Biol 3:108–122
https://doi.org/10.1093/jmcb/mjr001
9 AP Chandrasekaran, B Suresh, HH Kim, KS Kim, S Ramakrishna (2017) Concise review: fate determination of stem cells by deubiquitinating enzymes. Stem Cells (Dayton, Ohio) 35:9–16
https://doi.org/10.1002/stem.2446
10 T Chen, L Shen, J Yu, H Wan, A Guo, J Chen, Y Long, J Zhao, G Pei (2011) Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell 10:908–911
https://doi.org/10.1111/j.1474-9726.2011.00722.x
11 YH Cho, KM Han, D Kim, J Lee, SH Lee, KW Choi, J Kim, YM Han (2014) Autophagy regulates homeostasis of pluripotency-associated proteins in hESCs. Stem Cells (Dayton, Ohio) 32:424–435
https://doi.org/10.1002/stem.1589
12 S Comes, M Gagliardi, N Laprano, A Fico, A Cimmino, A Palamidessi, D De Cesare, S De Falco, C Angelini, G Scitaet al. (2013) L-Proline induces a mesenchymal-like invasive program in embryonic stem cells by remodeling H3K9 and H3K36 methylation. Stem Cell Rep 1:307–321
https://doi.org/10.1016/j.stemcr.2013.09.001
13 D Cornacchia, C Zhang, B Zimmer, SY Chung, Y Fan, MA Soliman, J Tchieu, SM Chambers, H Shah, D Paullet al. (2019) Lipid deprivation induces a stable, naive-to-primed intermediate state of pluripotency in human PSCs. Cell Stem Cell 25:120–136
https://doi.org/10.1016/j.stem.2019.05.001
14 C D’Aniello, F Cermola, A Palamidessi, LG Wanderlingh, M Gagliardi, A Migliaccio, F Varrone, L Casalino, MR Matarazzo, D De Cesareet al. (2019) Collagen prolyl hydroxylation-dependent metabolic perturbation governs epigenetic remodeling and mesenchymal transition in pluripotent and cancer cells. Cancer Res 79:3235–3250
https://doi.org/10.1158/0008-5472.CAN-18-2070
15 C D’Aniello, A Fico, L Casalino, O Guardiola, G Di Napoli, F Cermola, D De Cesare, R Tate, G Cobellis, EJ Patriarcaet al. (2015) A novel autoregulatory loop between the Gcn2-Atf4 pathway and (L)-Proline [corrected] metabolism controls stem cell identity. Cell Death Differ 22:1094–1105
https://doi.org/10.1038/cdd.2015.24
16 C D’Aniello, E Habibi, F Cermola, D Paris, F Russo, A Fiorenzano, G Di Napoli, DJ Melck, G Cobellis, C Angeliniet al. (2017) Vitamin C and l-proline antagonistic effects capture alternative states in the pluripotency continuum. Stem Cell Rep 8:1–10
https://doi.org/10.1016/j.stemcr.2016.11.011
17 I Dikic (2017) Proteasomal and autophagic degradation systems. Annu Rev Biochem 86:193–224
https://doi.org/10.1146/annurev-biochem-061516-044908
18 KR Dunning, K Cashman, DL Russell, JG Thompson, RJ Norman, RL Robker (2010) Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod 83:909–918
https://doi.org/10.1095/biolreprod.110.084145
19 AJ Edgar (2002) The human L-threonine 3-dehydrogenase gene is an expressed pseudogene. BMC Genet 3:18
https://doi.org/10.1186/1471-2156-3-18
20 L Fang, L Zhang, W Wei, X Jin, P Wang, Y Tong, J Li, JX Du, J Wong (2014) A methylation-phosphorylation switch determines Sox2 stability and function in ESC maintenance or differentiation. Mol Cell 55:537–551
https://doi.org/10.1016/j.molcel.2014.06.018
21 D Finley (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513
https://doi.org/10.1146/annurev.biochem.78.081507.101607
22 CD Folmes, PP Dzeja, TJ Nelson, A Terzic (2012) Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11:596–606
https://doi.org/10.1016/j.stem.2012.10.002
23 J Gao, SM Buckley, L Cimmino, M Guillamot, A Strikoudis, Y Cang, SP Goff, I Aifantis (2015) The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis. eLife 4:e07539
https://doi.org/10.7554/eLife.07539.018
24 FR Garcia-Gonzalo, JC Izpisua Belmonte (2008) Albumin-associated lipids regulate human embryonic stem cell self-renewal. PLoS ONE 3:e1384
https://doi.org/10.1371/journal.pone.0001384
25 S Gascon, E Murenu, G Masserdotti, F Ortega, GL Russo, D Petrik, A Deshpande, C Heinrich, M Karow, SP Robertsonet al. (2016) Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 18:396–409
https://doi.org/10.1016/j.stem.2015.12.003
26 J Gong, H Gu, L Zhao, L Wang, P Liu, F Wang, H Xu, T Zhao (2018) Phosphorylation of ULK1 by AMPK is essential for mouse embryonic stem cell self-renewal and pluripotency. Cell Death Dis 9:38
https://doi.org/10.1038/s41419-017-0054-z
27 C Gontan, EM Achame, J Demmers, TS Barakat, E Rentmeester, JA Grootegoed, J Gribnau (2012) RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. Nature 485:386–390
https://doi.org/10.1038/nature11070
28 H Gu, X Shi, C Liu, C Wang, N Sui, Y Zhao, J Gong, F Wang, H Zhang, W Liet al. (2019) USP8 maintains embryonic stem cell stemness via deubiquitination of EPG5. Nat Commun 10:1465
https://doi.org/10.1038/s41467-019-09430-4
29 RBL Gwatkin (1966) Amino acid requirements for attachment and outgrowth of the mouse blastocyst in vitro. J Cell Physiol 68:335–343
https://doi.org/10.1002/jcp.1040680313
30 C Han, H Gu, J Wang, W Lu, Y Mei, M Wu (2013) Regulation of L-threonine dehydrogenase in somatic cell reprogramming. Stem Cells (Dayton, Ohio) 31:953–965
https://doi.org/10.1002/stem.1335
31 IY Hwang, S Kwak, S Lee, H Kim, SE Lee, JH Kim, YA Kim, YK Jeon, DH Chung, X Jinet al. (2016) Psat1-dependent fluctuations in alpha-ketoglutarate affect the timing of ESC differentiation. Cell Metab 24:494–501
https://doi.org/10.1016/j.cmet.2016.06.014
32 R Jian, X Cheng, J Jiang, S Deng, F Hu, J Zhang (2007) A cDNAbased random RNA interference library for functional genetic screens in embryonic stem cells. Stem Cells (Dayton, Ohio) 25:1904–1912
https://doi.org/10.1634/stemcells.2006-0448
33 J Jin, J Liu, C Chen, Z Liu, C Jiang, H Chu, W Pan, X Wang, L Zhang, B Liet al. (2016) The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog. Nat Commun 7:13594
https://doi.org/10.1038/ncomms13594
34 I Jonkers, TS Barakat, EM Achame, K Monkhorst, A Kenter, E Rentmeester, F Grosveld, JA Grootegoed, J Gribnau (2009) RNF12 is an X-encoded dose-dependent activator of X chromosome inactivation. Cell 139:999–1011
https://doi.org/10.1016/j.cell.2009.10.034
35 J Kaur, J Debnath (2015) Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol 16:461–472
https://doi.org/10.1038/nrm4024
36 MS Kilberg, N Terada, J Shan (2016) Influence of amino acid metabolism on embryonic stem cell function and differentiation. Adv Nutr (Bethesda, Md) 7:780S–789S
https://doi.org/10.3945/an.115.011031
37 DJ Klionsky, SD Emr (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721
https://doi.org/10.1126/science.290.5497.1717
38 SK Kwon, DH Lee, SY Kim, JH Park, J Choi, KH Baek (2017) Ubiquitin-specific protease 21 regulating the K48-linked polyubiquitination of NANOG. Biochem Biophys Res Commun 482:1443–1448
https://doi.org/10.1016/j.bbrc.2016.12.055
39 S Li, F Xiao, J Zhang, X Sun, H Wang, Y Zeng, J Hu, F Tang, J Gu, Y Zhaoet al. (2018) Disruption of OCT4 ubiquitination increases OCT4 protein stability and ASH2L-B-mediated H3K4 methylation promoting pluripotency acquisition. Stem Cell Rep 11:973–987
https://doi.org/10.1016/j.stemcr.2018.09.001
40 K Liu, Y Song, H Yu, T Zhao (2014) Understanding the roadmaps to induced pluripotency. Cell Death Dis 5:e1232
https://doi.org/10.1038/cddis.2014.205
41 K Liu, Q Zhao, P Liu, J Cao, J Gong, C Wang, W Wang, X Li, H Sun, C Zhanget al. (2016a) ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance. Autophagy 12:2000–2008
https://doi.org/10.1080/15548627.2016.1212786
42 P Liu, K Liu, H Gu, W Wang, J Gong, Y Zhu, Q Zhao, J Cao, C Han, F Gaoet al. (2017) High autophagic flux guards ESC identity through coordinating autophagy machinery gene program by FOXO1. Cell Death Differ 24:1672–1680
https://doi.org/10.1038/cdd.2017.90
43 X Liu, Y Yao, H Ding, C Han, Y Chen, Y Zhang, C Wang, X Zhang, Y Zhang, Y Zhaiet al. (2016b) USP21 deubiquitylates Nanog to regulate protein stability and stem cell pluripotency. Signal Transduct Target Ther 1:16024
https://doi.org/10.1038/sigtrans.2016.24
44 T Ma, J Li, Y Xu, C Yu, T Xu, H Wang, K Liu, N Cao, BM Nie, SY Zhuet al. (2015) Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nat Cell Biol 17:1379–1387
https://doi.org/10.1038/ncb3256
45 G Martello, A Smith (2014) The nature of embryonic stem cells. Annu Rev Cell Dev Biol 30:647–675
https://doi.org/10.1146/annurev-cellbio-100913-013116
46 J Mathieu, H Ruohola-Baker (2017) Metabolic remodeling during the loss and acquisition of pluripotency. Development 144:541–551
https://doi.org/10.1242/dev.128389
47 RJ Mayer (2000) The meteoric rise of regulated intracellular proteolysis. Nat Rev Mol Cell Biol 1:145–148
https://doi.org/10.1038/35040090
48 JA Menendez, L Vellon, C Oliveras-Ferraros, S Cufi, A Vazquez-Martin (2011) mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle (Georgetown, Tex) 10:3658–3677
https://doi.org/10.4161/cc.10.21.18128
49 N Mizushima, A Yamamoto, M Hatano, Y Kobayashi, Y Kabeya, K Suzuki, T Tokuhisa, Y Ohsumi, T Yoshimori (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668
https://doi.org/10.1083/jcb.152.4.657
50 M Moretto-Zita, H Jin, Z Shen, T Zhao, SP Briggs, Y Xu (2010) Phosphorylation stabilizes Nanog by promoting its interaction with Pin1. Proc Natl Acad Sci USA 107:13312–13317
https://doi.org/10.1073/pnas.1005847107
51 C Naujokat, T Saric (2007) Concise review: role and function of the ubiquitin-proteasome system in mammalian stem and progenitor cells. Stem Cells (Dayton, Ohio) 25:2408–2418
https://doi.org/10.1634/stemcells.2007-0255
52 SH Orkin, K Hochedlinger (2011) Chromatin connections to pluripotency and cellular reprogramming. Cell 145:835–850
https://doi.org/10.1016/j.cell.2011.05.019
53 S Ramakrishna, B Suresh, KH Lim, BH Cha, SH Lee, KS Kim, KH Baek (2011) PEST motif sequence regulating human NANOG for proteasomal degradation. Stem Cells Dev 20:1511–1519
https://doi.org/10.1089/scd.2010.0410
54 JM Ryu, HJ Han (2011) L-threonine regulates G1/S phase transition of mouse embryonic stem cells via PI3K/Akt, MAPKs, and mTORC pathways. J Biol Chem 286:23667–23678
https://doi.org/10.1074/jbc.M110.216283
55 GA Schultz, PL Kaye, DJ McKay, MH Johnson (1981) Endogenous amino acid pool sizes in mouse eggs and preimplantation embryos. J Reprod Fertil 61:387–393
https://doi.org/10.1530/jrf.0.0610387
56 MH Sellens, S Stein, MI Sherman (1981) Protein and free amino acid content in preimplantation mouse embryos and in blastocysts under various culture conditions. J Reprod Fertil 61:307–315
https://doi.org/10.1530/jrf.0.0610307
57 N Shiraki, Y Shiraki, T Tsuyama, F Obata, M Miura, G Nagae, H Aburatani, K Kume, F Endo, S Kume (2014) Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 19:780–794
https://doi.org/10.1016/j.cmet.2014.03.017
58 N Shyh-Chang, JW Locasale, CA Lyssiotis, Y Zheng, RY Teo, S Ratanasirintrawoot, J Zhang, T Onder, JJ Unternaehrer, H Zhuet al. (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339:222–226
https://doi.org/10.1126/science.1226603
59 AM Singh, S Dalton (2009) The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming. Cell Stem Cell 5:141–149
https://doi.org/10.1016/j.stem.2009.07.003
60 H Sperber, J Mathieu, Y Wang, A Ferreccio, J Hesson, Z Xu, KA Fischer, A Devi, D Detraux, H Guet al. (2015) The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol 17:1523–1535
https://doi.org/10.1038/ncb3264
61 AI Spindle, RA Pedersen (1973) Hatching, attachment, and outgrowth of mouse blastocysts in vitro: fixed nitrogen requirements. J Exp Zool 186:305–318
https://doi.org/10.1002/jez.1401860308
62 H Szutorisz, A Georgiou, L Tora, N Dillon (2006) The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells. Cell 127:1375–1388
https://doi.org/10.1016/j.cell.2006.10.045
63 S Tang, Y Fang, G Huang, X Xu, E Padilla-Banks, W Fan, Q Xu, SM Sanderson, JF Foley, S Dowdyet al. (2017) Methionine metabolism is essential for SIRT1-regulated mouse embryonic stem cell maintenance and embryonic development. EMBO J 36:3175–3193
https://doi.org/10.15252/embj.201796708
64 LJ Van Winkle (2001) Amino acid transport regulation and early embryo development. Biol Reprod 64:1–12
https://doi.org/10.1095/biolreprod64.1.1
65 AT Vessoni, AR Muotri, OK Okamoto (2012) Autophagy in stem cell maintenance and differentiation. Stem Cells Dev 21:513–520
https://doi.org/10.1089/scd.2011.0526
66 D Vilchez, L Boyer, I Morantte, M Lutz, C Merkwirth, D Joyce, B Spencer, L Page, E Masliah, WT Berggrenet al. (2012) Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature 489:304–308
https://doi.org/10.1038/nature11468
67 J Wang, P Alexander, L Wu, R Hammer, O Cleaver, SL McKnight (2009) Dependence of mouse embryonic stem cells on threonine catabolism. Science 325:435–439
https://doi.org/10.1126/science.1173288
68 J Wang, Y Zhang, J Hou, X Qian, H Zhang, Z Zhang, M Li, R Wang, K Liao, Y Wanget al. (2016) Ube2s regulates Sox2 stability and mouse ES cell maintenance. Cell Death Differ 23:393–404
https://doi.org/10.1038/cdd.2015.106
69 L Wang, T Zhang, L Wang, Y Cai, X Zhong, X He, L Hu, S Tian, M Wu, L Huiet al. (2017) Fatty acid synthesis is critical for stem cell pluripotency via promoting mitochondrial fission. EMBO J 36:1330–1347
https://doi.org/10.15252/embj.201695417
70 S Wang, P Xia, B Ye, G Huang, J Liu, Z Fan (2013) Transient activation of autophagy via Sox2-mediated suppression of mTOR is an important early step in reprogramming to pluripotency. Cell Stem Cell 13:617–625
https://doi.org/10.1016/j.stem.2013.10.005
71 T Wang, K Chen, X Zeng, J Yang, Y Wu, X Shi, B Qin, L Zeng, MA Esteban, G Panet al. (2011) The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-Cdependent manner. Cell Stem Cell 9:575–587
https://doi.org/10.1016/j.stem.2011.10.005
72 Y Wang, S Baskerville, A Shenoy, JE Babiarz, L Baehner, R Blelloch (2008) Embryonic stem cell-specific microRNAs regulate the G1S transition and promote rapid proliferation. Nat Genet 40:1478–1483
https://doi.org/10.1038/ng.250
73 JM Washington, J Rathjen, F Felquer, A Lonic, MD Bettess, N Hamra, L Semendric, BS Tan, JA Lake, RA Keoughet al. (2010) L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am J Physiol Cell Physiol 298:C982–992
https://doi.org/10.1152/ajpcell.00498.2009
74 AM Weissman (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178
https://doi.org/10.1038/35056563
75 Y Wu, Y Li, H Zhang, Y Huang, P Zhao, Y Tang, X Qiu, Y Ying, W Li, S Niet al. (2015) Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming. Nat Cell Biol 17:715–725
https://doi.org/10.1038/ncb3172
76 G Xiang, L Yang, Q Long, K Chen, H Tang, Y Wu, Z Liu, Y Zhou, J Qi, L Zhenget al. (2017) BNIP3L-dependent mitophagy accounts for mitochondrial clearance during 3 factors-induced somatic cell reprogramming. Autophagy 13:1543–1555
https://doi.org/10.1080/15548627.2017.1338545
77 H Xu, W Wang, C Li, H Yu, A Yang, B Wang, Y Jin (2009) WWP2 promotes degradation of transcription factor OCT4 in human embryonic stem cells. Cell Res 19:561–573
https://doi.org/10.1038/cr.2009.31
78 HM Xu, B Liao, QJ Zhang, BB Wang, H Li, XM Zhong, HZ Sheng, YX Zhao, YM Zhao, Y Jin (2004) Wwp2, an E3 ubiquitin ligase that targets transcription factor Oct-4 for ubiquitination. J Biol Chem 279:23495–23503
https://doi.org/10.1074/jbc.M400516200
79 X Xu, S Duan, F Yi, A Ocampo, GH Liu, JC Izpisua Belmonte (2013) Mitochondrial regulation in pluripotent stem cells. Cell Metab 18:325–332
https://doi.org/10.1016/j.cmet.2013.06.005
80 O Yanes, J Clark, DM Wong, GJ Patti, A Sanchez-Ruiz, HP Benton, SA Trauger, C Desponts, S Ding, G Siuzdak (2010) Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol 6:411–417
https://doi.org/10.1038/nchembio.364
81 CS Zhang, B Jiang, M Li, M Zhu, Y Peng, YL Zhang, YQ Wu, TY Li, Y Liang, Z Luet al. (2014) The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 20:526–540
https://doi.org/10.1016/j.cmet.2014.06.014
82 H Zhang, MG Badur, AS Divakaruni, SJ Parker, C Jager, K Hiller, AN Murphy, CM Metallo (2016a) Distinct metabolic states can support self-renewal and lipogenesis in human pluripotent stem cells under different culture conditions. Cell Rep 16:1536–1547
https://doi.org/10.1016/j.celrep.2016.06.102
83 H Zhang, D Ryu, Y Wu, K Gariani, X Wang, P Luan, D D’Amico, ER Ropelle, MP Lutolf, R Aebersoldet al. (2016b) NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352:1436–1443
https://doi.org/10.1126/science.aaf2693
84 J Zhang, E Nuebel, GQ Daley, CM Koehler, MA Teitell (2012) Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11:589–595
https://doi.org/10.1016/j.stem.2012.10.005
85 J Zhang, J Zhao, P Dahan, V Lu, C Zhang, H Li, MA Teitell (2018) Metabolism in pluripotent stem cells and early mammalian development. Cell Metab 27:332–338
https://doi.org/10.1016/j.cmet.2018.01.008
86 X Zheng, L Boyer, M Jin, J Mertens, Y Kim, L Ma, L Ma, M Hamm, FH Gage, T Hunter (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Life 5:e13374
https://doi.org/10.7554/eLife.13374.034
[1] Na Qu, Zhao Ma, Mengrao Zhang, Muaz N. Rushdi, Christopher J. Krueger, Antony K. Chen. Inhibition of retroviral Gag assembly by non-silencing miRNAs promotes autophagic viral degradation[J]. Protein Cell, 2018, 9(7): 640-651.
[2] Zhi-Dong Liu,Su Zhang,Jian-Jin Hao,Tao-Rong Xie,Jian-Sheng Kang. Cellular model of neuronal atrophy induced by DYNC1I1 deficiency reveals protective roles of RAS-RAF-MEK signaling[J]. Protein Cell, 2016, 7(9): 638-650.
[3] Jiaxiang Shao,Xiao Yang,Tengyuan Liu,Tingting Zhang,Qian Reuben Xie,Weiliang Xia. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage[J]. Protein Cell, 2016, 7(4): 281-290.
[4] Yan-Cheng Tang,Hong-Xia Tian,Tao Yi,Hu-Biao Chen. The critical roles of mitophagy in cerebral ischemia[J]. Protein Cell, 2016, 7(10): 699-713.
[5] Wenzhi Feng,Tong Wu,Xiaoyu Dan,Yuling Chen,Lin Li,She Chen,Di Miao,Haiteng Deng,Xinqi Gong,Li Yu. Phosphorylation of Atg31 is required for autophagy[J]. Protein Cell, 2015, 6(4): 288-296.
[6] Anna Gortat,Mónica Sancho,Laura Mondragón,Àgel Messeguer,Enrique Pérez-Payá,Mar Orzáez. Apaf1 inhibition promotes cell recovery from apoptosis[J]. Protein Cell, 2015, 6(11): 833-843.
[7] Jianhua Xiong. Atg7 in development and disease: panacea or Pandora’s Box?[J]. Protein Cell, 2015, 6(10): 722-734.
[8] Xiaojuan Chen,Kai Wang,Yaling Xing,Jian Tu,Xingxing Yang,Qian Zhao,Kui Li,Zhongbin Chen. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity[J]. Protein Cell, 2014, 5(12): 912-927.
[9] Guanghua Xu,Jing Wang,George Fu Gao,Cui Hua Liu. Insights into battles between Mycobacterium tuberculosis and macrophages[J]. Protein Cell, 2014, 5(10): 728-736.
[10] Hua Cheng, Tong Ren, Shao-cong Sun. New insight into the oncogenic mechanism of the retroviral oncoprotein Tax[J]. Prot Cell, 2012, 3(8): 581-589.
[11] Natalie L. Patterson, Justine D. Mintern. Intersection of autophagy with pathways of antigen presentation[J]. Prot Cell, 2012, 3(12): 911-920.
[12] Claire Gordy, You-Wen He. The crosstalk between autophagy and apoptosis: where does this lead?[J]. Prot Cell, 2012, 3(1): 17-27.
[13] Fangfang Zhou, Theo van Laar, Huizhe Huang, Long Zhang. APP and APLP1 are degraded through autophagy in response to proteasome inhibition in neuronal cells[J]. Prot Cell, 2011, 2(5): 377-383.
[14] Shaojie Han, Bingjie Yu, Yan Wang, Yule Liu. Role of plant autophagy in stress response[J]. Prot Cell, 2011, 2(10): 784-791.
[15] Yushan Zhu, Lixia Zhao, Lei Liu, Ping Gao, Weili Tian, Xiaohui Wang, Haijing Jin, Haidong Xu, Quan Chen. Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis[J]. Prot Cell, 2010, 1(5): 468-477.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed