Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2021, Vol. 12 Issue (1) : 29-38    https://doi.org/10.1007/s13238-020-00786-8
REVIEW
Pioneer of prostate cancer: past, present and the future of FOXA1
Mona Teng1,2, Stanley Zhou1,2, Changmeng Cai3, Mathieu Lupien1,2,4(), Housheng Hansen He1,2()
1. Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
2. Department of Medical Biophysics, University of Toronto, Toronto, Canada
3. Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA
4. 4Ontario Institute for Cancer Research, Toronto, ON, Canada
 Download: PDF(474 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Prostate cancer is the most commonly diagnosed noncutaneous cancers in North American men. While androgen deprivation has remained as the cornerstone of prostate cancer treatment, resistance ensues leading to lethal disease. Forkhead box A1 (FOXA1) encodes a pioneer factor that induces open chromatin conformation to allow the binding of other transcription factors. Through direct interactions with the Androgen Receptor (AR), FOXA1 helps to shape AR signaling that drives the growth and survival of normal prostate and prostate cancer cells. FOXA1 also possesses an AR-independent role of regulating epithelial-to-mesenchymal transition (EMT). In prostate cancer, mutations converge onto the coding sequence and cis-regulatory elements (CREs) of FOXA1, leading to functional alterations. In addition, FOXA1 activity in prostate cancer can be modulated post-translationally through various mechanisms such as LSD1-mediated protein demethylation. In this review, we describe the latest discoveries related to the function and regulation of FOXA1 in prostate cancer, pointing to their relevance to guide future clinical interventions.

Keywords FOXA1      pioneer factor      transcription factor      prostate cancer      epigenetics     
Corresponding Author(s): Mathieu Lupien,Housheng Hansen He   
Online First Date: 21 October 2020    Issue Date: 11 February 2021
 Cite this article:   
Mona Teng,Stanley Zhou,Changmeng Cai, et al. Pioneer of prostate cancer: past, present and the future of FOXA1[J]. Protein Cell, 2021, 12(1): 29-38.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-020-00786-8
https://academic.hep.com.cn/pac/EN/Y2021/V12/I1/29
1 EJ Adams, WR Karthaus, E Hoover, D Liu, A Gruet, Z Zhang, H Cho, R DiLoreto, S Chhangawala, Y Liuet al. (2019) FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature 571:408–412
https://doi.org/10.1038/s41586-019-1318-9
2 M Ahmed, RC Sallari, H Guo, JH Moore, HH He, M Lupien (2017) Variant Set Enrichment: an R package to identify diseaseassociated functional genomic regions. BioData Min 10:9
https://doi.org/10.1186/s13040-017-0129-5
3 American Cancer Society (2019) Cancer Facts & Figures 2019
4 M Annala, S Taavitsainen, G Vandekerkhove, JVW Bacon, K Beja, KN Chi, M Nykter, AW Wyatt (2018)Frequent mutation of the FOXA1 untranslated region in prostate cancer. Commun Biol 1:122
https://doi.org/10.1038/s42003-018-0128-1
5 CH Arrowsmith, C Bountra, PV Fish, K Lee, M Schapira (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11:384–400
https://doi.org/10.1038/nrd3674
6 CE Barbieri, SC Baca, MS Lawrence, F Demichelis, M Blattner, J-P Theurillat, TA White, P Stojanov, E Van Allen, N Stranskyet al. (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 44:685–689
https://doi.org/10.1038/ng.2279
7 H Beltran, D Prandi, JM Mosquera, M Benelli, L Puca, J Cyrta, C Marotz, E Giannopoulou, BVSK Chakravarthi, S Varamballyet al. (2016) Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 22:298–305
https://doi.org/10.1038/nm.4045
8 H Beltran, A Romanel, V Conteduca, N Casiraghi, M Sigouros, GM Franceschini, F Orlando, T Fedrizzi, S-Y Ku, E Dannet al. (2020) Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer. J Clin Invest 130:1653–1668
https://doi.org/10.1172/JCI131041
9 C Cai, HH He, S Gao, S Chen, Z Yu, Y Gao, S Chen, MW Chen, J Zhang, M Ahmedet al. (2014) Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcriptional activity. Cell Rep 9:1618–1627
https://doi.org/10.1016/j.celrep.2014.11.008
10 Canadian Cancer Society (2019) Canadian Cancer Statistics 2019 Cancer Genome Atlas Research Network (2015) The Molecular Taxonomy of Primary Prostate Cancer. Cell 163:1011–1025
11 KL Clark, ED Halay, E Lai, SK Burley (1993) Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364:412–420
https://doi.org/10.1038/364412a0
12 CV Dang, EP Reddy, KM Shokat, L Soucek (2017) Drugging the “undruggable” cancer targets. Nat Rev Cancer 17:502–508
https://doi.org/10.1038/nrc.2017.36
13 JR Dixon, DU Gorkin, B Ren (2016) Chromatin domains: the unit of chromosome organization. Mol Cell 62:668–680
https://doi.org/10.1016/j.molcel.2016.05.018
14 JR Dixon, S Selvaraj, F Yue, A Kim, Y Li, Y Shen, M Hu, JS Liu, B Ren (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380
https://doi.org/10.1038/nature11082
15 SMG Espiritu, LY Liu, Y Rubanova, V Bhandari, EM Holgersen, LM Szyca, NS Fox, MLK Chua, TN Yamaguchi, LE Heisleret al. (2018) The evolutionary landscape of localized prostate cancers drives clinical aggression. Cell 173:1003–1013.e15
https://doi.org/10.1016/j.cell.2018.03.029
16 Y Fang, G Liao, B Yu (2019) LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J Hematol Oncol 12:129
https://doi.org/10.1186/s13045-019-0811-9
17 S Farashi, T Kryza, J Clements, J Batra (2019) Post-GWAS in prostate cancer: from genetic association to biological contribution. Nat Rev Cancer 19:46–59
https://doi.org/10.1038/s41568-018-0087-3
18 M Fraser, VY Sabelnykova, TN Yamaguchi, LE Heisler, J Livingstone, V Huang, Y-J Shiah, F Yousif, X Lin, AP Masellaet al. (2017) Genomic hallmarks of localized, non-indolent prostate cancer. Nature 541:359–364
https://doi.org/10.1038/nature20788
19 N Gao, J Zhang, MA Rao, TC Case, J Mirosevich, Y Wang, R Jin, A Gupta, PS Rennie, RJ Matusik (2003) The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol Endocrinol 17:1484–1507
https://doi.org/10.1210/me.2003-0020
20 S Gao, S Chen, D Han, D Barrett, W Han, M Ahmed, S Patalano, JA Macoska, HH He, C Cai (2019) Forkhead domain mutations in FOXA1 drive prostate cancer progression. Cell Res 29:770–772
https://doi.org/10.1038/s41422-019-0203-2
21 S Gao, S Chen, D Han, Z Wang, M Li, W Han, A Besschetnova, M Liu, F Zhou, D Barrettet al. (2020) Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nat Genet.
https://doi.org/10.1038/s41588-020-0681-7
22 J Gerhardt, M Montani, P Wild, M Beer, F Huber, T Hermanns, M Müntener, G Kristiansen (2012) FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer. Am J Pathol 180:848–861
https://doi.org/10.1016/j.ajpath.2011.10.021
23 CS Grasso, Y-M Wu, DR Robinson, X Cao, SM Dhanasekaran, AP Khan, MJ Quist, X Jing, RJ Lonigro, JC Brenneret al. (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487:239–243
https://doi.org/10.1038/nature11125
24 GD Grossfeld, DM Latini, DP Lubeck, SS Mehta, PR Carroll (2003) Predicting recurrence after radical prostatectomy for patients with high risk prostate cancer. J Urol 169:157–163
https://doi.org/10.1016/S0022-5347(05)64058-X
25 B Gui, F Gui, T Takai, C Feng, X Bai, L Fazli, X Dong, S Liu, X Zhang, W Zhanget al. (2019) Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function. Proceedings of the National Academy of Sciences 116:14573–14582
https://doi.org/10.1073/pnas.1908547116
26 W Hankey, Z Chen, Q Wang (2020) Shaping chromatin states in prostate cancer by pioneer transcription factors. Cancer Res.
https://doi.org/10.1158/0008-5472.CAN-19-3447
27 DJ Hazelett, SG Coetzee, GA Coetzee (2013) A rare variant, which destroys a FoxA1 site at 8q24, is associated with prostate cancer risk. Cell Cycle 12:379–380
https://doi.org/10.4161/cc.23201
28 FW Huang, JM Mosquera, A Garofalo, C Oh, M Baco, A Amin-Mansour, B Rabasha, S Bahl, SA Mullane, BD Robinsonet al. (2017) Exome sequencing of African-American prostate cancer reveals loss-of-function ERF mutations. Cancer Discov 7:973–983
https://doi.org/10.1158/2159-8290.CD-16-0960
29 J Huang, R Sengupta, AB Espejo, MG Lee, JA Dorsey, M Richter, S Opravil, R Shiekhattar, MT Bedford, T Jenuweinet al. (2007) p53 is regulated by the lysine demethylase LSD1. Nature 449:105–108
https://doi.org/10.1038/nature06092
30 M Iwafuchi, I Cuesta, G Donahue, N Takenaka, AB Osipovich, MA Magnuson, H Roder, SH Seeholzer, P Santisteban, KS Zaret (2020) Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones. Nat Genet 52:418–427
https://doi.org/10.1038/s41588-020-0591-8
31 H-J Jin, JC Zhao, I Ogden, RC Bergan, J Yu (2013) Androgen receptor-independent function of FoxA1 in prostate cancer metastasis. Cancer Res 73:3725–3736
https://doi.org/10.1158/0008-5472.CAN-12-3468
32 H-J Jin, JC Zhao, L Wu, J Kim, J Yu (2014) Cooperativity and equilibrium with FOXA1 define the androgen receptor transcriptional program. Nat Commun 5:3972
https://doi.org/10.1038/ncomms4972
33 J Kim, H Jin, JC Zhao, YA Yang, Y Li, X Yang, X Dong, J Yu (2017) FOXA1 inhibits prostate cancer neuroendocrine differentiation. Oncogene 36:4072–4080
https://doi.org/10.1038/onc.2017.50
34 S Kohler, LA Cirillo (2010) Stable chromatin binding prevents FoxA acetylation, preserving FoxA chromatin remodeling. J Biol Chem 285:464–472
https://doi.org/10.1074/jbc.M109.063149
35 J Li, C Xu, HJ Lee, S Ren, X Zi, Z Zhang, H Wang, Y Yu, C Yang, X Gaoet al. (2020) A genomic and epigenomic atlas of prostate cancer in Asian populations. Nature 580:93–99
https://doi.org/10.1038/s41586-020-2135-x
36 M Lupien, J Eeckhoute, CA Meyer, Q Wang, Y Zhang, W Li, JS Carroll, XS Liu, M Brown (2008) FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132:958–970
https://doi.org/10.1016/j.cell.2008.01.018
37 MT Maurano, R Humbert, E Rynes, RE Thurman, E Haugen, H Wang, AP Reynolds, R Sandstrom, H Qu, J Brodyet al. (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337:1190–1195
https://doi.org/10.1126/science.1222794
38 P Mazrooei, KJ Kron, Y Zhu, S Zhou, G Grillo, T Mehdi, M Ahmed, TM Severson, P Guilhamon, NS Armstronget al. (2019) Cistrome partitioning reveals convergence of somatic mutations and risk variants on master transcription regulators in primary prostate tumors. Cancer Cell 36:674–689.e6
https://doi.org/10.1016/j.ccell.2019.10.005
39 E Metzger, M Wissmann, N Yin, JM Müller, R Schneider, AHFM Peters, T Günther, R Buettner, R Schüle (2005) LSD1 demethylates repressive histone marks to promote androgen-receptordependent transcription. Nature 437:436–439
https://doi.org/10.1038/nature04020
40 S Müller, S Ackloo, CH Arrowsmith, M Bauser, JL Baryza, J Blagg, J Böttcher, C Bountra, PJ Brown, ME Bunnageet al. (2018) Science forum: donated chemical probes for open science. Elife 7:e34311
https://doi.org/10.7554/eLife.34311
41 EP Nora, BR Lajoie, EG Schulz, L Giorgetti, I Okamoto, N Servant, T Piolot, NL van Berkum, J Meisig, J Sedatet al. (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–385
https://doi.org/10.1038/nature11049
42 A Parolia, M Cieslik, S-C Chu, L Xiao, T Ouchi, Y Zhang, X Wang, P Vats, X Cao, S Pitchiayaet al. (2019) Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature 571:413–418
https://doi.org/10.1038/s41586-019-1347-4
43 MM Pomerantz, F Li, DY Takeda, R Lenci, A Chonkar, M Chabot, P Cejas, F Vazquez, J Cook, RA Shivdasaniet al. (2015) The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nat Genet 47:1346–1351
https://doi.org/10.1038/ng.3419
44 MM Pomerantz, X Qiu, Y Zhu, DY Takeda, W Pan, SC Baca, A Gusev, KD Korthauer, TM Severson, G Haet al. (2020) Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat Genet 52:790–799
https://doi.org/10.1038/s41588-020-0664-8
45 DA Quigley, HX Dang, SG Zhao, P Lloyd, R Aggarwal, JJ Alumkal, A Foye, V Kothari, MD Perry, AM Baileyet al. (2018) Genomic hallmarks and structural variation in metastatic prostate cancer. Cell 174:758–769.e9
46 M Rotinen, S You, J Yang, SG Coetzee, M Reis-Sobreiro, W-C Huang, F Huang, X Pan, A Yáñez , DJ Hazelettet al. (2018) ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nat Med 24:1887–1898
https://doi.org/10.1038/s41591-018-0241-1
47 R Sabarinathan, L Mularoni, J Deu-Pons, A Gonzalez-Perez, N López-Bigas (2016) Nucleotide excision repair is impaired by binding of transcription factors to DNA. Nature 532:264–267
https://doi.org/10.1038/nature17661
48 B Sahu, M Laakso, K Ovaska, T Mirtti, J Lundin, A Rannikko, A Sankila, J-P Turunen, M Lundin, J Konstiet al. (2011) Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J 30:3962–3976
https://doi.org/10.1038/emboj.2011.328
49 B Sahu, M Laakso, P Pihlajamaa, K Ovaska, I Sinielnikov, S Hautaniemi, OA Jänne (2013) FoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells. Cancer Res 73:1570–1580
https://doi.org/10.1158/0008-5472.CAN-12-2350
50 S Scheer, S Ackloo, TS Medina, M Schapira, F Li, JA Ward, AM Lewis, JP Northrop, PL Richardson, HÜ Kaniskanet al. (2019) A chemical biology toolbox to study protein methyltransferases and epigenetic signaling. Nat Commun 10:19
https://doi.org/10.1038/s41467-018-07905-4
51 A Sehrawat, L Gao, Y Wang, A 3rd Bankhead, SK McWeeney, CJ King, J Schwartzman, J Urrutia, WH Bisson, DJ Colemanet al. (2018) LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci USA 115:E4179–E4188
https://doi.org/10.1158/1538-7445.AM2018-LB-240
52 T Sekiya, UM Muthurajan, K Luger, AV Tulin, KS Zaret (2009) Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. Genes Dev 23:804–809
https://doi.org/10.1101/gad.1775509
53 AA Sérandour, S Avner, F Percevault, F Demay, M Bizot, C Lucchetti-Miganeh, F Barloy-Hubler, M Brown, M Lupien, R Métivieret al. (2011) Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Res 21:555–565
https://doi.org/10.1101/gr.111534.110
54 Y Shi, F Lan, C Matson, P Mulligan, JR Whetstine, PA Cole, RA Casero, Y Shi (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953
https://doi.org/10.1016/j.cell.2004.12.012
55 B Song, S-H Park, JC Zhao, K-W Fong, S Li, Y Lee, YA Yang, S Sridhar, X Lu, SA Abdulkadiret al. (2019) Targeting FOXA1-mediated repression of TGF-β signaling suppresses castrationresistant prostate cancer progression. J Clin Invest 129:569–582
https://doi.org/10.1172/JCI122367
56 P Sutinen, V Rahkama, M Rytinki, JJ Palvimo (2014) Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol Endocrinol 28:1719–1728
https://doi.org/10.1210/me.2014-1035
57 Q Szabo, F Bantignies, G Cavalli (2019) Principles of genome folding into topologically associating domains. Sci Adv 5: eaaw1668
https://doi.org/10.1126/sciadv.aaw1668
58 D Wang, I Garcia-Bassets, C Benner, W Li, X Su, Y Zhou, J Qiu, W Liu, MU Kaikkonen, KA Ohgiet al. (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474:390–394
https://doi.org/10.1038/nature10006
59 J Wang, S Hevi, JK Kurash, H Lei, F Gay, J Bajko, H Su, W Sun, H Chang, G Xuet al.(2009a) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41:125–129
https://doi.org/10.1038/ng.268
60 Q Wang, W Li, Y Zhang, X Yuan, K Xu, J Yu, Z Chen, R Beroukhim, H Wang, M Lupienet al. (2009b) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138:245–256
https://doi.org/10.1016/j.cell.2009.04.056
61 S Wang, S Singh, M Katika, S Lopez-Aviles, A Hurtado (2018) High throughput chemical screening reveals multiple regulatory proteins on FOXA1 in breast cancer cell lines. International Journal of Molecular Sciences 19:4123
https://doi.org/10.3390/ijms19124123
62 PA Watson, VK Arora, CL Sawyers (2015) Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 15:701–711
https://doi.org/10.1038/nrc4016
63 T Whitington, P Gao, W Song, H Ross-Adams, AD Lamb, Y Yang, I Svezia, D Klevebring, IG Mills, R Karlssonet al. (2016) Gene regulatory mechanisms underpinning prostate cancer susceptibility. Nat Genet 48:387–397
https://doi.org/10.1038/ng.3523
64 M Wissmann, N Yin, JM Müller, H Greschik, BD Fodor, T Jenuwein, C Vogler, R Schneider, T Günther, R Buettneret al. (2007) Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9:347–353
https://doi.org/10.1038/ncb1546
65 Q Wu, D Heidenreich, S Zhou, S Ackloo, A Krämer, K Nakka, E Lima-Fernandes, G Deblois, S Duan, RN Vellankiet al. (2019) A chemical toolbox for the study of bromodomains and epigenetic signaling. Nat Commun 10:1915
https://doi.org/10.1038/s41467-019-09672-2
66 B Xu, B Song, X Lu, J Kim, M Hu, JC Zhao, J Yu (2019) Altered chromatin recruitment by FOXA1 mutations promotes androgen independence and prostate cancer progression. Cell Res 29:773–775
https://doi.org/10.1038/s41422-019-0204-1
67 N Yamaguchi, M Shibazaki, C Yamada, E Anzai, M Morii, Y Nakayama, T Kuga, Y Hashimoto, T Tomonaga, N Yamaguchi (2017) Tyrosine phosphorylation of the pioneer transcription factor FoxA1 promotes activation of estrogen signaling. J Cell Biochem 118:1453–1461
https://doi.org/10.1002/jcb.25804
68 X Zhang, SD Bailey, M Lupien (2014) Laying a solid foundation for Manhattan–’setting the functional basis for the post-GWAS era’. Trends Genet 30:140–149
https://doi.org/10.1016/j.tig.2014.02.006
69 X Zhang, R Cowper-Sal-lari, SD Bailey, JH Moore, M Lupien (2012) Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24.3 prostate cancer risk locus. Genome Research 22:1437–1446
https://doi.org/10.1101/gr.135665.111
70 S Zhou, JR Hawley, F Soares, G Grillo, M Teng, SA Madani Tonekaboni, JT Hua, KJ Kron, P Mazrooei, M Ahmedet al. (2020) Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer. Nat Commun 11:441
https://doi.org/10.1038/s41467-020-14318-9
71 S Zhou, AE Treloar, M Lupien (2016) Emergence of the Noncoding Cancer Genome: A Target of Genetic and Epigenetic Alterations. Cancer Discov 6:1215–1229
https://doi.org/10.1158/2159-8290.CD-16-0745
[1] Qingfei Zheng, Igor Maksimovic, Akhil Upad, Yael David. Non-enzymatic covalent modifications: a new link between metabolism and epigenetics[J]. Protein Cell, 2020, 11(6): 401-416.
[2] Lin-Yong Zhao, Jinghui Song, Yibin Liu, Chun-Xiao Song, Chengqi Yi. Mapping the epigenetic modifications of DNA and RNA[J]. Protein Cell, 2020, 11(11): 792-808.
[3] Lili Yu, Kai-yuan Ji, Jian Zhang, Yanxia Xu, Yue Ying, Taoyi Mai, Shuxiang Xu, Qian-bing Zhang, Kai-tai Yao, Yang Xu. Core pluripotency factors promote glycolysis of human embryonic stem cells by activating GLUT1 enhancer[J]. Protein Cell, 2019, 10(9): 668-680.
[4] Xiangxian Zhang, Li Liu, Xia Yuan, Yuquan Wei, Xiawei Wei. JMJD3 in the regulation of human diseases[J]. Protein Cell, 2019, 10(12): 864-882.
[5] Chao Zhong, Jinfang Zhu. Transcriptional regulators dictate innate lymphoid cell fates[J]. Protein Cell, 2017, 8(4): 242-254.
[6] Haley Vaseghi, Jiandong Liu, Li Qian. Molecular barriers to direct cardiac reprogramming[J]. Protein Cell, 2017, 8(10): 724-734.
[7] Donglu Wu, Yong Cai, Jingji Jin. Potential coordination role between O-GlcNAcylation and epigenetics[J]. Protein Cell, 2017, 8(10): 713-723.
[8] Qianqian Liang,Chen Xu,Xinyun Chen,Xiuya Li,Chao Lu,Ping Zhou,Lianhua Yin,Ruizhe Qian,Sifeng Chen,Zhendong Ling,Ning Sun. The roles of Mesp family proteins: functional diversity and redundancy in differentiation of pluripotent stem cells and mammalian mesodermal development[J]. Protein Cell, 2015, 6(8): 553-561.
[9] Joo-Man Park,Seong-Ho Jo,Mi-Young Kim,Tae-Hyun Kim,Yong-Ho Ahn. Role of transcription factor acetylation in the regulation of metabolic homeostasis[J]. Protein Cell, 2015, 6(11): 804-813.
[10] David M. Roy,Logan A. Walsh,Timothy A. Chan. Driver mutations of cancer epigenomes[J]. Protein Cell, 2014, 5(4): 265-296.
[11] Rui Chen, Shancheng Ren, Yinghao Sun. Genome-wide association studies on prostate cancer: the end or the beginning?[J]. Prot Cell, 2013, 4(9): 677-686.
[12] Yewei Liu, Qian Reuben Xie, Boshi Wang, Jiaxiang Shao, Tingting Zhang, Tengyuan Liu, Gang Huang, Weiliang Xia. Inhibition of SIRT6 in prostate cancer reduces cell viability and increases sensitivity to chemotherapeutics[J]. Prot Cell, 2013, 4(9): 702-710.
[13] Yeqing Angela Yang, Jindan Yu. EZH2, an epigenetic driver of prostate cancer[J]. Prot Cell, 2013, 4(5): 331-341.
[14] Jijing Luo, Xiaoqi Liu. Polo-like kinase 1, on the rise from cell cycle regulation to prostate cancer development[J]. Prot Cell, 2012, 3(3): 182-197.
[15] Jigang Li, William Terzaghi, Xing Wang Deng. Genomic basis for light control of plant development[J]. Prot Cell, 2012, 3(2): 106-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed