|
|
|
Gut microbes in cardiovascular diseases and their potential therapeutic applications |
Ling Jin1, Xiaoming Shi2, Jing Yang2, Yangyu Zhao2, Lixiang Xue1( ), Li Xu3( ), Jun Cai4( ) |
1. Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China 2. Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China 3. Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, China 4. Hypertension center of Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China |
|
|
|
|
Abstract Microbial ecosystem comprises a complex community in which bacteria interact with each other. The potential roles of the intestinal microbiome play in human health have gained considerable attention. The imbalance of gut microbial community has been looked to multiple chronic diseases. Cardiovascular diseases (CVDs) are leading causes of morbidity worldwide and are influenced by genetic and environmental factors. Recent advances have provided scientific evidence that CVD may also be attributed to gut microbiome. In this review, we highlight the complex interplay between microbes, their metabolites, and the potential influence on the generation and development of CVDs. The therapeutic potential of using intestinal microbiomes to treat CVD is also discussed. It is quite possible that gut microbes may be used for clinical treatments of CVD in the near future.
|
| Keywords
gut microbiota
cardiovascular diseases
action mechanism
therapeutic applications
|
|
Corresponding Author(s):
Lixiang Xue,Li Xu,Jun Cai
|
|
Online First Date: 11 January 2021
Issue Date: 08 June 2021
|
|
| 1 |
S Adnan, JW Nelson, NJ Ajami, VR Venna, JF Petrosino, RM Jr Bryan, DJ Durgan (2017) Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics 49:96–104
https://doi.org/10.1152/physiolgenomics.00081.2016
|
| 2 |
EC Aguilar, AJ Leonel, LG Teixeira, AR Silva, JF Silva, JM Pelaez, LS Capettini, VS Lemos, RA Santos, JI Alvarez-Leite (2014) Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFkappaB activation. Nutr Metab Cardiovasc Dis 24:606–613
https://doi.org/10.1016/j.numecd.2014.01.002
|
| 3 |
AF Ahmad, G Dwivedi, F O’Gara, J Caparros-Martin, NC Ward (2019) The gut microbiome and cardiovascular disease: current knowledge and clinical potential. Am J Physiol Heart Circ Physiol 317:H923–H938
https://doi.org/10.1152/ajpheart.00376.2019
|
| 4 |
LJ Appel, TJ Moore, E Obarzanek, WM Vollmer, LP Svetkey, FM Sacks, GA Bray, TM Vogt, JA Cutler, MM Windhauseret al. (1997) A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med 336:1117–1124
https://doi.org/10.1056/NEJM199704173361601
|
| 5 |
MAK Azad, M Sarker, T Li, J Yin (2018) Probiotic species in the modulation of gut microbiota: an overview. Biomed Res Int 2018:9478630
https://doi.org/10.1155/2018/9478630
|
| 6 |
H Bartolomaeus, A Balogh, M Yakoub, S Homann, L Marko, S Hoges, D Tsvetkov, A Krannich, S Wundersitz, EG Averyet al. (2019) Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 139:1407–1421
https://doi.org/10.1161/CIRCULATIONAHA.118.036652
|
| 7 |
ML Battson, DM Lee, DK Jarrell, S Hou, KE Ecton, TL Weir, CL Gentile (2018a) Suppression of gut dysbiosis reverses Western dietinduced vascular dysfunction. Am J Physiol Endocrinol Metab 314:E468–E477
https://doi.org/10.1152/ajpendo.00187.2017
|
| 8 |
ML Battson, DM Lee, TL Weir, CL Gentile (2018b) The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem 56:1–15
https://doi.org/10.1016/j.jnutbio.2017.12.010
|
| 9 |
E Blacher, M Levy, E Tatirovsky, E Elinav (2017) Microbiomemodulated metabolites at the interface of host immunity. J Immunol 198:572–580
https://doi.org/10.4049/jimmunol.1601247
|
| 10 |
VE Brunt, RA Gioscia-Ryan, AG Casso, NS VanDongen, BP Ziemba, ZJ Sapinsley, JJ Richey, MC Zigler, AP Neilson, KP Davyet al. (2020) Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans. Hypertension 76:101–112
https://doi.org/10.1161/HYPERTENSIONAHA.120.14759
|
| 11 |
CA Cason, KT Dolan, G Sharma, M Tao, R Kulkarni, IB Helenowski, BM Doane, MJ Avram, MM McDermott, EB Changet al. (2018) Plasma microbiome-modulated indoleand phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J Vasc Surg 68(1552–1562):e1557
https://doi.org/10.1016/j.jvs.2017.09.029
|
| 12 |
DJ Castillo, RF Rifkin, DA Cowan, M Potgieter (2019) The healthy human blood microbiome: fact or fiction? Front Cell Infect Microbiol 9:148
https://doi.org/10.3389/fcimb.2019.00148
|
| 13 |
YK Chan, MS Brar, PV Kirjavainen, Y Chen, J Peng, D Li, FC Leung, H El-Nezami (2016a) High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE (-/-) mice. BMC Microbiol 16:264
https://doi.org/10.1186/s12866-016-0883-4
|
| 14 |
YK Chan, H El-Nezami, Y Chen, K Kinnunen, PV Kirjavainen (2016b) Probiotic mixture VSL#3 reduce high fat diet induced vascular inflammation and atherosclerosis in ApoE(-/-) mice. AMB Express 6:61
https://doi.org/10.1186/s13568-016-0229-5
|
| 15 |
S Chen, A Henderson, MC Petriello, KA Romano, M Gearing, J Miao, M Schell, WJ Sandoval-Espinola, J Tao, B Shaet al. (2019) Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab 30(1141–1151):e1145
https://doi.org/10.1016/j.cmet.2019.08.021
|
| 16 |
YJ Cheng, XY Nie, XM Chen, XX Lin, K Tang, WT Zeng, WY Mei, LJ Liu, M Long, FJ Yaoet al. (2015) The role of macrolide antibiotics in increasing cardiovascular risk. J Am Coll Cardiol 66:2173–2184
https://doi.org/10.1016/j.jacc.2015.09.029
|
| 17 |
F Cheung (2011) TCM: made in China. Nature 480:S82–83
https://doi.org/10.1038/480S82a
|
| 18 |
JC Clemente, LK Ursell, LW Parfrey, R Knight (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270
https://doi.org/10.1016/j.cell.2012.01.035
|
| 19 |
X Cui, L Ye, J Li, L Jin, W Wang, S Li, M Bao, S Wu, L Li, B Genget al. (2018) Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 8:635
https://doi.org/10.1038/s41598-017-18756-2
|
| 20 |
LA David, CF Maurice, RN Carmody, DB Gootenberg, JE Button, BE Wolfe, AV Ling, AS Devlin, Y Varma, MA Fischbachet al. (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563
https://doi.org/10.1038/nature12820
|
| 21 |
J Davignon, P Ganz (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109:III27–III32
https://doi.org/10.1161/01.CIR.0000131515.03336.f8
|
| 22 |
F De Filippis, N Pellegrini, L Vannini, IB Jeffery, A La Storia, L Laghi, DI Serrazanetti, R Di Cagno, I Ferrocino, C Lazziet al. (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65:1812–1821
https://doi.org/10.1136/gutjnl-2015-309957
|
| 23 |
MS Desai, AM Seekatz, NM Koropatkin, N Kamada, CA Hickey, M Wolter, NA Pudlo, S Kitamoto, N Terrapon, A Mulleret al. (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167(1339–1353):e1321
https://doi.org/10.1016/j.cell.2016.10.043
|
| 24 |
V Dinakaran, L John, A Rathinavel, P Gunasekaran, J Rajendhran (2012) Prevalence of bacteria in the circulation of cardiovascular disease patients, Madurai, India. Heart Lung Circ 21:281–283
https://doi.org/10.1016/j.hlc.2012.02.007
|
| 25 |
V Dinakaran, A Rathinavel, M Pushpanathan, R Sivakumar, P Gunasekaran, J Rajendhran (2014) Elevated levels of circulating DNA in cardiovascular disease patients: metagenomic profiling of microbiome in the circulation. PLoS ONE 9:e105221
https://doi.org/10.1371/journal.pone.0105221
|
| 26 |
DR Donohoe, N Garge, X Zhang, W Sun, TM O’Connell, MK Bunger, SJ Bultman (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526
https://doi.org/10.1016/j.cmet.2011.02.018
|
| 27 |
SH Duncan, A Belenguer, G Holtrop, AM Johnstone, HJ Flint, GE Lobley (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73:1073–1078
https://doi.org/10.1128/AEM.02340-06
|
| 28 |
DJ Durgan, BP Ganesh, JL Cope, NJ Ajami, SC Phillips, JF Petrosino, EB Hollister, RM Jr Bryan (2016) Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension 67:469–474
https://doi.org/10.1161/HYPERTENSIONAHA.115.06672
|
| 29 |
F Fak, F Backhed (2012) Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe-/mice. PLoS ONE 7:e46837
https://doi.org/10.1371/journal.pone.0046837
|
| 30 |
EA Franzosa, T Hsu, A Sirota-Madi, A Shafquat, G Abu-Ali, XC Morgan, C Huttenhower (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13:360–372
https://doi.org/10.1038/nrmicro3451
|
| 31 |
K Fukami, S Yamagishi, K Sakai, Y Kaida, M Yokoro, S Ueda, Y Wada, M Takeuchi, M Shimizu, H Yamazakiet al. (2015) Oral L-carnitine supplementation increases trimethylamine-N-oxide but reduces markers of vascular injury in hemodialysis patients. J Cardiovasc Pharmacol 65:289–295
https://doi.org/10.1097/FJC.0000000000000197
|
| 32 |
XT Gan, G Ettinger, CX Huang, JP Burton, JV Haist, V Rajapurohitam, JE Sidaway, G Martin, GB Gloor, JR Swannet al. (2014) Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail 7:491–499
https://doi.org/10.1161/CIRCHEARTFAILURE.113.000978
|
| 33 |
LF Gomez-Arango, HL Barrett, HD McIntyre, LK Callaway, M Morrison, M Dekker Nitert, ST Group (2016) Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension 68:974–981
https://doi.org/10.1161/HYPERTENSIONAHA.116.07910
|
| 34 |
M Gomez-Guzman, M Toral, M Romero, R Jimenez, P Galindo, M Sanchez, MJ Zarzuelo, M Olivares, J Galvez, J Duarte (2015) Antihypertensive effects of probiotics Lactobacillus strains in spontaneously hypertensive rats. Mol Nutr Food Res 59:2326–2336
https://doi.org/10.1002/mnfr.201500290
|
| 35 |
A Gozd-Barszczewska, M Koziol-Montewka, P Barszczewski, A Mlodzinska, K Huminska (2017) Gut microbiome as a biomarker of cardiometabolic disorders. Ann Agric Environ Med 24:416–422
https://doi.org/10.26444/aaem/75456
|
| 36 |
SI Halkjaer, AH Christensen, BZS Lo, PD Browne, S Gunther, LH Hansen, AM Petersen (2018) Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebocontrolled study. Gut 67:2107–2115
https://doi.org/10.1136/gutjnl-2018-316434
|
| 37 |
K He, Y Hu, H Ma, Z Zou, Y Xiao, Y Yang, M Feng, X Li, X Ye (2016) Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways. Biochim Biophys Acta 1862:1696–1709
https://doi.org/10.1016/j.bbadis.2016.06.006
|
| 38 |
JW Honour, SP Borriello, U Ganten, P Honour (1985) Antibiotics attenuate experimental hypertension in rats. J Endocrinol 105:347–350
https://doi.org/10.1677/joe.0.1050347
|
| 39 |
Y Huang, J Wang, G Quan, X Wang, L Yang, L Zhong (2014) Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice. Appl Environ Microbiol 80:7496–7504
https://doi.org/10.1128/AEM.02926-14
|
| 40 |
VM Isabella, BN Ha, MJ Castillo, DJ Lubkowicz, SE Rowe, YA Millet, CL Anderson, N Li, AB Fisher, KA Westet al. (2018) Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat Biotechnol 36:857–864
https://doi.org/10.1038/nbt.4222
|
| 41 |
Z Jie, H Xia, SL Zhong, Q Feng, S Li, S Liang, H Zhong, Z Liu, Y Gao, H Zhaoet al. (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:845
https://doi.org/10.1038/s41467-017-00900-1
|
| 42 |
M Jin, Z Qian, J Yin, W Xu, X Zhou (2019) The role of intestinal microbiota in cardiovascular disease. J Cell Mol Med 23:2343–2350
https://doi.org/10.1111/jcmm.14195
|
| 43 |
T Kamo, H Akazawa, W Suda, A Saga-Kamo, Y Shimizu, H Yagi, Q Liu, S Nomura, AT Naito, N Takedaet al. (2017) Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS ONE 12:e0174099
https://doi.org/10.1371/journal.pone.0174099
|
| 44 |
C Karlsson, S Ahrne, G Molin, A Berggren, I Palmquist, GN Fredrikson, B Jeppsson (2010) Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterial diversity in colon: a randomized controlled trial. Atherosclerosis 208:228–233
https://doi.org/10.1016/j.atherosclerosis.2009.06.019
|
| 45 |
FH Karlsson, F Fak, I Nookaew, V Tremaroli, B Fagerberg, D Petranovic, F Backhed, J Nielsen (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3:1245
https://doi.org/10.1038/ncomms2266
|
| 46 |
K Kasahara, KA Krautkramer, E Org, KA Romano, RL Kerby, EI Vivas, M Mehrabian, JM Denu, F Backhed, AJ Lusiset al. (2018) Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 3:1461–1471
https://doi.org/10.1038/s41564-018-0272-x
|
| 47 |
S Khalesi, J Sun, N Buys, R Jayasinghe (2014) Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension 64:897–903
https://doi.org/10.1161/HYPERTENSIONAHA.114.03469
|
| 48 |
S Khalesi, N Bellissimo, C Vandelanotte, S Williams, D Stanley, C Irwin (2019) A review of probiotic supplementation in healthy adults: helpful or hype? Eur J Clin Nutr 73:24–37
https://doi.org/10.1038/s41430-018-0135-9
|
| 49 |
RA Koeth, Z Wang, BS Levison, JA Buffa, E Org, BT Sheehy, EB Britt, X Fu, Y Wu, L Liet al. (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585
https://doi.org/10.1038/nm.3145
|
| 50 |
V Lam, J Su, S Koprowski, A Hsu, JS Tweddell, P Rafiee, GJ Gross, NH Salzman, JE Baker (2012) Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J 26:1727–1735
https://doi.org/10.1096/fj.11-197921
|
| 51 |
V Lam, J Su, A Hsu, GJ Gross, NH Salzman, JE Baker (2016) Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS ONE 11:e0160840
https://doi.org/10.1371/journal.pone.0160840
|
| 52 |
KN Lam, M Alexander, PJ Turnbaugh (2019) Precision medicine goes microscopic: engineering the microbiome to improve drug outcomes. Cell Host Microbe 26:22–34
https://doi.org/10.1016/j.chom.2019.06.011
|
| 53 |
M Li, X Shu, H Xu, C Zhang, L Yang, L Zhang, G Ji (2016) Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine compounds. J Transl Med 14:237
https://doi.org/10.1186/s12967-016-0987-5
|
| 54 |
J Li, F Zhao, Y Wang, J Chen, J Tao, G Tian, S Wu, W Liu, Q Cui, B Genget al. (2017a) Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5:14
https://doi.org/10.1186/s40168-016-0222-x
|
| 55 |
XS Li, S Obeid, R Klingenberg, B Gencer, F Mach, L Raber, S Windecker, N Rodondi, D Nanchen, O Mulleret al. (2017b) Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J 38:814–824
https://doi.org/10.1093/eurheartj/ehw582
|
| 56 |
P Libby, PM Ridker, A Maseri (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143
https://doi.org/10.1161/hc0902.104353
|
| 57 |
R Lopez-Mejias, F Genre, M Garcia-Bermudez, B Ubilla, S Castaneda, J Llorca, C Gonzalez-Juanatey, A Corrales, JA Miranda-Filloy, T Pinaet al. (2014) Lack of association between ABO, PPAP2B, ADAMST7, PIK3CG, and EDNRA and carotid intima-media thickness, carotid plaques, and cardiovascular disease in patients with rheumatoid arthritis. Mediators Inflamm 2014:756279
https://doi.org/10.1155/2014/756279
|
| 58 |
M Luedde, T Winkler, FA Heinsen, MC Ruhlemann, ME Spehlmann, A Bajrovic, W Lieb, A Franke, SJ Ott, N Frey (2017) Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail 4:282–290
https://doi.org/10.1002/ehf2.12155
|
| 59 |
P Mamic, PA Heidenreich, H Hedlin, L Tennakoon, KL Staudenmayer (2016) Hospitalized patients with heart failure and common bacterial infections: a nationwide analysis of concomitant clostridium difficile infection rates and in-hospital mortality. J Card Fail 22:891–900
https://doi.org/10.1016/j.cardfail.2016.06.005
|
| 60 |
FZ Marques, E Nelson, PY Chu, D Horlock, A Fiedler, M Ziemann, JK Tan, S Kuruppu, NW Rajapakse, A El-Ostaet al. (2017) Highfiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135:964–977
https://doi.org/10.1161/CIRCULATIONAHA.116.024545
|
| 61 |
P Maruvada, V Leone, LM Kaplan, EB Chang (2017) The human microbiome and obesity: moving beyond associations. Cell Host Microbe 22:589–599
https://doi.org/10.1016/j.chom.2017.10.005
|
| 62 |
B Mell, VR Jala, AV Mathew, J Byun, H Waghulde, Y Zhang, B Haribabu, M Vijay-Kumar, S Pennathur, B Joe (2015) Evidence for a link between gut microbiota and hypertension in the Dahl rat. Physiol Genomics 47:187–197
https://doi.org/10.1152/physiolgenomics.00136.2014
|
| 63 |
A Mencarelli, S Cipriani, B Renga, A Bruno, C D’Amore, E Distrutti, S Fiorucci (2012) VSL#3 resets insulin signaling and protects against NASH and atherosclerosis in a model of genetic dyslipidemia and intestinal inflammation. PLoS ONE 7:e45425
https://doi.org/10.1371/journal.pone.0045425
|
| 64 |
G Molin (2001) Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v. Am J Clin Nutr 73:380S–385S
https://doi.org/10.1093/ajcn/73.2.380s
|
| 65 |
M Naruszewicz, ML Johansson, D Zapolska-Downar, H Bukowska (2002) Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am J Clin Nutr 76:1249–1255
https://doi.org/10.1093/ajcn/76.6.1249
|
| 66 |
N Natarajan, D Hori, S Flavahan, J Steppan, NA Flavahan, DE Berkowitz, JL Pluznick (2016) Microbial short chain fatty acid metabolites lower blood pressure via endothelial G proteincoupled receptor 41. Physiol Genomics 48:826–834
https://doi.org/10.1152/physiolgenomics.00089.2016
|
| 67 |
I Nemet, PP Saha, N Gupta, W Zhu, KA Romano, SM Skye, T Cajka, ML Mohan, L Li, Y Wuet al. (2020) A cardiovascular diseaselinked gut microbial metabolite acts via adrenergic receptors. Cell 180(862–877):e822
https://doi.org/10.1016/j.cell.2020.02.016
|
| 68 |
SJ Ott, NE El Mokhtari, M Musfeldt, S Hellmig, S Freitag, A Rehman, T Kuhbacher, S Nikolaus, P Namsolleck, M Blautet al. (2006) Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113:929–937
https://doi.org/10.1161/CIRCULATIONAHA.105.579979
|
| 69 |
T Ozdal, DA Sela, J Xiao, D Boyacioglu, F Chen, E Capanoglu (2016) The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8:78
https://doi.org/10.3390/nu8020078
|
| 70 |
E Pasini, R Aquilani, C Testa, P Baiardi, S Angioletti, F Boschi, M Verri, F Dioguardi (2016) Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail 4:220–227
https://doi.org/10.1016/j.jchf.2015.10.009
|
| 71 |
J Pluznick (2014) A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes 5:202–207
https://doi.org/10.4161/gmic.27492
|
| 72 |
JL Pluznick, RJ Protzko, H Gevorgyan, Z Peterlin, A Sipos, J Han, I Brunet, LX Wan, F Rey, T Wanget al. (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA 110:4410–4415
https://doi.org/10.1073/pnas.1215927110
|
| 73 |
R Poesen, K Claes, P Evenepoel, H de Loor, P Augustijns, D Kuypers, B Meijers (2016) Microbiota-derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. J Am Soc Nephrol 27:3479–3487
https://doi.org/10.1681/ASN.2015121302
|
| 74 |
LR Portugal, JL Goncalves, LR Fernandes, HP Silva, RM Arantes, JR Nicoli, LQ Vieira, JI Alvarez-Leite (2006) Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis in apolipoprotein E knock-out mice. Braz J Med Biol Res 39:629–635
https://doi.org/10.1590/S0100-879X2006000500010
|
| 75 |
Y Qi, JM Aranda, V Rodriguez, MK Raizada, CJ Pepine (2015) Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension—a case report. Int J Cardiol 201:157–158
https://doi.org/10.1016/j.ijcard.2015.07.078
|
| 76 |
J Qin, R Li, J Raes, M Arumugam, KS Burgdorf, C Manichanh, T Nielsen, N Pons, F Levenez, T Yamadaet al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65
https://doi.org/10.1038/nature08821
|
| 77 |
J Rajendhran, M Shankar, V Dinakaran, A Rathinavel, P Gunasekaran (2013) Contrasting circulating microbiome in cardiovascular disease patients and healthy individuals. Int J Cardiol 168:5118–5120
https://doi.org/10.1016/j.ijcard.2013.07.232
|
| 78 |
AB Roberts, X Gu, JA Buffa, AG Hurd, Z Wang, W Zhu, N Gupta, SM Skye, DB Cody, BS Levisonet al. (2018) Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 24:1407–1417
https://doi.org/10.1038/s41591-018-0128-1
|
| 79 |
C Ronda, SP Chen, V Cabral, SJ Yaung, HH Wang (2019) Metagenomic engineering of the mammalian gut microbiome in situ. Nat Methods 16:167–170
https://doi.org/10.1038/s41592-018-0301-y
|
| 80 |
A Sandek, J Bauditz, A Swidsinski, S Buhner, J Weber-Eibel, S von Haehling, W Schroedl, T Karhausen, W Doehner, M Rauchhauset al. (2007) Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol 50:1561–1569
https://doi.org/10.1016/j.jacc.2007.07.016
|
| 81 |
A Sandek, I Bjarnason, HD Volk, R Crane, JB Meddings, J Niebauer, PR Kalra, S Buhner, R Herrmann, J Springeret al. (2012) Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol 157:80–85
https://doi.org/10.1016/j.ijcard.2010.12.016
|
| 82 |
MM Santisteban, Y Qi, J Zubcevic, S Kim, T Yang, V Shenoy, CT ColeJeffrey, GO Lobaton, DC Stewart, A Rubianoet al. (2017) Hypertension-linked pathophysiological alterations in the gut. Circ Res 120:312–323
https://doi.org/10.1161/CIRCRESAHA.116.309006
|
| 83 |
I Sekirov, SL Russell, LC Antunes, BB Finlay (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904
https://doi.org/10.1152/physrev.00045.2009
|
| 84 |
MM Seldin, Y Meng, H Qi, W Zhu, Z Wang, SL Hazen, AJ Lusis, DM Shih (2016) Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kappaB. J Am Heart Assoc 5.
https://doi.org/10.1161/JAHA.115.002767
|
| 85 |
V Senthong, Z Wang, Y Fan, Y Wu, SL Hazen, WH Tang (2016a) Trimethylamine N-oxide and mortality risk in patients with peripheral artery disease. J Am Heart Assoc 5.
https://doi.org/10.1161/JAHA.116.004237
|
| 86 |
V Senthong, Z Wang, XS Li, Y Fan, Y Wu, WH Tang, SL Hazen (2016b) Intestinal microbiota-generated metabolite trimethylamine-N-oxide and 5-year mortality risk in stable coronary artery disease: the contributory role of intestinal microbiota in a COURAGE-like patient cohort. J Am Heart Assoc 5.
https://doi.org/10.1161/JAHA.115.002816
|
| 87 |
M Shimizu, M Hashiguchi, T Shiga, HO Tamura, M Mochizuki (2015) Meta-analysis: effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS ONE 10:e0139795
https://doi.org/10.1371/journal.pone.0139795
|
| 88 |
WH Tang, SL Hazen (2017) The gut microbiome and its role in cardiovascular diseases. Circulation 135:1008–1010
https://doi.org/10.1161/CIRCULATIONAHA.116.024251
|
| 89 |
WH Tang, Z Wang, BS Levison, RA Koeth, EB Britt, X Fu, Y Wu, SL Hazen (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584
https://doi.org/10.1056/NEJMoa1109400
|
| 90 |
WH Tang, Z Wang, Y Fan, B Levison, JE Hazen, LM Donahue, Y Wu, SL Hazen (2014) Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 64:1908–1914
https://doi.org/10.1016/j.jacc.2014.02.617
|
| 91 |
WH Tang, Z Wang, K Shrestha, AG Borowski, Y Wu, RW Troughton, AL Klein, SL Hazen (2015) Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail 21:91–96
https://doi.org/10.1016/j.cardfail.2014.11.006
|
| 92 |
A Trichopoulou, C Bamia, D Trichopoulos (2009) Anatomy of health effects of Mediterranean diet: Greek EPIC prospective cohort study. BMJ 338:b2337
https://doi.org/10.1136/bmj.b2337
|
| 93 |
PJ Turnbaugh (2020) Diet should be a tool for researchers, not a treatment. Nature 577:S23
https://doi.org/10.1038/d41586-020-00202-5
|
| 94 |
E Vaghef-Mehrabany, L Vaghef-Mehrabany, M Asghari-Jafarabadi, A Homayouni-Rad, K Issazadeh, B Alipour (2017) Effects of probiotic supplementation on lipid profile of women with rheumatoid arthritis: A randomized placebo-controlled clinical trial. Health Promot Perspect 7:95–101
https://doi.org/10.15171/hpp.2017.17
|
| 95 |
E van Nood, A Vrieze, M Nieuwdorp, S Fuentes, EG Zoetendal, WM de Vos, CE Visser, EJ Kuijper, JF Bartelsman, JG Tijssenet al. (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415
https://doi.org/10.1056/NEJMoa1205037
|
| 96 |
A Vrieze, E Van Nood, F Holleman, J Salojarvi, RS Kootte, JF Bartelsman, GM Dallinga-Thie, MT Ackermans, MJ Serlie, R Oozeeret al. (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(913–916):e917
https://doi.org/10.1053/j.gastro.2012.06.031
|
| 97 |
J Walter, AM Armet, BB Finlay, F Shanahan (2020) Establishing or exaggerating causality for the gut microbiome: lessons from human microbiota-associated rodents. Cell 180:221–232
https://doi.org/10.1016/j.cell.2019.12.025
|
| 98 |
Z Wang, Y Zhao (2018) Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell 9:416–431
https://doi.org/10.1007/s13238-018-0549-0
|
| 99 |
Z Wang, E Klipfell, BJ Bennett, R Koeth, BS Levison, B Dugar, AE Feldstein, EB Britt, X Fu, YM Chunget al. (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63
https://doi.org/10.1038/nature09922
|
| 100 |
Z Wang, WH Tang, JA Buffa, X Fu, EB Britt, RA Koeth, BS Levison, Y Fan, Y Wu, SL Hazen (2014) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35:904–910
https://doi.org/10.1093/eurheartj/ehu002
|
| 101 |
Z Wang, AB Roberts, JA Buffa, BS Levison, W Zhu, E Org, X Gu, Y Huang, M Zamanian-Daryoush, MK Culleyet al. (2015) Nonlethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163:1585–1595
https://doi.org/10.1016/j.cell.2015.11.055
|
| 102 |
L Wang, Q Zhu, A Lu, X Liu, L Zhang, C Xu, X Liu, H Li, T Yang (2017) Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system. J Hypertens 35:1899–1908
https://doi.org/10.1097/HJH.0000000000001378
|
| 103 |
N Wilck, MG Matus, SM Kearney, SW Olesen, K Forslund, H Bartolomaeus, S Haase, A Mahler, A Balogh, L Markoet al. (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551:585–589
https://doi.org/10.1038/nature24628
|
| 104 |
XM Wu, RX Tan (2019) Interaction between gut microbiota and ethnomedicine constituents. Nat Prod Rep 36:788–809
https://doi.org/10.1039/C8NP00041G
|
| 105 |
S Xiao, N Fei, X Pang, J Shen, L Wang, B Zhang, M Zhang, X Zhang, C Zhang, M Liet al. (2014) A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiol Ecol 87:357–367
https://doi.org/10.1111/1574-6941.12228
|
| 106 |
Z Xu, R Knight (2015) Dietary effects on human gut microbiome diversity. Br J Nutr 113(Suppl):S1–5
https://doi.org/10.1017/S0007114514004127
|
| 107 |
L Xue, J He, N Gao, X Lu, M Li, X Wu, Z Liu, Y Jin, J Liu, J Xuet al. (2017) Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep 7:45176
https://doi.org/10.1038/srep45176
|
| 108 |
Q Yan, Y Gu, X Li, W Yang, L Jia, C Chen, X Han, Y Huang, L Zhao, P Liet al. (2017) Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol 7:381
https://doi.org/10.3389/fcimb.2017.00381
|
| 109 |
T Yang, MM Santisteban, V Rodriguez, E Li, N Ahmari, JM Carvajal, M Zadeh, M Gong, Y Qi, J Zubcevicet al. (2015) Gut dysbiosis is linked to hypertension. Hypertension 65:1331–1340
https://doi.org/10.1161/HYPERTENSIONAHA.115.05315
|
| 110 |
F Zhang, B Cui, X He, Y Nie, K Wu, D Fan, FMSS Group (2018) Microbiota transplantation: concept, methodology and strategy for its modernization. Protein Cell 9:462–473
https://doi.org/10.1007/s13238-018-0541-8
|
| 111 |
F Zhang, T Zhang, H Zhu, TJ Borody (2019) Evolution of fecal microbiota transplantation in methodology and ethical issues. Curr Opin Pharmacol 49:11–16
https://doi.org/10.1016/j.coph.2019.04.004
|
| 112 |
X Zhou, J Li, J Guo, B Geng, W Ji, Q Zhao, J Li, X Liu, J Liu, Z Guoet al. (2018) Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome 6:66
https://doi.org/10.1186/s40168-018-0441-4
|
| 113 |
W Zhu, K Lin, K Li, X Deng, C Li (2018) Reshaped fecal gut microbiota composition by the intake of high molecular weight persimmon tannin in normal and high-cholesterol diet-fed rats. Food Funct 9:541–551
https://doi.org/10.1039/C7FO00995J
|
| 114 |
EE Ziganshina, DM Sharifullina, AP Lozhkin, RN Khayrullin, IM Ignatyev, AM Ziganshin (2016) Bacterial communities associated with atherosclerotic plaques from russian individuals with atherosclerosis. PLoS ONE 11:e0164836
https://doi.org/10.1371/journal.pone.0164836
|
| 115 |
K Zuo, J Li, K Li, C Hu, Y Gao, M Chen, R Hu, Y Liu, H Chi, H Wanget al. (2019a) Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. Gigascience 8.
https://doi.org/10.1093/gigascience/giz058
|
| 116 |
K Zuo, J Li, P Wang, Y Liu, Z Liu, X Yin, X Liu, X Yang (2019b) Duration of persistent atrial fibrillation is associated with alterations in human gut microbiota and metabolic phenotypes. mSystems 4.
https://doi.org/10.1128/mSystems.00422-19
|
| 117 |
K Zuo, J Li, Q Xu, C Hu, Y Gao, M Chen, R Hu, Y Liu, H Chi, Q Yinet al. (2019c) Dysbiotic gut microbes may contribute to hypertension by limiting vitamin D production. Clin Cardiol 42:710
https://doi.org/10.1002/clc.23195
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|