Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2021, Vol. 12 Issue (8) : 599-620    https://doi.org/10.1007/s13238-020-00789-5
REVIEW
Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy
Pranavi Koppula1,2, Li Zhuang1, Boyi Gan1,2()
1. Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
2. The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
 Download: PDF(2254 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The cystine/glutamate antiporter SLC7A11 (also commonly known as xCT) functions to import cystine for glutathione biosynthesis and antioxidant defense and is overexpressed in multiple human cancers. Recent studies revealed that SLC7A11 overexpression promotes tumor growth partly through suppressing ferroptosis, a form of regulated cell death induced by excessive lipid peroxidation. However, cancer cells with high expression of SLC7A11 (SLC7A11high) also have to endure the significant cost associated with SLC7A11-mediated metabolic reprogramming, leading to glucoseand glutamine-dependency in SLC7A11high cancer cells, which presents potential metabolic vulnerabilities for therapeutic targeting in SLC7A11high cancer. In this review, we summarize diverse regulatory mechanisms of SLC7A11 in cancer, discuss ferroptosis-dependent and-independent functions of SLC7A11 in promoting tumor development, explore the mechanistic basis of SLC7A11-induced nutrient dependency in cancer cells, and conceptualize therapeutic strategies to target SLC7A11 in cancer treatment. This review will provide the foundation for further understanding SLC7A11 in ferroptosis, nutrient dependency, and tumor biology and for developing novel effective cancer therapies.

Keywords SLC7A11      xCT      cystine      cysteine      ferroptosis      nutrient dependency      cancer therapy     
Corresponding Author(s): Boyi Gan   
Online First Date: 30 October 2020    Issue Date: 28 September 2021
 Cite this article:   
Pranavi Koppula,Li Zhuang,Boyi Gan. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-020-00789-5
https://academic.hep.com.cn/pac/EN/Y2021/V12/I8/599
1 A Anandhan, M Dodson, CJ Schmidlin, P Liu, DD Zhang (2020) Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis. Cell Chem Biol 27:436–447
https://doi.org/10.1016/j.chembiol.2020.03.011
2 B Artegiani, L van Voorthuijsen, RGH Lindeboom, D Seinstra, I Heo, P Tapia, C Lopez-Iglesias , D Postrach, T Dayton, R Okaet al. (2019) Probing the tumor suppressor function of BAP1 in CRISPR-engineered human liver organoids. Cell Stem Cell 24 (927–943):e926
https://doi.org/10.1016/j.stem.2019.04.017
3 AI Badeaux, Y Shi (2013) Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol 14:211–224
https://doi.org/10.1038/nrm3545
4 MA Badgley, DM Kremer, HC Maurer, KE DelGiorno, HJ Lee, V Purohit, IR Sagalovskiy, A, Ma J Kapilian, CEM Firlet al. (2020) Cysteine depletion induces pancreatic tumor ferroptosis in mice . Science 368:85–89
https://doi.org/10.1126/science.aaw9872
5 S Bannai (1986) Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem 261:2256–2263
6 S Bannai, T Ishii (1988) A novel function of glutamine in cell culture: utilization of glutamine for the uptake of cystine in human fibroblasts . J Cell Physiol 137:360–366
https://doi.org/10.1002/jcp.1041370221
7 S Bannai, H Tsukeda, H Okumura (1977) Effect of antioxidants on cultured human diploid fibroblasts exposed to cystine-free medium. Biochem Biophys Res Commun 74:1582–1588
https://doi.org/10.1016/0006-291X(77)90623-4
8 LK Boroughs, RJ DeBerardinis (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17:351–359
https://doi.org/10.1038/ncb3124
9 N Cancer Genome Atlas Research, (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–525
https://doi.org/10.1038/nature11404
10 N Cancer Genome Atlas Research, (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511:543–550
https://doi.org/10.1038/nature13385
11 J Canon, K, Rex AY Saiki, C Mohr, K Cooke, D Bagal, K Gaida, T Holt, CG Knutson, N Koppadaet al. (2019) The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575:217–223
https://doi.org/10.1038/s41586-019-1694-1
12 JY Cao, A Poddar, L Magtanong, JH Lumb, TR Mileur, MA Reid, CM Dovey, J Wang, JW Locasale, E Stoneet al. (2019) A genome-wide haploid genetic screen identifies regulators of glutathione abundance and ferroptosis sensitivity. Cell Rep 26 (1544–1556):e1548
https://doi.org/10.1016/j.celrep.2019.01.043
13 M Carbone, H Yang, HI Pass, T Krausz, JR Testa, G Gaudino (2013) BAP1 and cancer. Nat Rev Cancer 13:153–159
https://doi.org/10.1038/nrc3459
14 D, Chen Z Fan, M Rauh, M Buchfelder, IY Eyupoglu, N Savaskan (2017) ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene 36:5593–5608
https://doi.org/10.1038/onc.2017.146
15 S Chintala, W Li, ML Lamoreux, S Ito, K Wakamatsu, EV Sviderskaya, DC Bennett, YM Park, WA Gahl, M Huizinget al. (2005) Slc7a11 gene controls production of pheomelanin pigment and proliferation of cultured cells. Proc Natl Acad Sci USA 102:10964–10969
https://doi.org/10.1073/pnas.0502856102
16 IIC Chio, DA Tuveson (2017) ROS in cancer: the burning question. Trends Mol Med 23:411–429
https://doi.org/10.1016/j.molmed.2017.03.004
17 B Chu, N Kon, D Chen, T Li, T Liu, L Jiang, S, Song O Tavana, W Gu (2019) ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 21:579–591
https://doi.org/10.1038/s41556-019-0305-6
18 L Cobler, H Zhang, P Suri, C Park, LA Timmerman (2018) xCT inhibition sensitizes tumors to gamma-radiation via glutathione reduction. Oncotarget 9:32280–32297
https://doi.org/10.18632/oncotarget.25794
19 JA Combs, GM DeNicola (2019) The non-essential amino acid cysteine becomes essential for tumor proliferation and survival. Cancers (Basel) 11:678
https://doi.org/10.3390/cancers11050678
20 M Conrad, H Sato (2012) The oxidative stress-inducible cystine/glutamate antiporter, system x (c) (-): cystine supplier and beyond. Amino Acids 42:231–246
https://doi.org/10.1007/s00726-011-0867-5
21 AD Cox, SW Fesik, AC Kimmelman, J Luo, CJ Der (2014) Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 13:828–851
https://doi.org/10.1038/nrd4389
22 B Daher, SK Parks, J Durivault, Y Cormerais, H Baidarjad, E Tambutte, J Pouyssegur, M Vucetic (2019) Genetic ablation of the cystine transporter xCT in PDAC cells inhibits mTORC1, growth, survival, and tumor formation via nutrient and oxidative stresses . Cancer Res 79:3877–3890
https://doi.org/10.1158/0008-5472.CAN-18-3855
23 L Dai, Y Cao, Y, Chen C Parsons, Z Qin (2014) Targeting xCT, a cystine-glutamate transporter induces apoptosis and tumor regression for KSHV/HIV-associated lymphoma. J Hematol Oncol 7:30
https://doi.org/10.1186/1756-8722-7-30
24 D De Bundel, A Schallier, E Loyens, R Fernando, H Miyashita, J Van Liefferinge, K Vermoesen, S Bannai, H Sato, Y Michotteet al. (2011) Loss of system x(c)- does not induce oxidative stress but decreases extracellular glutamate in hippocampus and influences spatial working memory and limbic seizure susceptibility. J Neurosci 31:5792–5803
https://doi.org/10.1523/JNEUROSCI.5465-10.2011
25 SJ Dixon, KM Lemberg, MR Lamprecht, R Skouta, EM Zaitsev, CE Gleason, DN Patel, AJ Bauer, AM Cantley, WS Yanget al. (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072
https://doi.org/10.1016/j.cell.2012.03.042
26 SJ Dixon, DN Patel, M Welsch, R Skouta, ED Lee, M Hayano, AG Thomas, CE Gleason, NP Tatonetti, BS Slusheret al. (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3: e02523
https://doi.org/10.7554/eLife.02523
27 S Doll, B Proneth, YY Tyurina, E Panzilius, S Kobayashi, I Ingold, M Irmler, J, Beckers M Aichler , A Walchet al. (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13:91–98
https://doi.org/10.1038/nchembio.2239
28 E, Dornier N Rabas, L Mitchell, D Novo, S Dhayade, S Marco, G, Mackay D, Sumpton M Pallares, C Nixonet al. (2017) Glutaminolysis drives membrane trafficking to promote invasiveness of breast cancer cells. Nat Commun 8:2255
https://doi.org/10.1038/s41467-017-02101-2
29 RM Drayton, E Dudziec, S Peter, S Bertz, A Hartmann, HE Bryant, JW Catto (2014) Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin Cancer Res 20:1990–2000
https://doi.org/10.1158/1078-0432.CCR-13-2805
30 H Eagle (1955a) Nutrition needs of mammalian cells in tissue culture. Science 122:501–514
https://doi.org/10.1126/science.122.3168.501
31 H Eagle (1955b) The specific amino acid requirements of a human carcinoma cell (Stain HeLa) in tissue culture. J Exp Med 102:37–48
https://doi.org/10.1084/jem.102.1.37
32 H Feng, BR Stockwell (2018) Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol 16:e2006203
https://doi.org/10.1371/journal.pbio.2006203
33 JP Friedmann Angeli, M Schneider, B Proneth, YY Tyurina, VA Tyurin, VJ Hammond, N Herbach, M Aichler, A, Walch E Eggenhoferet al. (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16:1180–1191
https://doi.org/10.1038/ncb3064
34 A Galan-Cobo, P Sitthideatphaiboon, X Qu, A Poteete, MA Pisegna, P Tong, PH Chen, LK Boroughs, MLM Rodriguez, W Zhanget al. (2019) LKB1 and KEAP1/NRF2 pathways cooperatively promote metabolic reprogramming with enhanced glutamine dependence in KRAS-mutant lung adenocarcinoma. Cancer Res 79:3251–3267
https://doi.org/10.1158/0008-5472.CAN-18-3527
35 B Gan (2019) DUBbing ferroptosis in cancer cells. Cancer Res 79:1749–1750
https://doi.org/10.1158/0008-5472.CAN-19-0487
36 W Gan, X Dai, X Dai, J Xie, S Yin, J Zhu, C Wang, Y Liu, J Guo, M Wanget al. (2020) LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1 pathways in growth control. Nat Cell Biol 22:246–256
https://doi.org/10.1038/s41556-020-0463-6
37 T Goji, K Takahara, M Negishi, H Katoh (2017) Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation. J Biol Chem 292:19721–19732
https://doi.org/10.1074/jbc.M117.814392
38 DR Green, GI Evan (2002) A matter of life and death. Cancer Cell 1:19–30
https://doi.org/10.1016/S1535-6108(02)00024-7
39 Y, Gu CP Albuquerque, D Braas, W Zhang, GR Villa, J Bi, S Ikegami, K Masui, B Gini, H Yanget al. (2017) mTORC2 regulates amino acid metabolism in cancer by phosphorylation of the cystineglutamate antiporter xCT. Mol Cell 67(128–138):e127
https://doi.org/10.1016/j.molcel.2017.05.030
40 D Hanahan, RA Weinberg (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
https://doi.org/10.1016/j.cell.2011.02.013
41 KW Henry, A Wyce, WS Lo, LJ Duggan, NC Emre, CF Kao, L Pillus, A Shilatifard, MA Osley, SL Berger (2003) Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17:2648–2663
https://doi.org/10.1101/gad.1144003
42 CT Hensley, AT Wasti, RJ DeBerardinis (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 123:3678–3684
https://doi.org/10.1172/JCI69600
43 K Hu, K Li, J Lv, J Feng, J Chen, H Wu, F, Cheng W Jiang, J Wang, H Peiet al. (2020) Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest 130:1752–1766
https://doi.org/10.1172/JCI124049
44 Y Huang, Z Dai, C Barbacioru, W Sadee (2005) Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res 65:7446–7454
https://doi.org/10.1158/0008-5472.CAN-04-4267
45 FH Igney, PH Krammer (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–288
https://doi.org/10.1038/nrc776
46 T Ishii, S Bannai (1985) The synergistic action of the copper chelator bathocuproine sulphonate and cysteine in enhancing growth of L1210 cells in vitro. J Cell Physiol 125:151–155
https://doi.org/10.1002/jcp.1041250119
47 T Ishimoto, O Nagano, T Yae, M Tamada, T Motohara, H Oshima, M Oshima, T Ikeda, R Asaba, H Yagiet al. (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19:387–400
https://doi.org/10.1016/j.ccr.2011.01.038
48 R Jaenisch, A Bird (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254
https://doi.org/10.1038/ng1089
49 M Jennis, CP Kung, S Basu, A Budina-Kolomets, JI Leu, S, Khaku JP Scott, KQ Cai, MR Campbell, DK Porteret al. (2016) An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev 30:918–930
https://doi.org/10.1101/gad.275891.115
50 X Ji , J Qian, SMJ Rahman, PJ Siska, Y Zou, BK Harris, MD Hoeksema, IA Trenary, C Heidi, R Eisenberget al. (2018) xCT (SLC7A11)-mediated metabolic reprogramming promotes nonsmall cell lung cancer progression. Oncogene 37:5007–5019
https://doi.org/10.1038/s41388-018-0307-z
51 L Jiang, N Kon, T Li, SJ Wang, T Su, H Hibshoosh, R Baer, W Gu (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62
https://doi.org/10.1038/nature14344
52 JH Joly, A Delfarah, PS Phung, S Parrish, NA Graham (2020) A synthetic lethal drug combination mimics glucose deprivationinduced cancer cell death in the presence of glucose. J Biol Chem 295:1350–1365
https://doi.org/10.1074/jbc.RA119.011471
53 S Jones, TL Wang, M Shih Ie, TL Mao, K Nakayama, R Roden, R Glas, D Slamon, LA Jr Diaz, B Vogelsteinet al. (2010) Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330:228–231
https://doi.org/10.1126/science.1196333
54 C Kadoch, GR Crabtree (2015) Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv 1:e1500447
https://doi.org/10.1126/sciadv.1500447
55 VE Kagan, G Mao, F Qu, JP Angeli, S Doll, CS Croix, HH Dar, B Liu, VA Tyurin, VB Ritovet al. (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13:81–90
https://doi.org/10.1038/nchembio.2238
56 P Kandasamy, G Gyimesi, Y Kanai, MA Hediger (2018) Amino acid transporters revisited: new views in health and disease. Trends Biochem Sci 43:752–789
https://doi.org/10.1016/j.tibs.2018.05.003
57 MS Kilberg, J Shan, N Su (2009) ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 20:436–443
https://doi.org/10.1016/j.tem.2009.05.008
58 J Kim, KL Guan (2019) mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol 21:63–71
https://doi.org/10.1038/s41556-018-0205-1
59 P Koppula, Y Zhang, J Shi, W Li, B Gan (2017) The glutamate/ cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate. J Biol Chem 292:14240–14249
https://doi.org/10.1074/jbc.M117.798405
60 P Koppula, Y Zhang, L Zhuang, B Gan(2018) Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond) 38:12
https://doi.org/10.1186/s40880-018-0288-x
61 X Lang, MD Green, W, Wang J Yu, JE Choi, L Jiang, P Liao, J Zhou, Q Zhang, A Dowet al. (2019) Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov 9:1673
https://doi.org/10.1158/2159-8290.CD-19-0338
62 G Lei, Y Zhang, P, Koppula X, Liu J Zhang, SH Lin, JA Ajani, Q Xiao, Z Liao, H Wanget al.(2020) The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res 30:146–162
https://doi.org/10.1038/s41422-019-0263-3
63 T Li, N Kon, L Jiang, M Tan, T Ludwig, Y Zhao, R Baer, W Gu (2012) Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 149:1269–1283
https://doi.org/10.1016/j.cell.2012.04.026
64 EC Lien, L Ghisolfi, RC Geck, JM Asara, A Toker (2017) Oncogenic PI3K promotes methionine dependency in breast cancer cells through the cystine-glutamate antiporter xCT. Sci Signal 10: eaao6604
https://doi.org/10.1126/scisignal.aao6604
65 JKM Lim, A Delaidelli, SW Minaker, HF Zhang, M Colovic, H Yang, GL Negri, S von Karstedt , WW Lockwood, P Schafferet al. (2019) Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance. Proc Natl Acad Sci USA 116:9433–9442
https://doi.org/10.1073/pnas.1821323116
66 XX Liu, XJ Li, B Zhang, YJ Liang, CX Zhou, DX Cao, M He, GQ Chen, JR He, Q Zhao (2011) MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11. FEBS Lett 585:1363–1367
https://doi.org/10.1016/j.febslet.2011.04.018
67 DS Liu, CP Duong, S Haupt, KG Montgomery, CM House, WJ Azar, HB Pearson, OM Fisher, M Read, GR Guerraet al. (2017) Inhibiting the system xC(-)/glutathione axis selectively targets cancers with mutant-p53 accumulation . Nat Commun 8:14844
https://doi.org/10.1038/ncomms14844
68 T Liu, L Jiang, O Tavana, W Gu (2019) The Deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11. Cancer Res 79:1913–1924
https://doi.org/10.1158/0008-5472.CAN-18-3037
69 X Liu, K Olszewski, Y Zhang, EW Lim, J, Shi X Zhang, J Zhang, H Lee, P Koppula, G Leiet al. (2020) Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer. Nat Cell Biol 22:476–486
https://doi.org/10.1038/s41556-020-0496-x
70 M Lo, V Ling, YZ Wang, PW Gout (2008) The xc- cystine/glutamate antiporter: a mediator of pancreatic cancer growth with a role in drug resistance . Br J Cancer 99:464–472
https://doi.org/10.1038/sj.bjc.6604485
71 Y Long, H Tao, A Karachi, AJ Grippin, L Jin, YE Chang, W Zhang, KA Dyson, AY Hou, M Naet al. (2020) Dysregulation of glutamate transport enhances treg function that promotes VEGF blockade resistance in glioblastoma. Cancer Res 80:499–509
https://doi.org/10.1158/0008-5472.CAN-19-1577
72 PK Mandal, A Seiler, T Perisic, P Kolle, A Banjac Canak , H Forster, N Weiss, E Kremmer, MW Lieberman, S Bannaiet al. (2010) System x(c)- and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J Biol Chem 285:22244–22253
https://doi.org/10.1074/jbc.M110.121327
73 BD Manning, A Toker (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405
https://doi.org/10.1016/j.cell.2017.04.001
74 TL Mao, M Shih Ie (2013) The roles of ARID1A in gynecologic cancer. J Gynecol Oncol 24:376–381
https://doi.org/10.3802/jgo.2013.24.4.376
75 L Martin, LB Gardner (2015) Stress-induced inhibition of nonsensemediated RNA decay regulates intracellular cystine transport and intracellular glutathione through regulation of the cystine/glutamate exchanger SLC7A11. Oncogene 34:4211–4218
https://doi.org/10.1038/onc.2014.352
76 A Muir, LV Danai, DY Gui, CY Waingarten, CA Lewis, MG Vander Heiden (2017) Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition. Elife 6: e27713
https://doi.org/10.7554/eLife.27713
77 PA Muller, KH Vousden (2013) p53 mutations in cancer. Nat Cell Biol 15:2–8
https://doi.org/10.1038/ncb2641
78 M Nagane, E Kanai, Y Shibata, T Shimizu, C Yoshioka, T Maruo, T Yamashita (2018) Sulfasalazine, an inhibitor of the cystineglutamate antiporter, reduces DNA damage repair and enhances radiosensitivity in murine B16F10 melanoma. PLoS ONE 13: e0195151
https://doi.org/10.1371/journal.pone.0195151
79 E Nakamura, M Sato, H Yang, F Miyagawa, M Harasaki, K Tomita, S Matsuoka, A Noma, K Iwai, N Minato (1999) 4F2 (CD98) heavy chain is associated covalently with an amino acid transporter and controls intracellular trafficking and membrane topology of 4F2 heterodimer. J Biol Chem 274:3009–3016
https://doi.org/10.1074/jbc.274.5.3009
80 H Ogiwara, K Takahashi, M Sasaki, T Kuroda, H Yoshida, R Watanabe, A, Maruyama H Makinoshima, F Chiwaki, H Sasakiet al. (2019) Targeting the vulnerability of glutathione metabolism in ARID1Adeficient cancers. Cancer Cell 35(177–190):e178
https://doi.org/10.1016/j.ccell.2018.12.009
81 S Okuno, H Sato, K Kuriyama-Matsumura, M Tamba, H Wang, S Sohda, H Hamada, H Yoshikawa, T, Kondo S Bannai (2003) Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines. Br J Cancer 88:951–956
https://doi.org/10.1038/sj.bjc.6600786
82 I Pader, R Sengupta, M Cebula, J Xu, JO Lundberg, A Holmgren, K Johansson, ES Arner (2014) Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase. Proc Natl Acad Sci USA 111:6964–6969
https://doi.org/10.1073/pnas.1317320111
83 K Pakos-Zebrucka, I Koryga, K Mnich, M Ljujic, A Samali, AM Gorman (2016) The integrated stress response. EMBO Rep 17:1374–1395
https://doi.org/10.15252/embr.201642195
84 NN Pavlova, CB Thompson (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47
https://doi.org/10.1016/j.cmet.2015.12.006
85 IA Prior, PD Lewis, C Mattos (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72:2457–2467
https://doi.org/10.1158/0008-5472.CAN-11-2612
86 HX Qiao, CJ Hao, Y Li, X He, RS Chen, J, Cui ZH Xu, W Li (2008) JNK activation mediates the apoptosis of xCT-deficient cells. Biochem Biophys Res Commun 370:584–588
https://doi.org/10.1016/j.bbrc.2008.03.134
87 M Rojo de la Vega, E, Chapman DD Zhang (2018) NRF2 and the hallmarks of cancer. Cancer Cell 34:21–43
https://doi.org/10.1016/j.ccell.2018.03.022
88 R Romero, VI Sayin, SM Davidson, MR Bauer, SX Singh, SE LeBoeuf, TR Karakousi, DC Ellis, A Bhutkar, FJ Sanchez-Riveraet al. (2017) Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat Med 23:1362–1368
https://doi.org/10.1038/nm.4407
89 H Sato, M Tamba, T Ishii, S Bannai (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274:11455–11458
https://doi.org/10.1074/jbc.274.17.11455
90 H Sato, S Nomura, K Maebara, K Sato, M Tamba, S Bannai (2004) Transcriptional control of cystine/glutamate transporter gene by amino acid deprivation. Biochem Biophys Res Commun 325:109–116
https://doi.org/10.1016/j.bbrc.2004.10.009
91 H Sato, A Shiiya, M Kimata, K Maebara, M Tamba, Y Sakakura, N Makino, F Sugiyama, K Yagami, T Moriguchiet al. (2005) Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem 280:37423–37429
https://doi.org/10.1074/jbc.M506439200
92 VI Sayin, SE LeBoeuf, SX Singh, SM Davidson, D Biancur, BS Guzelhan, SW Alvarez, WL Wu, TR Karakousi, AM Zavitsanouet al. (2017) Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer. Elife 6:e28083
https://doi.org/10.7554/eLife.28083
93 JC Scheuermann, AG de Ayala Alonso, K Oktaba, N Ly-Hartig, RK McGinty, S Fraterman, M Wilm, TW Muir, J Muller(2010) Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465:243–247
https://doi.org/10.1038/nature08966
94 J Shi, CR Vakoc (2014) The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell 54:728–736
https://doi.org/10.1016/j.molcel.2014.05.016
95 CS Shin, P, Mishra JD Watrous, V Carelli, M D’Aurelio, M Jain, DC Chan (2017) The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility. Nat Commun 8:15074
https://doi.org/10.1038/ncomms15074
96 SS Shin, BS Jeong, BA Wall, J, Li NL Shan, Y Wen, JS Goydos, S Chen (2018) Participation of xCT in melanoma cell proliferation in vitro and tumorigenesis in vivo. Oncogenesis 7:86
https://doi.org/10.1038/s41389-018-0098-7
97 MD Stewart, J, Li J Wong (2005) Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 25:2525–2538
https://doi.org/10.1128/MCB.25.7.2525-2538.2005
98 MH Stipanuk (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577
https://doi.org/10.1146/annurev.nutr.24.012003.132418
99 MH Stipanuk, JE Jr Dominy, JI Lee, RM Coloso (2006) Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr 136:1652S–1659S
https://doi.org/10.1093/jn/136.6.1652S
100 BR Stockwell, X Jiang (2020) The chemistry and biology of ferroptosis. Cell Chem Biol 27:365–375
https://doi.org/10.1016/j.chembiol.2020.03.013
101 BR Stockwell, JP Friedmann Angeli, H Bayir, AI Bush, M, Conrad SJ Dixon, S Fulda, S Gascon, SK Hatzios, VE Kaganet al. (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285
https://doi.org/10.1016/j.cell.2017.09.021
102 S Sui, J Zhang, S Xu, Q Wang, P Wang, D Pang (2019) Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells. Cell Death Dis 10:331
https://doi.org/10.1038/s41419-019-1564-7
103 LA Timmerman, T Holton, M Yuneva, RJ Louie, M Padro, A Daemen, M Hu, DA Chan, SP Ethier, LJ van ‘t Veeret al. (2013) Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24:450–465
https://doi.org/10.1016/j.ccr.2013.08.020
104 D Trachootham, J Alexandre, P Huang (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591
https://doi.org/10.1038/nrd2803
105 K Tsuchihashi, S Okazaki, M Ohmura, M Ishikawa, O Sampetrean, N Onishi, H Wakimoto, M Yoshikawa, R Seishima, Y Iwasakiet al. (2016) The EGF receptor promotes the malignant potential of glioma by regulating amino acid transport system xc(-). Cancer Res 76:2954–2963
https://doi.org/10.1158/0008-5472.CAN-15-2121
106 MG Vander Heiden, LC Cantley, CB Thompson (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033
https://doi.org/10.1126/science.1160809
107 KH Vousden, C Prives (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431
https://doi.org/10.1016/j.cell.2009.04.037
108 H Wang, L Wang, H Erdjument-Bromage, M Vidal, P Tempst, RS Jones, Y Zhang (2004) Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878
https://doi.org/10.1038/nature02985
109 SJ Wang, D Li, Y Ou, L Jiang, Y Chen, Y Zhao, W Gu (2016) Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep 17:366–373
https://doi.org/10.1016/j.celrep.2016.09.022
110 L Wang, R Leite de Oliveira, S Huijberts, E Bosdriesz, N Pencheva, D Brunen, A Bosma, JY Song, J Zevenhoven, GT Los-de Vrieset al. (2018) An acquired vulnerability of drug-resistant melanoma with therapeutic potential. Cell 173(1413–1425):e1414
https://doi.org/10.1016/j.cell.2018.04.012
111 W Wang, M Green, JE Choi, M Gijon, PD Kennedy, JK Johnson, P Liao, X Lang, I Kryczek, A Sellet al. (2019a) CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569:270–274
https://doi.org/10.1038/s41586-019-1170-y
112 Y Wang, L Yang, X Zhang, W, Cui Y Liu, QR Sun, Q He, S Zhao, GA Zhang, Y Wanget al. (2019b) Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep 20: e47563
https://doi.org/10.15252/embr.201847563
113 L Wang, Y, Liu T Du, H Yang, L Lei, M Guo, HF Ding, J Zhang, H Wang, X Chenet al.(2020a) ATF3 promotes erastin-induced ferroptosis by suppressing system Xc(). Cell Death Differ 27:662–675
https://doi.org/10.1038/s41418-019-0380-z
114 Y Wang, Y, Zhao H Wang, C Zhang, M Wang, Y, Yang X Xu , Z Hu (2020b) Histone demethylase KDM3B protects against ferroptosis by upregulating SLC7A11. FEBS Open Biol 10:637–643
https://doi.org/10.1002/2211-5463.12823
115 Y Wu, X Sun, B Song, X Qiu, J Zhao(2017) MiR-375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion. Cancer Med 6:1686–1697
https://doi.org/10.1002/cam4.1110
116 L Xie, X Song, J Yu, W Guo, L Wei, Y Liu, X Wang (2011) Solute carrier protein family may involve in radiation-induced radioresistance of non-small cell lung cancer. J Cancer Res Clin Oncol 137:1739–1747
https://doi.org/10.1007/s00432-011-1050-9
117 T Yae, K Tsuchihashi, T Ishimoto, T Motohara, M Yoshikawa, GJ Yoshida, T Wada, T Masuko, K Mogushi, H Tanakaet al. (2012) Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat Commun 3:883
https://doi.org/10.1038/ncomms1892
118 I Yamaguchi, SH Yoshimura, H Katoh (2020) High cell density increases glioblastoma cell viability under glucose deprivation via degradation of the cystine/glutamate transporter xCT (SLC7A11). J Biol Chem 295:6936–6945
https://doi.org/10.1074/jbc.RA119.012213
119 Y Yang, D Yee (2014) IGF-I regulates redox status in breast cancer cells by activating the amino acid transport molecule xC . Cancer Res 74:2295–2305
https://doi.org/10.1158/0008-5472.CAN-13-1803
120 WS Yang, R, SriRamaratnam ME Welsch, K Shimada, R Skouta, VS Viswanathan, JH Cheah, PA Clemons, AF Shamji, CB Clishet al. (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331
https://doi.org/10.1016/j.cell.2013.12.010
121 LJ Yant, Q Ran, L Rao, H Van Remmen, T Shibatani, JG Belter, L Motta, A Richardson, TA Prolla (2003) The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34:496–502
https://doi.org/10.1016/S0891-5849(02)01360-6
122 P Ye, J Mimura, T Okada, H Sato, T Liu, A Maruyama, C, Ohyama K Itoh (2014) Nrf2- and ATF4-dependent upregulation of xCT modulates the sensitivity of T24 bladder carcinoma cells to proteasome inhibition. Mol Cell Biol 34:3421–3434
https://doi.org/10.1128/MCB.00221-14
123 LF Ye, KR Chaudhary, F, Zandkarimi AD Harken, CJ Kinslow, PS Upadhyayula, A Dovas, DM Higgins, H Tan, Y Zhanget al. (2020) Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem Biol 15:469–484
https://doi.org/10.1021/acschembio.9b00939
124 M Yoshikawa, K Tsuchihashi, T Ishimoto, T Yae, T Motohara, E Sugihara, N Onishi, T Masuko, K Yoshizawa, S Kawashiriet al. (2013) xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Res 73:1855–1866
https://doi.org/10.1158/0008-5472.CAN-12-3609-T
125 W Zhang, D Trachootham, J Liu, G Chen, H Pelicano, C Garcia-Prieto, W Lu, JA Burger, CM Croce, W Plunkettet al. (2012) Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat Cell Biol 14:276–286
https://doi.org/10.1038/ncb2432
126 L, Zhang Y Huang, J Ling, W Zhuo, Z, Yu Y Luo, Y Zhu (2018a) Overexpression of SLC7A11: a novel oncogene and an indicator of unfavorable prognosis for liver carcinoma. Fut Oncol 14:927–936
https://doi.org/10.2217/fon-2017-0540
127 Y Zhang, J Shi, X Liu, L Feng, Z Gong, P Koppula, K Sirohi, X, Li Y Wei, H Leeet al. (2018b) BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 20:1181–1192
https://doi.org/10.1038/s41556-018-0178-0
128 Y Zhang, P Koppula, B Gan (2019a) Regulation of H2A ubiquitination and SLC7A11 expression by BAP1 and PRC1. Cell Cycle 18:773–783
https://doi.org/10.1080/15384101.2019.1597506
129 Y Zhang, H Tan, JD Daniels, F Zandkarimi, H Liu, LM Brown, K Uchida, OA O’Connor, BR Stockwell (2019b) Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol 226:623
https://doi.org/10.1016/j.chembiol.2019.01.008
130 Y, Zhang L Zhuang, B Gan (2019c) BAP1 suppresses tumor development by inducing ferroptosis upon SLC7A11 repression. Mol Cell Oncol 6:1536845
https://doi.org/10.1080/23723556.2018.1536845
[1] Juan Feng,Silin Lü,Yanhong Ding,Ming Zheng,Xian Wang. Homocysteine activates T cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration[J]. Protein Cell, 2016, 7(6): 391-402.
[2] Shunbin Xiong,Tianyang Mu,Guowen Wang,Xuejun Jiang. Mitochondria-mediated apoptosis in mammals[J]. Protein Cell, 2014, 5(10): 737-749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed