Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2020, Vol. 11 Issue (10) : 723-739    https://doi.org/10.1007/s13238-020-00768-w
RESEARCH ARTICLE
Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2
Rui Xiong2, Leike Zhang3, Shiliang Li2, Yuan Sun3, Minyi Ding2, Yong Wang1, Yongliang Zhao1, Yan Wu3, Weijuan Shang3, Xiaming Jiang3, Jiwei Shan2, Zihao Shen2, Yi Tong2, Liuxin Xu2, Yu Chen1, Yingle Liu1, Gang Zou4, Dimitri Lavillete4, Zhenjiang Zhao2, Rui Wang2, Lili Zhu2, Gengfu Xiao3, Ke Lan1, Honglin Li2(), Ke Xu1,4()
1. State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
2. Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
3. State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
4. CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
 Download: PDF(5541 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broadspectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC50 of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy invivoand low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.

Keywords de novo pyrimidine biosynthesis      DHODH inhibitors      SARS-CoV-2      influenza viruses      virus replication      mmuno-regulation     
Corresponding Author(s): Honglin Li,Ke Xu   
Online First Date: 22 September 2020    Issue Date: 12 October 2020
 Cite this article:   
Rui Xiong,Leike Zhang,Shiliang Li, et al. Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2[J]. Protein Cell, 2020, 11(10): 723-739.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-020-00768-w
https://academic.hep.com.cn/pac/EN/Y2020/V11/I10/723
1 A Adalja, T Inglesby (2019) Broad-spectrum antiviral agents: a crucial pandemic tool. Expert Rev Anti Infect Ther 17:467–470
https://doi.org/10.1080/14787210.2019.1635009
2 RS Adcock, YK Chu, JE Golden, DH Chung (2017) Evaluation of anti-Zika virus activities of broad-spectrum antivirals and NIH clinical collection compounds using a cell-based, high-throughput screen assay. Antiviral Res 138:47–56
https://doi.org/10.1016/j.antiviral.2016.11.018
3 T Carroll, M Lo, M Lanteri, J Dutra, K Zarbock, P Silveira, T Rourke, Z-M Ma, L Fritts, S O’Connor (2017) Zika virus preferentially replicates in the female reproductive tract after vaginal inoculation of rhesus macaques. PLoS Pathog 13:e1006537
https://doi.org/10.1371/journal.ppat.1006537
4 SF Chen, FW Perrella, DL Behrens, LM Papp (1992) Inhibition of dihydroorotate dehydrogenase activity by brequinar sodium. Cancer Res 52:3521–3527
5 S Chen, S Ding, Y Yin, L Xu, P Li, MP Peppelenbosch, Q Pan, W Wang (2019) Suppression of pyrimidine biosynthesis by targeting DHODH enzyme robustly inhibits rotavirus replication. Antiviral Res 167:35–44
https://doi.org/10.1016/j.antiviral.2019.04.005
6 L Chen, W Liu, Q Zhang, K Xu, G Ye, W Wu, Z Sun, F Liu, K Wu, B Zhonget al. (2020) RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg Microbes Infect 9:313–319
https://doi.org/10.1080/22221751.2020.1725399
7 NN Cheung, KK Lai, J Dai, KH Kok, H Chen, K-H Chan, K-Y Yuen, RYT Kao (2017) Broad-spectrum inhibition of common respiratory RNA viruses by a pyrimidine synthesis inhibitor with involvement of the host antiviral response. J Gen Virol 98:946–954
https://doi.org/10.1099/jgv.0.000758
8 JY Chien, PR Hsueh, WC Cheng, CJ Yu, PC Yang (2006) Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. Respirology 11 (6):715–722
https://doi.org/10.1111/j.1440-1843.2006.00942.x
9 D-H Chung, JE Golden, RS Adcock, CE Schroeder, Y-K Chu, JB Sotsky, DE Cramer, PM Chilton, C Song, M Anantpadma (2016) Discovery of a broad-spectrum antiviral compound that inhibits pyrimidine biosynthesis and establishes a type 1 interferonindependent antiviral state. Antimicrob Agents Chemother 60:4552–4562
https://doi.org/10.1128/AAC.00282-16
10 FC Coelho, B Durovni, V Saraceni, C Lemos, CT Codeco, S Camargo, LM De Carvalho, L Bastos, D Arduini, DA Villela (2016) Higher incidence of Zika in adult women than adult men in Rio de Janeiro suggests a significant contribution of sexual transmission from men to women. Int J Infect Dis 51:128–132
https://doi.org/10.1016/j.ijid.2016.08.023
11 CP Collaborative (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr Sect D 50:760
https://doi.org/10.1107/S0907444994003112
12 P Das, X Deng, L Zhang, MG Roth, BM Fontoura, MA Phillips, JK De Brabander (2013) SAR-based optimization of a 4-quinoline carboxylic acid analogue with potent antiviral activity. ACS Med Chem Lett 4:517–521
https://doi.org/10.1021/ml300464h
13 B Davies, T Morris (1993) Physiological parameters in laboratory animals and humans. Pharm Res 10:1093–1095
https://doi.org/10.1023/A:1018943613122
14 Y Debing, J Neyts, L Delang (2015) The future of antivirals: broadspectrum inhibitors. Curr Opin Infect Dis 28:596–602
https://doi.org/10.1097/QCO.0000000000000212
15 C Deng, S Liu, Q Zhang, M Xu, H Zhang, D Gu, L Shi, J He, G Xiao, B Zhang (2016) Isolation and characterization of Zika virus imported to China using C6/36 mosquito cells. Virol Sin 31:176–179
https://doi.org/10.1007/s12250-016-3778-5
16 YY Diao, WQ Lu, HT Jin, JS Zhu, L Han, MH Xu, R Gao, X Shen, ZJ Zhao, XF Liuet al. (2012) Discovery of diverse human dihydroorotate dehydrogenase inhibitors as immunosuppressive agents by structure-based virtual screening. J Med Chem 55:8341–8349
https://doi.org/10.1021/jm300630p
17 P Emsley, B Lohkamp, WG Scott, K Cowtan (2010) Features and development of Coot. Acta Crystallogr Sect D 66:486–501
https://doi.org/10.1107/S0907444910007493
18 P Evans (2006) Scaling and assessment of data quality. Acta Crystallogr Sect D 62:72–82
https://doi.org/10.1107/S0907444905036693
19 RI Fox, ML Herrmann, CG Frangou, GM Wahl, RE Morris, V Strand, BJ Kirschbaum (1999) Mechanism of action for leflunomide in rheumatoid arthritis. Clin Immunol 93:198–208
https://doi.org/10.1006/clim.1999.4777
20 GF Gao (2018) From “A”IV to “Z”IKV: attacks from emerging and reemerging pathogens. Cell 172:1157–1159
https://doi.org/10.1016/j.cell.2018.02.025
21 HN Gao, HZ Lu, B Cao, B Du, H Shang, JH Gan, SH Lu, YD Yang, Q Fang, YZ Shen (2013) Clinical findings in 111 cases of influenza A (H7N9) virus infection. N Engl J Med 368:2277–2285
https://doi.org/10.1056/NEJMoa1305584
22 C Grandin, M-L Hourani, YL Janin, D Dauzonne, H Munier-Lehmann, A Paturet, F Taborik, A Vabret, H Contamin, F Tangy (2016) Respiratory syncytial virus infection in macaques is not suppressed by intranasal sprays of pyrimidine biosynthesis inhibitors. Antiviral Res 125:58–62
https://doi.org/10.1016/j.antiviral.2015.11.006
23 Q Han, C Chang, L Li, C Klenk, J Cheng, Y Chen, N Xia, Y Shu, Z Chen, G Gabrielet al. (2014) Sumoylation of influenza A virus nucleoprotein is essential for intracellular trafficking and virus growth. J Virol 88:9379–9390
https://doi.org/10.1128/JVI.00509-14
24 R Harvey, K Brown, Q Zhang, M Gartland, L Walton, C Talarico, W Lawrence, D Selleseth, N Coffield, J Learyet al. (2009) GSK983: a novel compound with broad-spectrum antiviral activity. Antiviral Res 82:1–11
https://doi.org/10.1016/j.antiviral.2008.12.015
25 H-H Hoffmann, A Kunz, VA Simon, P Palese, ML Shaw (2011) Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis. Proc Natl Acad Sci 108:5777–5782
https://doi.org/10.1073/pnas.1101143108
26 C Huang, Y Wang, X Li, L Ren, J Zhao, Y Hu, L Zhang, G Fan, J Xu, X Guet al. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395:497–506
https://doi.org/10.1016/S0140-6736(20)30183-5
27 I Hung, K To, C Lee, K Lee, W Yan, K Chan, C Ngai, K Law, F Chow, R Liu (2013) Hyperimmune intravenous immunoglobulin treatment: a multicentre double-blind randomized controlled trial for patients with severe A(H1N1)pdm09 infection. Chest 144:464–473
https://doi.org/10.1378/chest.12-2907
28 A Ianevski, PI Andersen, A Merits, M Bjørås, D Kainov (2019) Expanding the activity spectrum of antiviral agents. Drug Discov Today 24:1224–1228
https://doi.org/10.1016/j.drudis.2019.04.006
29 LD Jasenosky, G Neumann, Y Kawaoka (2010) Minigenome-based reporter system suitable for high-throughput screening of compounds able to inhibit ebolavirus replication and/or transcription. Antimicrob Agents Chemother 54:3007
https://doi.org/10.1128/AAC.00138-10
30 PC Jordan, SK Stevens, J Deval (2018) Nucleosides for the treatment of respiratory RNA virus infections. Antiviral Chem Chemother 26:1–19
https://doi.org/10.1177/2040206618764483
31 LP Jordheim, D Durantel, F Zoulim, C Dumontet (2013) Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 12:447–464
https://doi.org/10.1038/nrd4010
32 AC Kottkamp, E De Jesus, R Grande, JA Brown, AR Jacobs, JK Lim, KA Stapleford (2019) Atovaquone inhibits arbovirus replication through the depletion of intracellular nucleotides. J Virol 93: e00389–00319
https://doi.org/10.1128/JVI.00389-19
33 S Li, G Luan, X Ren, W Song, L Xu, M Xu, J Zhu, D Dong, Y Diao, X Liuet al. (2015) Rational design of benzylidenehydrazinylsubstituted thiazole derivatives as potent inhibitors of human dihydroorotate dehydrogenase with in vivo anti-arthritic activity. Sci Rep 5:14836
https://doi.org/10.1038/srep14836
34 Z Liu, Z Guo, G Wang, D Zhang, H He, G Li, Y Liu, D Higgins, A Walsh, L Shanahan-Prendergast (2009) Evaluation of the efficacy and safety of a statin/caffeine combination against H5N1, H3N2 and H1N1 virus infection in BALB/c mice. Eur J Pharm Sci 38:215–223
https://doi.org/10.1016/j.ejps.2009.07.004
35 M Lucas-Hourani, D Dauzonne, P Jorda, G Cousin, A Lupan, O Helynck, G Caignard, G Janvier, G André-Leroux, S Khiar (2013) Inhibition of pyrimidine biosynthesis pathway suppresses viral growth through innate immunity. PLoS Pathog 9:e1003678
https://doi.org/10.1371/journal.ppat.1003678
36 M Lucas-Hourani, D Dauzonne, H Munier-Lehmann, S Khiar, S Nisole, J Dairou, O Helynck, PV Afonso, F Tangy, P-O Vidalain (2017) Original chemical series of pyrimidine biosynthesis inhibitors that boost the antiviral interferon response. Antimicrob Agents Chemother 61:e00383–00317
https://doi.org/10.1128/AAC.00383-17
37 TC Luke, EM Kilbane, JL Jackson, SL Hoffman (2006) Metaanalysis: convalescent blood products for spanish influenza pneumonia: a future H5N1 Treatment? Ann Intern Med 145:599–609
https://doi.org/10.7326/0003-4819-145-8-200610170-00139
38 P Luthra, J Naidoo, CA Pietzsch, S De, S Khadka, M Anantpadma, CG Williams, MR Edwards, RA Davey, A Bukreyev (2018) Inhibiting pyrimidine biosynthesis impairs Ebola virus replication through depletion of nucleoside pools and activation of innate immune responses. Antiviral Res 158:288–302
https://doi.org/10.1016/j.antiviral.2018.08.012
39 M Marschall, I Niemann, K Kosulin, A Bootz, S Wagner, T Dobner, T Herz, B Kramer, J Leban, D Vitt (2013) Assessment of drug candidates for broad-spectrum antiviral therapy targeting cellular pyrimidine biosynthesis. Antiviral Res 100:640–648
https://doi.org/10.1016/j.antiviral.2013.10.003
40 M Matrosovich, T Matrosovich, W Garten, H-D Klenk (2006) New low-viscosity overlay medium for viral plaque assays. Virol J 3:63
https://doi.org/10.1186/1743-422X-3-63
41 Y Matsuoka, EW Lamirande, K Subbarao (2009) The mouse model for influenza. Curr Protoc Microbiol 13:15G–3
https://doi.org/10.1002/9780471729259.mc15g03s13
42 IR McNicholl, JJ McNicholl (2001) Neuraminidase inhibitors: zanamivir and oseltamivir. Ann Pharmacother 35:57–70
https://doi.org/10.1345/aph.10118
43 G Mei-jiao, L Shi-fang, C Yan-yan, S Jun-jun, S Yue-feng, R Ting-ting, Z Yong-guang, C Hui-yun (2019) Antiviral effects of selected IMPDH and DHODH inhibitors against foot and mouth disease virus. Biomed Pharmacother 118:109305
https://doi.org/10.1016/j.biopha.2019.109305
44 JY Min, K Subbarao (2010) Cellular targets for influenza drugs. Nat Biotechnol 28:239–240
https://doi.org/10.1038/nbt0310-239
45 H Munier-Lehmann, PO Vidalain, F Tangy, YL Janin (2013) On dihydroorotate dehydrogenases and their inhibitors and uses. J Med Chem 56:3148–3167
https://doi.org/10.1021/jm301848w
46 GN Murshudov, P Skubák, AA Lebedev, NS Pannu, RA Steiner, RA Nicholls, MD Winn, F Long, AA Vagin (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr Sect D 67:355–367
https://doi.org/10.1107/S0907444911001314
47 M Qing, G Zou, Q-Y Wang, HY Xu, H Dong, Z Yuan, P-Y Shi (2010) Characterization of dengue virus resistance to brequinar in cell culture. Antimicrob Agents Chemother 54:3686–3695
https://doi.org/10.1128/AAC.00561-10
48 A Raveh, PC Delekta, CJ Dobry, W Peng, PJ Schultz, PK Blakely, AW Tai, T Matainaho, DN Irani, DH Sherman (2013) Discovery of potent broad spectrum antivirals derived from marine actinobacteria. PLoS ONE 8:e82318
https://doi.org/10.1371/journal.pone.0082318
49 B Rozman (2002) Clinical pharmacokinetics of leflunomide. Clin Pharmacokinet 41:421–430
https://doi.org/10.2165/00003088-200241060-00003
50 W Song, S Li, Y Tong, J Wang, L Quan, Z Chen, Z Zhao, Y Xu, L Zhu, X Qianet al. (2016) Structure-based design of potent human dihydroorotate dehydrogenase inhibitors as anticancer agents. Med Chem Commun 7:1441–1448
https://doi.org/10.1039/C6MD00179C
51 WW Tang, MP Young, A Mamidi, JA Regla-Nava, K Kim, S Shresta (2016) A mouse model of Zika virus sexual transmission and vaginal viral replication. Cell Rep 17:3091–3098
https://doi.org/10.1016/j.celrep.2016.11.070
52 L Van Hoecke, ER Job, X Saelens, K Roose (2017) Bronchoalveolar lavage of murine lungs to analyze inflammatory cell infiltration. JoVE 123:e55398
https://doi.org/10.3791/55398
53 S Wan, Q Yi, S Fan, J Lv, X Zhang, L Guo, C Lang, Q Xiao, K Xiao, Z Yiet al. (2020) Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). medRxiv
https://doi.org/10.1101/2020.02.10.20021832
54 CH Wang, C-Y Liu, Y-L Wan, C-L Chou, K-H Huang, H-C Lin, S-M Lin, T-Y Lin, KF Chung, H-P Kuo (2005) Persistence of lung inflammation and lung cytokines with high-resolution CT abnormalities during recovery from SARS. Respir Res 6:42
https://doi.org/10.1186/1465-9921-6-42
55 QY Wang, S Bushell, M Qing, HY Xu, A Bonavia, S Nunes, J Zhou, MK Poh, P Florez de Sessions, P Niyomrattanakitet al. (2011) Inhibition of dengue virus through suppression of host pyrimidine biosynthesis. J Virol 85:6548–6556
https://doi.org/10.1128/JVI.02510-10
56 M Wang, R Cao, L Zhang, X Yang, J Liu, M Xu, Z Shi, Z Hu, W Zhong, G Xiao (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30:269–271
https://doi.org/10.1038/s41422-020-0282-0
57 CK Wong, CWK Lam, AKL Wu, WK Ip, NLS Lee, IHS Chan, JJY Sung (2004) Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol 136:95–103
https://doi.org/10.1111/j.1365-2249.2004.02415.x
58 F Wu, S Zhao, B Yu, YM Chen, W Wang, ZG Song, Y Hu, ZW Tao, JH Tian, YY Peiet al. (2020) A new coronavirus associated with human respiratory disease in China. Nature 579:265–269
https://doi.org/10.1038/s41586-020-2008-3
59 Y Yang, L Cao, H Gao, Y Wu, Y Wang, F Fang, T Lan, Z Lou, Y Rao (2019) Discovery, optimization, and target identification of novel potent broad-spectrum antiviral inhibitors. J Med Chem 62:4056–4073
https://doi.org/10.1021/acs.jmedchem.9b00091
60 S Yokota (2003) Influenza-associated encephalopathy–pathophysiology and disease mechanisms. Jpn J Clin Med 61:1953–1958
61 KY Yuen, SS Wong (2005) Human infection by avian influenza A H5N1. Hong Kong Med J 11:189–199
62 H Zeng, WJ Waldman, DP Yin, DA Knight, J Shen, L Ma, GT Meister, AS Chong, JW Williams (2005) Mechanistic study of malononitrileamide FK778 in cardiac transplantation and CMV infection in rats. Transplantation 79:17–22
https://doi.org/10.1097/01.TP.0000137334.46155.94
63 Y Zhang, J Li, Y Zhan, L Wu, X Yu, W Zhang, L Ye, S Xu, R Sun, Y Wang (2004) Analysis of serum cytokines in patients with severe acute respiratory syndrome. Infect Immun 72:4410–4415
https://doi.org/10.1128/IAI.72.8.4410-4415.2004
64 P Zhou, XL Yang, XG Wang, B Hu, L Zhang, W Zhang, HR Si, Y Zhu, B Li, CL Huanget al. (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273
https://doi.org/10.1038/s41586-020-2012-7
65 J Zhu, L Han, Y Diao, X Ren, M Xu, L Xu, S Li, Q Li, D Dong, J Huanget al. (2015a) Design, synthesis, X-ray crystallographic analysis, and biological evaluation of thiazole derivatives as potent and selective inhibitors of human dihydroorotate dehydrogenase. J Med Chem 58:1123–1139
https://doi.org/10.1021/jm501127s
66 JD Zhu, W Meng, XJ Wang, HC Wang (2015b) Broad-spectrum antiviral agents. Front Microbiol 6:517
https://doi.org/10.3389/fmicb.2015.00517
[1] PAC-0723-20925-LHL_suppl_1 Download
[2] PAC-0723-20925-LHL_suppl_2 Download
[1] Zezhong Liu, Wei Xu, Zhenguo Chen, Wangjun Fu, Wuqiang Zhan, Yidan Gao, Jie Zhou, Yunjiao Zhou, Jianbo Wu, Qian Wang, Xiang Zhang, Aihua Hao, Wei Wu, Qianqian Zhang, Yaming Li, Kaiyue Fan, Ruihong Chen, Qiaochu Jiang, Christian T. Mayer, Till Schoofs, Youhua Xie, Shibo Jiang, Yumei Wen, Zhenghong Yuan, Kang Wang, Lu Lu, Lei Sun, Qiao Wang. An ultrapotent pan-β-coronavirus lineage B (β-CoV-B) neutralizing antibody locks the receptor-binding domain in closed conformation by targeting its conserved epitope[J]. Protein Cell, 2022, 13(9): 655-675.
[2] Yichen Li, Shuaiyao Lu, Jinge Gu, Wencheng Xia, Shengnan Zhang, Shenqing Zhang, Yan Wang, Chong Zhang, Yunpeng Sun, Jian Lei, Cong Liu, Zhaoming Su, Juntao Yang, Xiaozhong Peng, Dan Li. SARS-CoV-2 impairs the disassembly of stress granules and promotes ALS-associated amyloid aggregation[J]. Protein Cell, 2022, 13(8): 602-614.
[3] Rongjuan Pei, Jianqi Feng, Yecheng Zhang, Hao Sun, Lian Li, Xuejie Yang, Jiangping He, Shuqi Xiao, Jin Xiong, Ying Lin, Kun Wen, Hongwei Zhou, Jiekai Chen, Zhili Rong, Xinwen Chen. Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection[J]. Protein Cell, 2021, 12(9): 717-733.
[4] Yao Zhao, Xiaoyu Du, Yinkai Duan, Xiaoyan Pan, Yifang Sun, Tian You, Lin Han, Zhenming Jin, Weijuan Shang, Jing Yu, Hangtian Guo, Qianying Liu, Yan Wu, Chao Peng, Jun Wang, Chenghao Zhu, Xiuna Yang, Kailin Yang, Ying Lei, Luke W. Guddat, Wenqing Xu, Gengfu Xiao, Lei Sun, Leike Zhang, Zihe Rao, Haitao Yang. High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors[J]. Protein Cell, 2021, 12(11): 877-888.
[5] Hua Qin, Andong Zhao. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics[J]. Protein Cell, 2020, 11(10): 707-722.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed