|
|
|
Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy |
Pranavi Koppula1,2, Li Zhuang1, Boyi Gan1,2( ) |
1. Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 2. The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA |
|
|
|
|
Abstract The cystine/glutamate antiporter SLC7A11 (also commonly known as xCT) functions to import cystine for glutathione biosynthesis and antioxidant defense and is overexpressed in multiple human cancers. Recent studies revealed that SLC7A11 overexpression promotes tumor growth partly through suppressing ferroptosis, a form of regulated cell death induced by excessive lipid peroxidation. However, cancer cells with high expression of SLC7A11 (SLC7A11high) also have to endure the significant cost associated with SLC7A11-mediated metabolic reprogramming, leading to glucoseand glutamine-dependency in SLC7A11high cancer cells, which presents potential metabolic vulnerabilities for therapeutic targeting in SLC7A11high cancer. In this review, we summarize diverse regulatory mechanisms of SLC7A11 in cancer, discuss ferroptosis-dependent and-independent functions of SLC7A11 in promoting tumor development, explore the mechanistic basis of SLC7A11-induced nutrient dependency in cancer cells, and conceptualize therapeutic strategies to target SLC7A11 in cancer treatment. This review will provide the foundation for further understanding SLC7A11 in ferroptosis, nutrient dependency, and tumor biology and for developing novel effective cancer therapies.
|
| Keywords
SLC7A11
xCT
cystine
cysteine
ferroptosis
nutrient dependency
cancer therapy
|
|
Corresponding Author(s):
Boyi Gan
|
|
Online First Date: 30 October 2020
Issue Date: 28 September 2021
|
|
| 1 |
A Anandhan, M Dodson, CJ Schmidlin, P Liu, DD Zhang (2020) Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis. Cell Chem Biol 27:436–447
https://doi.org/10.1016/j.chembiol.2020.03.011
|
| 2 |
B Artegiani, L van Voorthuijsen, RGH Lindeboom, D Seinstra, I Heo, P Tapia, C Lopez-Iglesias , D Postrach, T Dayton, R Okaet al. (2019) Probing the tumor suppressor function of BAP1 in CRISPR-engineered human liver organoids. Cell Stem Cell 24 (927–943):e926
https://doi.org/10.1016/j.stem.2019.04.017
|
| 3 |
AI Badeaux, Y Shi (2013) Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol 14:211–224
https://doi.org/10.1038/nrm3545
|
| 4 |
MA Badgley, DM Kremer, HC Maurer, KE DelGiorno, HJ Lee, V Purohit, IR Sagalovskiy, A, Ma J Kapilian, CEM Firlet al. (2020) Cysteine depletion induces pancreatic tumor ferroptosis in mice . Science 368:85–89
https://doi.org/10.1126/science.aaw9872
|
| 5 |
S Bannai (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261:2256–2263
|
| 6 |
S Bannai, T Ishii (1988) A novel function of glutamine in cell culture: utilization of glutamine for the uptake of cystine in human fibroblasts . J Cell Physiol 137:360–366
https://doi.org/10.1002/jcp.1041370221
|
| 7 |
S Bannai, H Tsukeda, H Okumura (1977) Effect of antioxidants on cultured human diploid fibroblasts exposed to cystine-free medium. Biochem Biophys Res Commun 74:1582–1588
https://doi.org/10.1016/0006-291X(77)90623-4
|
| 8 |
LK Boroughs, RJ DeBerardinis (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17:351–359
https://doi.org/10.1038/ncb3124
|
| 9 |
N Cancer Genome Atlas Research, (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525
https://doi.org/10.1038/nature11404
|
| 10 |
N Cancer Genome Atlas Research, (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550
https://doi.org/10.1038/nature13385
|
| 11 |
J Canon, K, Rex AY Saiki, C Mohr, K Cooke, D Bagal, K Gaida, T Holt, CG Knutson, N Koppadaet al. (2019) The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575:217–223
https://doi.org/10.1038/s41586-019-1694-1
|
| 12 |
JY Cao, A Poddar, L Magtanong, JH Lumb, TR Mileur, MA Reid, CM Dovey, J Wang, JW Locasale, E Stoneet al. (2019) A genome-wide haploid genetic screen identifies regulators of glutathione abundance and ferroptosis sensitivity. Cell Rep 26 (1544–1556):e1548
https://doi.org/10.1016/j.celrep.2019.01.043
|
| 13 |
M Carbone, H Yang, HI Pass, T Krausz, JR Testa, G Gaudino (2013) BAP1 and cancer. Nat Rev Cancer 13:153–159
https://doi.org/10.1038/nrc3459
|
| 14 |
D, Chen Z Fan, M Rauh, M Buchfelder, IY Eyupoglu, N Savaskan (2017) ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene 36:5593–5608
https://doi.org/10.1038/onc.2017.146
|
| 15 |
S Chintala, W Li, ML Lamoreux, S Ito, K Wakamatsu, EV Sviderskaya, DC Bennett, YM Park, WA Gahl, M Huizinget al. (2005) Slc7a11 gene controls production of pheomelanin pigment and proliferation of cultured cells. Proc Natl Acad Sci USA 102:10964–10969
https://doi.org/10.1073/pnas.0502856102
|
| 16 |
IIC Chio, DA Tuveson (2017) ROS in cancer: the burning question. Trends Mol Med 23:411–429
https://doi.org/10.1016/j.molmed.2017.03.004
|
| 17 |
B Chu, N Kon, D Chen, T Li, T Liu, L Jiang, S, Song O Tavana, W Gu (2019) ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 21:579–591
https://doi.org/10.1038/s41556-019-0305-6
|
| 18 |
L Cobler, H Zhang, P Suri, C Park, LA Timmerman (2018) xCT inhibition sensitizes tumors to gamma-radiation via glutathione reduction. Oncotarget 9:32280–32297
https://doi.org/10.18632/oncotarget.25794
|
| 19 |
JA Combs, GM DeNicola (2019) The non-essential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers (Basel) 11:678
https://doi.org/10.3390/cancers11050678
|
| 20 |
M Conrad, H Sato (2012) The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-): cystine supplier and beyond. Amino Acids 42:231–246
https://doi.org/10.1007/s00726-011-0867-5
|
| 21 |
AD Cox, SW Fesik, AC Kimmelman, J Luo, CJ Der (2014) Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 13:828–851
https://doi.org/10.1038/nrd4389
|
| 22 |
B Daher, SK Parks, J Durivault, Y Cormerais, H Baidarjad, E Tambutte, J Pouyssegur, M Vucetic (2019) Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses . Cancer Res 79:3877–3890
https://doi.org/10.1158/0008-5472.CAN-18-3855
|
| 23 |
L Dai, Y Cao, Y, Chen C Parsons, Z Qin (2014) Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor regression for KSHV/HIV-associated lymphoma. J Hematol Oncol 7:30
https://doi.org/10.1186/1756-8722-7-30
|
| 24 |
D De Bundel, A Schallier, E Loyens, R Fernando, H Miyashita, J Van Liefferinge, K Vermoesen, S Bannai, H Sato, Y Michotteet al. (2011) Loss of system x(c)- does not induce oxidative stress but decreases extracellular glutamate in hippocampus and influences spatial working memory and limbic seizure susceptibility. J Neurosci 31:5792–5803
https://doi.org/10.1523/JNEUROSCI.5465-10.2011
|
| 25 |
SJ Dixon, KM Lemberg, MR Lamprecht, R Skouta, EM Zaitsev, CE Gleason, DN Patel, AJ Bauer, AM Cantley, WS Yanget al. (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072
https://doi.org/10.1016/j.cell.2012.03.042
|
| 26 |
SJ Dixon, DN Patel, M Welsch, R Skouta, ED Lee, M Hayano, AG Thomas, CE Gleason, NP Tatonetti, BS Slusheret al. (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3: e02523
https://doi.org/10.7554/eLife.02523
|
| 27 |
S Doll, B Proneth, YY Tyurina, E Panzilius, S Kobayashi, I Ingold, M Irmler, J, Beckers M Aichler , A Walchet al. (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13:91–98
https://doi.org/10.1038/nchembio.2239
|
| 28 |
E, Dornier N Rabas, L Mitchell, D Novo, S Dhayade, S Marco, G, Mackay D, Sumpton M Pallares, C Nixonet al. (2017) Glutaminolysis drives membrane trafficking to promote invasiveness of breast cancer cells. Nat Commun 8:2255
https://doi.org/10.1038/s41467-017-02101-2
|
| 29 |
RM Drayton, E Dudziec, S Peter, S Bertz, A Hartmann, HE Bryant, JW Catto (2014) Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin Cancer Res 20:1990–2000
https://doi.org/10.1158/1078-0432.CCR-13-2805
|
| 30 |
H Eagle (1955a) Nutrition needs of mammalian cells in tissue culture. Science 122:501–514
https://doi.org/10.1126/science.122.3168.501
|
| 31 |
H Eagle (1955b) The specific amino acid requirements of a human carcinoma cell (Stain HeLa) in tissue culture. J Exp Med 102:37–48
https://doi.org/10.1084/jem.102.1.37
|
| 32 |
H Feng, BR Stockwell (2018) Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol 16:e2006203
https://doi.org/10.1371/journal.pbio.2006203
|
| 33 |
JP Friedmann Angeli, M Schneider, B Proneth, YY Tyurina, VA Tyurin, VJ Hammond, N Herbach, M Aichler, A, Walch E Eggenhoferet al. (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16:1180–1191
https://doi.org/10.1038/ncb3064
|
| 34 |
A Galan-Cobo, P Sitthideatphaiboon, X Qu, A Poteete, MA Pisegna, P Tong, PH Chen, LK Boroughs, MLM Rodriguez, W Zhanget al. (2019) LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma. Cancer Res 79:3251–3267
https://doi.org/10.1158/0008-5472.CAN-18-3527
|
| 35 |
B Gan (2019) DUBbing ferroptosis in cancer cells. Cancer Res 79:1749–1750
https://doi.org/10.1158/0008-5472.CAN-19-0487
|
| 36 |
W Gan, X Dai, X Dai, J Xie, S Yin, J Zhu, C Wang, Y Liu, J Guo, M Wanget al. (2020) LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1 pathways in growth control. Nat Cell Biol 22:246–256
https://doi.org/10.1038/s41556-020-0463-6
|
| 37 |
T Goji, K Takahara, M Negishi, H Katoh (2017) Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation. J Biol Chem 292:19721–19732
https://doi.org/10.1074/jbc.M117.814392
|
| 38 |
DR Green, GI Evan (2002) A matter of life and death. Cancer Cell 1:19–30
https://doi.org/10.1016/S1535-6108(02)00024-7
|
| 39 |
Y, Gu CP Albuquerque, D Braas, W Zhang, GR Villa, J Bi, S Ikegami, K Masui, B Gini, H Yanget al. (2017) mTORC2 regulates amino acid metabolism in cancer by phosphorylation of the cystineglutamate antiporter xCT. Mol Cell 67(128–138):e127
https://doi.org/10.1016/j.molcel.2017.05.030
|
| 40 |
D Hanahan, RA Weinberg (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
https://doi.org/10.1016/j.cell.2011.02.013
|
| 41 |
KW Henry, A Wyce, WS Lo, LJ Duggan, NC Emre, CF Kao, L Pillus, A Shilatifard, MA Osley, SL Berger (2003) Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17:2648–2663
https://doi.org/10.1101/gad.1144003
|
| 42 |
CT Hensley, AT Wasti, RJ DeBerardinis (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 123:3678–3684
https://doi.org/10.1172/JCI69600
|
| 43 |
K Hu, K Li, J Lv, J Feng, J Chen, H Wu, F, Cheng W Jiang, J Wang, H Peiet al. (2020) Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest 130:1752–1766
https://doi.org/10.1172/JCI124049
|
| 44 |
Y Huang, Z Dai, C Barbacioru, W Sadee (2005) Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res 65:7446–7454
https://doi.org/10.1158/0008-5472.CAN-04-4267
|
| 45 |
FH Igney, PH Krammer (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–288
https://doi.org/10.1038/nrc776
|
| 46 |
T Ishii, S Bannai (1985) The synergistic action of the copper chelator bathocuproine sulphonate and cysteine in enhancing growth of L1210 cells in vitro. J Cell Physiol 125:151–155
https://doi.org/10.1002/jcp.1041250119
|
| 47 |
T Ishimoto, O Nagano, T Yae, M Tamada, T Motohara, H Oshima, M Oshima, T Ikeda, R Asaba, H Yagiet al. (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19:387–400
https://doi.org/10.1016/j.ccr.2011.01.038
|
| 48 |
R Jaenisch, A Bird (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254
https://doi.org/10.1038/ng1089
|
| 49 |
M Jennis, CP Kung, S Basu, A Budina-Kolomets, JI Leu, S, Khaku JP Scott, KQ Cai, MR Campbell, DK Porteret al. (2016) An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev 30:918–930
https://doi.org/10.1101/gad.275891.115
|
| 50 |
X Ji , J Qian, SMJ Rahman, PJ Siska, Y Zou, BK Harris, MD Hoeksema, IA Trenary, C Heidi, R Eisenberget al. (2018) xCT (SLC7A11)-mediated metabolic reprogramming promotes nonsmall cell lung cancer progression. Oncogene 37:5007–5019
https://doi.org/10.1038/s41388-018-0307-z
|
| 51 |
L Jiang, N Kon, T Li, SJ Wang, T Su, H Hibshoosh, R Baer, W Gu (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62
https://doi.org/10.1038/nature14344
|
| 52 |
JH Joly, A Delfarah, PS Phung, S Parrish, NA Graham (2020) A synthetic lethal drug combination mimics glucose deprivationinduced cancer cell death in the presence of glucose. J Biol Chem 295:1350–1365
https://doi.org/10.1074/jbc.RA119.011471
|
| 53 |
S Jones, TL Wang, M Shih Ie, TL Mao, K Nakayama, R Roden, R Glas, D Slamon, LA Jr Diaz, B Vogelsteinet al. (2010) Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330:228–231
https://doi.org/10.1126/science.1196333
|
| 54 |
C Kadoch, GR Crabtree (2015) Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv 1:e1500447
https://doi.org/10.1126/sciadv.1500447
|
| 55 |
VE Kagan, G Mao, F Qu, JP Angeli, S Doll, CS Croix, HH Dar, B Liu, VA Tyurin, VB Ritovet al. (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13:81–90
https://doi.org/10.1038/nchembio.2238
|
| 56 |
P Kandasamy, G Gyimesi, Y Kanai, MA Hediger (2018) Amino acid transporters revisited: new views in health and disease. Trends Biochem Sci 43:752–789
https://doi.org/10.1016/j.tibs.2018.05.003
|
| 57 |
MS Kilberg, J Shan, N Su (2009) ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 20:436–443
https://doi.org/10.1016/j.tem.2009.05.008
|
| 58 |
J Kim, KL Guan (2019) mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol 21:63–71
https://doi.org/10.1038/s41556-018-0205-1
|
| 59 |
P Koppula, Y Zhang, J Shi, W Li, B Gan (2017) The glutamate/ cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate. J Biol Chem 292:14240–14249
https://doi.org/10.1074/jbc.M117.798405
|
| 60 |
P Koppula, Y Zhang, L Zhuang, B Gan(2018) Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond) 38:12
https://doi.org/10.1186/s40880-018-0288-x
|
| 61 |
X Lang, MD Green, W, Wang J Yu, JE Choi, L Jiang, P Liao, J Zhou, Q Zhang, A Dowet al. (2019) Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov 9:1673
https://doi.org/10.1158/2159-8290.CD-19-0338
|
| 62 |
G Lei, Y Zhang, P, Koppula X, Liu J Zhang, SH Lin, JA Ajani, Q Xiao, Z Liao, H Wanget al.(2020) The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res 30:146–162
https://doi.org/10.1038/s41422-019-0263-3
|
| 63 |
T Li, N Kon, L Jiang, M Tan, T Ludwig, Y Zhao, R Baer, W Gu (2012) Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149:1269–1283
https://doi.org/10.1016/j.cell.2012.04.026
|
| 64 |
EC Lien, L Ghisolfi, RC Geck, JM Asara, A Toker (2017) Oncogenic PI3K promotes methionine dependency in breast cancer cells through the cystine-glutamate antiporter xCT. Sci Signal 10: eaao6604
https://doi.org/10.1126/scisignal.aao6604
|
| 65 |
JKM Lim, A Delaidelli, SW Minaker, HF Zhang, M Colovic, H Yang, GL Negri, S von Karstedt , WW Lockwood, P Schafferet al. (2019) Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc Natl Acad Sci USA 116:9433–9442
https://doi.org/10.1073/pnas.1821323116
|
| 66 |
XX Liu, XJ Li, B Zhang, YJ Liang, CX Zhou, DX Cao, M He, GQ Chen, JR He, Q Zhao (2011) MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11. FEBS Lett 585:1363–1367
https://doi.org/10.1016/j.febslet.2011.04.018
|
| 67 |
DS Liu, CP Duong, S Haupt, KG Montgomery, CM House, WJ Azar, HB Pearson, OM Fisher, M Read, GR Guerraet al. (2017) Inhibiting the system xC(-)/glutathione axis selectively targets cancers with mutant-p53 accumulation . Nat Commun 8:14844
https://doi.org/10.1038/ncomms14844
|
| 68 |
T Liu, L Jiang, O Tavana, W Gu (2019) The Deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11. Cancer Res 79:1913–1924
https://doi.org/10.1158/0008-5472.CAN-18-3037
|
| 69 |
X Liu, K Olszewski, Y Zhang, EW Lim, J, Shi X Zhang, J Zhang, H Lee, P Koppula, G Leiet al. (2020) Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer. Nat Cell Biol 22:476–486
https://doi.org/10.1038/s41556-020-0496-x
|
| 70 |
M Lo, V Ling, YZ Wang, PW Gout (2008) The xc- cystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance . Br J Cancer 99:464–472
https://doi.org/10.1038/sj.bjc.6604485
|
| 71 |
Y Long, H Tao, A Karachi, AJ Grippin, L Jin, YE Chang, W Zhang, KA Dyson, AY Hou, M Naet al. (2020) Dysregulation of glutamate transport enhances treg function that promotes VEGF blockade resistance in glioblastoma. Cancer Res 80:499–509
https://doi.org/10.1158/0008-5472.CAN-19-1577
|
| 72 |
PK Mandal, A Seiler, T Perisic, P Kolle, A Banjac Canak , H Forster, N Weiss, E Kremmer, MW Lieberman, S Bannaiet al. (2010) System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J Biol Chem 285:22244–22253
https://doi.org/10.1074/jbc.M110.121327
|
| 73 |
BD Manning, A Toker (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405
https://doi.org/10.1016/j.cell.2017.04.001
|
| 74 |
TL Mao, M Shih Ie (2013) The roles of ARID1A in gynecologic cancer. J Gynecol Oncol 24:376–381
https://doi.org/10.3802/jgo.2013.24.4.376
|
| 75 |
L Martin, LB Gardner (2015) Stress-induced inhibition of nonsensemediated RNA decay regulates intracellular cystine transport and intracellular glutathione through regulation of the cystine/glutamate exchanger SLC7A11. Oncogene 34:4211–4218
https://doi.org/10.1038/onc.2014.352
|
| 76 |
A Muir, LV Danai, DY Gui, CY Waingarten, CA Lewis, MG Vander Heiden (2017) Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. Elife 6: e27713
https://doi.org/10.7554/eLife.27713
|
| 77 |
PA Muller, KH Vousden (2013) p53 mutations in cancer. Nat Cell Biol 15:2–8
https://doi.org/10.1038/ncb2641
|
| 78 |
M Nagane, E Kanai, Y Shibata, T Shimizu, C Yoshioka, T Maruo, T Yamashita (2018) Sulfasalazine, an inhibitor of the cystineglutamate antiporter, reduces DNA damage repair and enhances radiosensitivity in murine B16F10 melanoma. PLoS ONE 13: e0195151
https://doi.org/10.1371/journal.pone.0195151
|
| 79 |
E Nakamura, M Sato, H Yang, F Miyagawa, M Harasaki, K Tomita, S Matsuoka, A Noma, K Iwai, N Minato (1999) 4F2 (CD98) heavy chain is associated covalently with an amino acid transporter and controls intracellular trafficking and membrane topology of 4F2 heterodimer. J Biol Chem 274:3009–3016
https://doi.org/10.1074/jbc.274.5.3009
|
| 80 |
H Ogiwara, K Takahashi, M Sasaki, T Kuroda, H Yoshida, R Watanabe, A, Maruyama H Makinoshima, F Chiwaki, H Sasakiet al. (2019) Targeting the vulnerability of glutathione metabolism in ARID1Adeficient cancers. Cancer Cell 35(177–190):e178
https://doi.org/10.1016/j.ccell.2018.12.009
|
| 81 |
S Okuno, H Sato, K Kuriyama-Matsumura, M Tamba, H Wang, S Sohda, H Hamada, H Yoshikawa, T, Kondo S Bannai (2003) Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines. Br J Cancer 88:951–956
https://doi.org/10.1038/sj.bjc.6600786
|
| 82 |
I Pader, R Sengupta, M Cebula, J Xu, JO Lundberg, A Holmgren, K Johansson, ES Arner (2014) Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase. Proc Natl Acad Sci USA 111:6964–6969
https://doi.org/10.1073/pnas.1317320111
|
| 83 |
K Pakos-Zebrucka, I Koryga, K Mnich, M Ljujic, A Samali, AM Gorman (2016) The integrated stress response. EMBO Rep 17:1374–1395
https://doi.org/10.15252/embr.201642195
|
| 84 |
NN Pavlova, CB Thompson (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47
https://doi.org/10.1016/j.cmet.2015.12.006
|
| 85 |
IA Prior, PD Lewis, C Mattos (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72:2457–2467
https://doi.org/10.1158/0008-5472.CAN-11-2612
|
| 86 |
HX Qiao, CJ Hao, Y Li, X He, RS Chen, J, Cui ZH Xu, W Li (2008) JNK activation mediates the apoptosis of xCT-deficient cells. Biochem Biophys Res Commun 370:584–588
https://doi.org/10.1016/j.bbrc.2008.03.134
|
| 87 |
M Rojo de la Vega, E, Chapman DD Zhang (2018) NRF2 and the hallmarks of cancer. Cancer Cell 34:21–43
https://doi.org/10.1016/j.ccell.2018.03.022
|
| 88 |
R Romero, VI Sayin, SM Davidson, MR Bauer, SX Singh, SE LeBoeuf, TR Karakousi, DC Ellis, A Bhutkar, FJ Sanchez-Riveraet al. (2017) Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat Med 23:1362–1368
https://doi.org/10.1038/nm.4407
|
| 89 |
H Sato, M Tamba, T Ishii, S Bannai (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274:11455–11458
https://doi.org/10.1074/jbc.274.17.11455
|
| 90 |
H Sato, S Nomura, K Maebara, K Sato, M Tamba, S Bannai (2004) Transcriptional control of cystine/glutamate transporter gene by amino acid deprivation. Biochem Biophys Res Commun 325:109–116
https://doi.org/10.1016/j.bbrc.2004.10.009
|
| 91 |
H Sato, A Shiiya, M Kimata, K Maebara, M Tamba, Y Sakakura, N Makino, F Sugiyama, K Yagami, T Moriguchiet al. (2005) Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem 280:37423–37429
https://doi.org/10.1074/jbc.M506439200
|
| 92 |
VI Sayin, SE LeBoeuf, SX Singh, SM Davidson, D Biancur, BS Guzelhan, SW Alvarez, WL Wu, TR Karakousi, AM Zavitsanouet al. (2017) Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer. Elife 6:e28083
https://doi.org/10.7554/eLife.28083
|
| 93 |
JC Scheuermann, AG de Ayala Alonso, K Oktaba, N Ly-Hartig, RK McGinty, S Fraterman, M Wilm, TW Muir, J Muller(2010) Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465:243–247
https://doi.org/10.1038/nature08966
|
| 94 |
J Shi, CR Vakoc (2014) The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell 54:728–736
https://doi.org/10.1016/j.molcel.2014.05.016
|
| 95 |
CS Shin, P, Mishra JD Watrous, V Carelli, M D’Aurelio, M Jain, DC Chan (2017) The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility. Nat Commun 8:15074
https://doi.org/10.1038/ncomms15074
|
| 96 |
SS Shin, BS Jeong, BA Wall, J, Li NL Shan, Y Wen, JS Goydos, S Chen (2018) Participation of xCT in melanoma cell proliferation in vitro and tumorigenesis in vivo. Oncogenesis 7:86
https://doi.org/10.1038/s41389-018-0098-7
|
| 97 |
MD Stewart, J, Li J Wong (2005) Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 25:2525–2538
https://doi.org/10.1128/MCB.25.7.2525-2538.2005
|
| 98 |
MH Stipanuk (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577
https://doi.org/10.1146/annurev.nutr.24.012003.132418
|
| 99 |
MH Stipanuk, JE Jr Dominy, JI Lee, RM Coloso (2006) Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr 136:1652S–1659S
https://doi.org/10.1093/jn/136.6.1652S
|
| 100 |
BR Stockwell, X Jiang (2020) The chemistry and biology of ferroptosis. Cell Chem Biol 27:365–375
https://doi.org/10.1016/j.chembiol.2020.03.013
|
| 101 |
BR Stockwell, JP Friedmann Angeli, H Bayir, AI Bush, M, Conrad SJ Dixon, S Fulda, S Gascon, SK Hatzios, VE Kaganet al. (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285
https://doi.org/10.1016/j.cell.2017.09.021
|
| 102 |
S Sui, J Zhang, S Xu, Q Wang, P Wang, D Pang (2019) Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells. Cell Death Dis 10:331
https://doi.org/10.1038/s41419-019-1564-7
|
| 103 |
LA Timmerman, T Holton, M Yuneva, RJ Louie, M Padro, A Daemen, M Hu, DA Chan, SP Ethier, LJ van ‘t Veeret al. (2013) Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24:450–465
https://doi.org/10.1016/j.ccr.2013.08.020
|
| 104 |
D Trachootham, J Alexandre, P Huang (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591
https://doi.org/10.1038/nrd2803
|
| 105 |
K Tsuchihashi, S Okazaki, M Ohmura, M Ishikawa, O Sampetrean, N Onishi, H Wakimoto, M Yoshikawa, R Seishima, Y Iwasakiet al. (2016) The EGF receptor promotes the malignant potential of glioma by regulating amino acid transport system xc(-). Cancer Res 76:2954–2963
https://doi.org/10.1158/0008-5472.CAN-15-2121
|
| 106 |
MG Vander Heiden, LC Cantley, CB Thompson (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033
https://doi.org/10.1126/science.1160809
|
| 107 |
KH Vousden, C Prives (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431
https://doi.org/10.1016/j.cell.2009.04.037
|
| 108 |
H Wang, L Wang, H Erdjument-Bromage, M Vidal, P Tempst, RS Jones, Y Zhang (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878
https://doi.org/10.1038/nature02985
|
| 109 |
SJ Wang, D Li, Y Ou, L Jiang, Y Chen, Y Zhao, W Gu (2016) Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep 17:366–373
https://doi.org/10.1016/j.celrep.2016.09.022
|
| 110 |
L Wang, R Leite de Oliveira, S Huijberts, E Bosdriesz, N Pencheva, D Brunen, A Bosma, JY Song, J Zevenhoven, GT Los-de Vrieset al. (2018) An acquired vulnerability of drug-resistant melanoma with therapeutic potential. Cell 173(1413–1425):e1414
https://doi.org/10.1016/j.cell.2018.04.012
|
| 111 |
W Wang, M Green, JE Choi, M Gijon, PD Kennedy, JK Johnson, P Liao, X Lang, I Kryczek, A Sellet al. (2019a) CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569:270–274
https://doi.org/10.1038/s41586-019-1170-y
|
| 112 |
Y Wang, L Yang, X Zhang, W, Cui Y Liu, QR Sun, Q He, S Zhao, GA Zhang, Y Wanget al. (2019b) Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep 20: e47563
https://doi.org/10.15252/embr.201847563
|
| 113 |
L Wang, Y, Liu T Du, H Yang, L Lei, M Guo, HF Ding, J Zhang, H Wang, X Chenet al.(2020a) ATF3 promotes erastin-induced ferroptosis by suppressing system Xc(). Cell Death Differ 27:662–675
https://doi.org/10.1038/s41418-019-0380-z
|
| 114 |
Y Wang, Y, Zhao H Wang, C Zhang, M Wang, Y, Yang X Xu , Z Hu (2020b) Histone demethylase KDM3B protects against ferroptosis by upregulating SLC7A11. FEBS Open Biol 10:637–643
https://doi.org/10.1002/2211-5463.12823
|
| 115 |
Y Wu, X Sun, B Song, X Qiu, J Zhao(2017) MiR-375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion. Cancer Med 6:1686–1697
https://doi.org/10.1002/cam4.1110
|
| 116 |
L Xie, X Song, J Yu, W Guo, L Wei, Y Liu, X Wang (2011) Solute carrier protein family may involve in radiation-induced radioresistance of non-small cell lung cancer. J Cancer Res Clin Oncol 137:1739–1747
https://doi.org/10.1007/s00432-011-1050-9
|
| 117 |
T Yae, K Tsuchihashi, T Ishimoto, T Motohara, M Yoshikawa, GJ Yoshida, T Wada, T Masuko, K Mogushi, H Tanakaet al. (2012) Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat Commun 3:883
https://doi.org/10.1038/ncomms1892
|
| 118 |
I Yamaguchi, SH Yoshimura, H Katoh (2020) High cell density increases glioblastoma cell viability under glucose deprivation via degradation of the cystine/glutamate transporter xCT (SLC7A11). J Biol Chem 295:6936–6945
https://doi.org/10.1074/jbc.RA119.012213
|
| 119 |
Y Yang, D Yee (2014) IGF-I regulates redox status in breast cancer cells by activating the amino acid transport molecule xC . Cancer Res 74:2295–2305
https://doi.org/10.1158/0008-5472.CAN-13-1803
|
| 120 |
WS Yang, R, SriRamaratnam ME Welsch, K Shimada, R Skouta, VS Viswanathan, JH Cheah, PA Clemons, AF Shamji, CB Clishet al. (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331
https://doi.org/10.1016/j.cell.2013.12.010
|
| 121 |
LJ Yant, Q Ran, L Rao, H Van Remmen, T Shibatani, JG Belter, L Motta, A Richardson, TA Prolla (2003) The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34:496–502
https://doi.org/10.1016/S0891-5849(02)01360-6
|
| 122 |
P Ye, J Mimura, T Okada, H Sato, T Liu, A Maruyama, C, Ohyama K Itoh (2014) Nrf2- and ATF4-dependent upregulation of xCT modulates the sensitivity of T24 bladder carcinoma cells to proteasome inhibition. Mol Cell Biol 34:3421–3434
https://doi.org/10.1128/MCB.00221-14
|
| 123 |
LF Ye, KR Chaudhary, F, Zandkarimi AD Harken, CJ Kinslow, PS Upadhyayula, A Dovas, DM Higgins, H Tan, Y Zhanget al. (2020) Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem Biol 15:469–484
https://doi.org/10.1021/acschembio.9b00939
|
| 124 |
M Yoshikawa, K Tsuchihashi, T Ishimoto, T Yae, T Motohara, E Sugihara, N Onishi, T Masuko, K Yoshizawa, S Kawashiriet al. (2013) xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Res 73:1855–1866
https://doi.org/10.1158/0008-5472.CAN-12-3609-T
|
| 125 |
W Zhang, D Trachootham, J Liu, G Chen, H Pelicano, C Garcia-Prieto, W Lu, JA Burger, CM Croce, W Plunkettet al. (2012) Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol 14:276–286
https://doi.org/10.1038/ncb2432
|
| 126 |
L, Zhang Y Huang, J Ling, W Zhuo, Z, Yu Y Luo, Y Zhu (2018a) Overexpression of SLC7A11: a novel oncogene and an indicator of unfavorable prognosis for liver carcinoma. Fut Oncol 14:927–936
https://doi.org/10.2217/fon-2017-0540
|
| 127 |
Y Zhang, J Shi, X Liu, L Feng, Z Gong, P Koppula, K Sirohi, X, Li Y Wei, H Leeet al. (2018b) BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 20:1181–1192
https://doi.org/10.1038/s41556-018-0178-0
|
| 128 |
Y Zhang, P Koppula, B Gan (2019a) Regulation of H2A ubiquitination and SLC7A11 expression by BAP1 and PRC1. Cell Cycle 18:773–783
https://doi.org/10.1080/15384101.2019.1597506
|
| 129 |
Y Zhang, H Tan, JD Daniels, F Zandkarimi, H Liu, LM Brown, K Uchida, OA O’Connor, BR Stockwell (2019b) Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol 226:623
https://doi.org/10.1016/j.chembiol.2019.01.008
|
| 130 |
Y, Zhang L Zhuang, B Gan (2019c) BAP1 suppresses tumor development by inducing ferroptosis upon SLC7A11 repression. Mol Cell Oncol 6:1536845
https://doi.org/10.1080/23723556.2018.1536845
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|