|
|
|
Sarm1-mediated neurodegeneration within the enteric nervous system protects against local inflammation of the colon |
Yue Sun1, Qi Wang1, Yi Wang1, Wenran Ren6, Ying Cao1, Jiali Li2,7, Xin Zhou5, Wei Fu5, Jing Yang1,2,3,4( ) |
1. State Key Laboratory of Membrane Biology, School of Life Sciences, Center for Life Sciences, Peking University, Beijing 100871, China 2. IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China 3. Chinese Institute for Brain Research, Beijing 102206, China 4. Shenzhen Bay Laboratory, Institute of Molecular Physiology, Shenzhen 518055, China 5. Department of General Surgery, Peking University Third Hospital, Beijing 100191, China 6. School of Medicine, Tsinghua University, Beijing 100084, China 7. Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China |
|
|
|
|
Abstract Axonal degeneration is one of the key features of neurodegenerative disorders. In the canonical view, axonal degeneration destructs neural connections and promotes detrimental disease defects. Here, we assessed the enteric nervous system (ENS) of the mouse, nonhuman primate, and human by advanced 3D imaging. We observed the profound neurodegeneration of catecholaminergic axons in human colons with ulcerative colitis, and similarly, in mouse colons during acute dextran sulfate sodium-induced colitis. However, we unexpectedly revealed that blockage of such axonal degeneration by the Sarm1 deletion in mice exacerbated the colitis condition. In contrast, pharmacologic ablation or chemogenetic inhibition of catecholaminergic axons suppressed the colon inflammation. We further showed that the catecholaminergic neurotransmitter norepinephrine exerted a pro-inflammatory function by enhancing the expression of IL-17 cytokines. Together, this study demonstrated that Sarm1-mediated neurodegeneration within the ENS mitigated local inflammation of the colon, uncovering a previously-unrecognized beneficial role of axonal degeneration in this disease context.
|
| Keywords
3D imaging
enteric nervous system
axonal degeneration
neurodegeneration
catecholaminergic axons
Sarm1
colitis
|
|
Corresponding Author(s):
Jing Yang
|
|
Online First Date: 21 May 2021
Issue Date: 28 September 2021
|
|
| 1 |
MC Brown, ER Lunn, VH Perry (1992) Consequences of slow Wallerian degeneration for regenerating motor and sensory axons. J Neurobiol 23:521–536
https://doi.org/10.1002/neu.480230507
|
| 2 |
DW Cain, JA Cidlowski (2017)Immune regulation by glucocorticoids. Nat Rev Immunol 17:233–247
https://doi.org/10.1038/nri.2017.1
|
| 3 |
B Chassaing, JD Aitken, M Malleshappa, M Vijay-Kumar (2014) Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 104:15–25
https://doi.org/10.1002/0471142735.im1525s104
|
| 4 |
M Coleman (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898
https://doi.org/10.1038/nrn1788
|
| 5 |
MP Coleman, A Hoke (2020) Programmed axon degeneration: from mouse to mechanism to medicine. Nat Rev Neurosci 21:183–196
https://doi.org/10.1038/s41583-020-0269-3
|
| 6 |
R De Giorgio, S, Guerrini G Barbara, V Stanghellini, F De Ponti, R Corinaldesi, PL Moses, KA Sharkey, GM Mawe (2004) Inflammatory neuropathies of the enteric nervous system. Gastroenterology 126:1872–1883
https://doi.org/10.1053/j.gastro.2004.02.024
|
| 7 |
U Erben, C Loddenkemper, K Doerfel, S Spieckermann, D Haller, MM Heimesaat, M Zeitz, B Siegmund, AA Kuhl (2014) A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol 7:4557–4576
|
| 8 |
K Essuman, DW Summers, Y Sasaki, X Mao, A DiAntonio, J Milbrandt (2017) The SARM1 toll/interleukin-1 receptor domain possesses intrinsic NAD(+) cleavage activity that promotes pathological axonal degeneration. Neuron 93(1334–1343):
https://doi.org/10.1016/j.neuron.2017.02.022
|
| 9 |
MD Figley, A DiAntonio (2020) The SARM1 axon degeneration pathway: control of the NAD(+) metabolome regulates axon survival in health and disease. Curr Opin Neurobiol 63:59–66
https://doi.org/10.1016/j.conb.2020.02.012
|
| 10 |
JB Furness (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9:286–294
https://doi.org/10.1038/nrgastro.2012.32
|
| 11 |
I Gabanyi, PA Muller, L Feighery, TY Oliveira, FA Costa-Pinto, D Mucida (2016) Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164:378–391
https://doi.org/10.1016/j.cell.2015.12.023
|
| 12 |
S Geisler, RA Doan, A Strickland, X Huang, J Milbrandt, A DiAntonio (2016) Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain 139:3092–3108
https://doi.org/10.1093/brain/aww251
|
| 13 |
J Gerdts, DW Summers, Y Sasaki, A DiAntonio, J Milbrandt (2013) Sarm1-mediated axon degeneration requires both SAM and TIR interactions. J Neurosci 33:13569–13580
https://doi.org/10.1523/JNEUROSCI.1197-13.2013
|
| 14 |
J Gerdts, EJ Brace, Y Sasaki, A DiAntonio, J Milbrandt (2015) SARM1 activation triggers axon degeneration locally via NAD(+) destruction. Science 348:453–457
https://doi.org/10.1126/science.1258366
|
| 15 |
R Glaser, JK Kiecolt-Glaser (2005) Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 5:243–251
https://doi.org/10.1038/nri1571
|
| 16 |
CK Glass, S Ogawa (2006) Combinatorial roles of nuclear receptors in inflammation and immunity. Nat Rev Immunol 6:44–55
https://doi.org/10.1038/nri1748
|
| 17 |
K Godzik, MP Coleman (2015) The axon-protective WLD(S) protein partially rescues mitochondrial respiration and glycolysis after axonal injury. J Mol Neurosci 55:865–871
https://doi.org/10.1007/s12031-014-0440-2
|
| 18 |
RK Goyal, I Hirano (1996) The enteric nervous system. The New England journal of medicine 334:1106–1115
https://doi.org/10.1056/NEJM199604253341707
|
| 19 |
KD Graham, SH Lopez, R Sengupta, A Shenoy, S Schneider, CM Wright, M Feldman, E Furth, F Valdivieso, A Lemkeet al. (2020) Robust, 3-dimensional visualization of human colon enteric nervous system without tissue sectioning. Gastroenterology. 158(8):2221–2235
https://doi.org/10.1053/j.gastro.2020.02.035
|
| 20 |
BD Gulbransen, M Bashashati, SA Hirota, X Gui, JA Roberts, JA MacDonald, DA Muruve, DM McKay, PL Beck, GM Maweet al. (2012) Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med 18:600–604
https://doi.org/10.1038/nm.2679
|
| 21 |
ED Hoopfer, T McLaughlin, RJ Watts, O Schuldiner, DD O’Leary , L Luo (2006) Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50:883–895
https://doi.org/10.1016/j.neuron.2006.05.013
|
| 22 |
R Ito, M Kita, M Shin-Ya, T Kishida, A Urano, R Takada, J Sakagami, J, Imanishi Y Iwakura, T Okanoueet al. (2008) Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice. Biochem Biophys Res Commun 377:12–16
https://doi.org/10.1016/j.bbrc.2008.09.019
|
| 23 |
II Ivanov, BS McKenzie, L Zhou, CE Tadokoro, A Lepelley, JJ Lafaille, DJ Cua, DR Littman (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133
https://doi.org/10.1016/j.cell.2006.07.035
|
| 24 |
Y Iwakura, H Ishigame, S Saijo, S Nakae(2011) Functional specialization of interleukin-17 family members. Immunity 34:149–162
https://doi.org/10.1016/j.immuni.2011.02.012
|
| 25 |
Y Jiang, Y Liu, H Lu, SC Sun, W Jin, X Wang, C Dong (2018) Epigenetic activation during T helper 17 cell differentiation is mediated by Tripartite motif containing 28. Nat Commun 9:1424
https://doi.org/10.1038/s41467-018-03852-2
|
| 26 |
Y Jiang, T Liu, CH Lee, Q Chang, J Yang, Z Zhang (2020) The NAD (+)-mediated self-inhibition mechanism of pro-neurodegenerative SARM1. Nature 588:658–663
https://doi.org/10.1038/s41586-020-2862-z
|
| 27 |
P Kiesler, IJ Fuss, W Strober (2015) Experimental models of inflammatory bowel diseases. Cell Mol Gastroenterol Hepatol 1:154–170
https://doi.org/10.1016/j.jcmgh.2015.01.006
|
| 28 |
Y Kim, P Zhou, L Qian, JZ Chuang, J Lee, C Li, C Iadecola, C Nathan, A Ding (2007) MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. J Exp Med 204:2063–2074
https://doi.org/10.1084/jem.20070868
|
| 29 |
NY Lai, MA Musser, FA Pinho-Ribeiro, P, Baral A Jacobson, P, Ma DE Potts, Z Chen, D Paik, S Soualhiet al. (2020) Gut-innervating nociceptor neurons regulate peyer’s patch microfold cells and SFB levels to mediate salmonella host defense. Cell 180(33–49):
https://doi.org/10.1016/j.cell.2019.11.014
|
| 30 |
T Liu, L Yang, X Han, X Ding, J Li, J Yang (2020) Local sympathetic innervations modulate the lung innate immune responses. Science advances 6:eaay1497
https://doi.org/10.1126/sciadv.aay1497
|
| 31 |
A Loreto, CS Hill, VL Hewitt, G Orsomando, C Angeletti, J Gilley, C Lucci, A Sanchez-Martinez, AJ Whitworth, L Confortiet al. (2020) Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration. Neurobiol Dis 134:
https://doi.org/10.1016/j.nbd.2019.104678
|
| 32 |
ER Lunn, VH Perry, MC Brown, H Rosen, S Gordon (1989) Absence of wallerian degeneration does not hinder regeneration in peripheral nerve. Eur J Neurosci 1:27–33
https://doi.org/10.1111/j.1460-9568.1989.tb00771.x
|
| 33 |
L Luo, DD O’Leary (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156
https://doi.org/10.1146/annurev.neuro.28.061604.135632
|
| 34 |
TG Mack, M Reiner, B Beirowski, W Mi, M Emanuelli, D Wagner, D Thomson, T Gillingwater, F Court, L Confortiet al. (2001) Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci 4:1199–1206
https://doi.org/10.1038/nn770
|
| 35 |
KS Madden, VM Sanders, DL Felten (1995) Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu Rev Pharmacol Toxicol 35:417–448
https://doi.org/10.1146/annurev.pa.35.040195.002221
|
| 36 |
F Matheis, PA Muller, CL Graves, I, Gabanyi ZJ Kerner, D Costa-Borges, T Ahrends, P Rosenstiel, D Mucida (2020) Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180(64–78):
https://doi.org/10.1016/j.cell.2019.12.002
|
| 37 |
P Miossec, JK Kolls (2012) Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov 11:763–776
https://doi.org/10.1038/nrd3794
|
| 38 |
SN Murthy, HS Cooper, H Shim, RS Shah, SA Ibrahim, DJ Sedergran (1993) Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig Dis Sci 38:1722–1734
https://doi.org/10.1007/BF01303184
|
| 39 |
PH Neckel, U Mattheus, B Hirt, L Just, AF Mack (2016) Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure. Sci Rep 6:34331
https://doi.org/10.1038/srep34331
|
| 40 |
LJ Neukomm, MR Freeman (2014) Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol 24:515–523
https://doi.org/10.1016/j.tcb.2014.04.003
|
| 41 |
F Obermayr, R Hotta, H Enomoto, HM Young (2013) Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol 10:43–57
https://doi.org/10.1038/nrgastro.2012.234
|
| 42 |
JM Osterloh, J, Yang TM Rooney, AN Fox, R Adalbert, EH Powell, AE Sheehan, MA Avery, R Hackett, MA Loganet al. (2012) dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337:481–484
https://doi.org/10.1126/science.1223899
|
| 43 |
DA Padgett, R Glaser (2003) How stress influences the immune response. Trends Immunol 24:444–448
https://doi.org/10.1016/S1471-4906(03)00173-X
|
| 44 |
M Rao, MD Gershon (2016) The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol 13:517–528
https://doi.org/10.1038/nrgastro.2016.107
|
| 45 |
BU Schraml, K Hildner, W Ise, WL Lee, WA Smith, B Solomon, G Sahota, J Sim, R Mukasa, S Cemerskiet al. (2009) The AP-1 transcription factor Batf controls T(H)17 differentiation. Nature 460:405–409
https://doi.org/10.1038/nature08114
|
| 46 |
DJ Simon, RM Weimer, T McLaughlin, D Kallop, K Stanger, J Yang, DD O’Leary, RN Hannoush, M Tessier-Lavigne (2012) A caspase cascade regulating developmental axon degeneration. J Neurosci 32:17540–17553
https://doi.org/10.1523/JNEUROSCI.3012-12.2012
|
| 47 |
RH Straub, F Grum, U Strauch, S Capellino, F Bataille, A Bleich, W Falk, J, Scholmerich F Obermeier (2008) Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation. Gut 57:911–921
https://doi.org/10.1136/gut.2007.125401
|
| 48 |
J Talbot, P Hahn, L, Kroehling H Nguyen, D Li, DR Littman (2020) Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier. Nature 579:575–580
https://doi.org/10.1038/s41586-020-2039-9
|
| 49 |
C, Tang S Kakuta, K Shimizu, M Kadoki, T Kamiya, T, Shimazu S Kubo, S Saijo, H Ishigame, S Nakaeet al. (2018) Suppression of IL- 17F, but not of IL-17A, provides protection against colitis by inducing Treg cells through modification of the intestinal microbiota. Nat Immunol 19:755–765
https://doi.org/10.1038/s41590-018-0134-y
|
| 50 |
J Wang, Q Zhai, Y Chen, E Lin, W, Gu MW McBurney, Z He (2005) A local mechanism mediates NAD-dependent protection of axon degeneration. J Cell Biol 170:349–355
https://doi.org/10.1083/jcb.200504028
|
| 51 |
JT Wang, ZA Medress, BA Barres (2012) Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196:7–18
https://doi.org/10.1083/jcb.201108111
|
| 52 |
Q Wang, K Liu, L Yang, H Wang, J Yang(2019) BoneClear: wholetissue immunolabeling of the intact mouse bones for 3D imaging of neural anatomy and pathology. Cell Res 29:870–872
https://doi.org/10.1038/s41422-019-0217-9
|
| 53 |
JI Webster, L Tonelli, EM Sternberg (2002) Neuroendocrine regulation of immunity. Annu Rev Immunol 20:125–163
https://doi.org/10.1146/annurev.immunol.20.082401.104914
|
| 54 |
AV Whitmore, T, Lindsten MC Raff, CB Thompson (2003) The proapoptotic proteins Bax and Bak are not involved in Wallerian degeneration. Cell Death Differ 10:260–261
https://doi.org/10.1038/sj.cdd.4401147
|
| 55 |
DL Wong, TC Tai, DC Wong-Faull , R Claycomb, EG Meloni, KM Myers, WA Jr, Carlezon R Kvetnansky (2012) Epinephrine: a short- and long-term regulator of stress and development of illness : a potential new role for epinephrine in stress. Cell Mol Neurobiol 32:737–748
https://doi.org/10.1007/s10571-011-9768-0
|
| 56 |
XO Yang, SH Chang, H Park, R Nurieva, B Shah, L Acero, YH Wang, KS Schluns, RR Broaddus, Z Zhuet al. (2008) Regulation of inflammatory responses by IL-17F. J Exp Med 205:1063–1075
https://doi.org/10.1084/jem.20071978
|
| 57 |
J Yang, Z Wu, N Renier, DJ Simon, K Uryu, DS Park, PA Greer, C Tournier, RJ Davis, M Tessier-Lavigne (2015) Pathological axonal death through a MAPK cascade that triggers a local energy deficit. Cell 160:161–176
https://doi.org/10.1016/j.cell.2014.11.053
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|