|
|
|
Ferroptosis, radiotherapy, and combination therapeutic strategies |
Guang Lei1,2, Chao Mao2, Yuelong Yan2, Li Zhuang2, Boyi Gan2,3( ) |
1. Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China 2. 2Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 3. The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA |
|
|
|
|
Abstract Ferroptosis, an iron-dependent form of regulated cell death driven by peroxidative damages of polyunsaturated-fatty-acid-containing phospholipids in cellular membranes, has recently been revealed to play an important role in radiotherapy-induced cell death and tumor suppression, and to mediate the synergy between radiotherapy and immunotherapy. In this review, we summarize known as well as putative mechanisms underlying the crosstalk between radiotherapy and ferroptosis, discuss the interactions between ferroptosis and other forms of regulated cell death induced by radiotherapy, and explore combination therapeutic strategies targeting ferroptosis in radiotherapy and immunotherapy. This review will provide important frameworks for future investigations of ferroptosis in cancer therapy.
|
| Keywords
ferroptosis
lipid peroxidation
GPX4
SLC7A11
radiotherapy
immunotherapy
radiosensitization
combination therapy
|
|
Corresponding Author(s):
Boyi Gan
|
|
Online First Date: 21 May 2021
Issue Date: 01 December 2021
|
|
| 1 |
S Adjemian, T Oltean, S Martens, B Wiernicki, V Goossens, TV Berghe, B Cappe, M Ladik, FB Riquet, L Heyndrickx (2020) Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death. Cell Death Dis 11:1–15
https://doi.org/10.1038/s41419-020-03209-y
|
| 2 |
I Alim, JT Caulfield, Y Chen, V Swarup, DH Geschwind, E Ivanova, J Seravalli, Y Ai, LH Sansing, EJS Marie (2019) Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177(1262–1279):
https://doi.org/10.1016/j.cell.2019.03.032
|
| 3 |
SW Alvarez, VO Sviderskiy, EM Terzi, T Papagiannakopoulos, AL Moreira, S Adams, DM Sabatini, K Birsoy, R Possemato (2017) NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551:639–643
https://doi.org/10.1038/nature24637
|
| 4 |
GJ Anderson, CD Vulpe (2009) Mammalian iron transport. Cell Mol Life Sci 66:3241
https://doi.org/10.1007/s00018-009-0051-1
|
| 5 |
JPF Angeli, M Conrad (2018) Selenium and GPX4, a vital symbiosis. Free Radical Biol Med 127:153–159
https://doi.org/10.1016/j.freeradbiomed.2018.03.001
|
| 6 |
JPF Angeli, M Schneider, B Proneth, YY Tyurina, VA Tyurin, VJ Hammond, N Herbach, M Aichler, A Walch, E Eggenhofer (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16:1180–1191
https://doi.org/10.1038/ncb3064
|
| 7 |
BJ Aubrey, GL Kelly, A Janic, MJ Herold, A Strasser (2018) How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ 25:104–113
https://doi.org/10.1038/cdd.2017.169
|
| 8 |
A Ayala, MF Muñoz, S Argüelles (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longevity
https://doi.org/10.1155/2014/360438
|
| 9 |
EI Azzam, J-P Jay-Gerin, D Pain (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327:48–60
https://doi.org/10.1016/j.canlet.2011.12.012
|
| 10 |
MA Badgley, DM Kremer, HC Maurer, KE DelGiorno, H-J Lee, V Purohit, IR Sagalovskiy, A Ma, J Kapilian, CE Firl (2020) Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368:85–89
https://doi.org/10.1126/science.aaw9872
|
| 11 |
KE Baidoo, K Yong, MW Brechbiel (2013) Molecular pathways: targeted α-particle radiation therapy. Clin Cancer Res 19:530–537
https://doi.org/10.1158/1078-0432.CCR-12-0298
|
| 12 |
MF Benveniste, D Gomez, BW Carter, SL Betancourt Cuellar, GS Shroff, APA Benveniste, EG Odisio, EM Marom (2019) Recognizing radiation therapy-related complications in the chest. Radiographics 39:344–366
https://doi.org/10.1148/rg.2019180061
|
| 13 |
M Berbee, Q Fu, M Boerma, R Pathak, D Zhou, KS Kumar, M Hauer-Jensen (2011) Reduction of radiation-induced vascular nitrosative stress by the vitamin E analog γ-tocotrienol: evidence of a role for tetrahydrobiopterin. Int J Radiat Oncol Biol Phys 79:884–891
https://doi.org/10.1016/j.ijrobp.2010.08.032
|
| 14 |
K Bersuker, J Hendricks, Z Li, L Magtanong, B Ford, PH Tang, MA Roberts, B Tong, TJ Maimone, R Zoncu (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575:688
https://doi.org/10.1038/s41586-019-1705-2
|
| 15 |
KT Bieging, SS Mello, LD Attardi (2014) Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14:359–370
https://doi.org/10.1038/nrc3711
|
| 16 |
S Boumahdi, FJ de Sauvage (2020) The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov 19:39–56
https://doi.org/10.1038/s41573-019-0044-1
|
| 17 |
M Braig, S Lee, C Loddenkemper, C Rudolph, AH Peters, B Schlegelberger, H Stein, B Dörken, T Jenuwein, CA Schmitt (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665
https://doi.org/10.1038/nature03841
|
| 18 |
ML Bristol, X Di, MJ Beckman, EN Wilson, SC Henderson, A Maiti, Z Fan, DA Gewirtz (2012) Dual functions of autophagy in the response of breast tumor cells to radiation: cytoprotective autophagy with radiation alone and cytotoxic autophagy in radiosensitization by vitamin D3. Autophagy 8:739–753
https://doi.org/10.4161/auto.19313
|
| 19 |
CW Brown, JJ Amante, P Chhoy, AL Elaimy, H Liu, LJ Zhu, CE Baer, SJ Dixon, AM Mercurio (2019) Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell 51(575–586):
https://doi.org/10.1016/j.devcel.2019.10.007
|
| 20 |
EA Bump, JM Brown (1990) Role of glutathione in the radiation response of mammalian cells invitro and in vivo. Pharmacol Ther 47:117–136
https://doi.org/10.1016/0163-7258(90)90048-7
|
| 21 |
AK Cheema, R Pathak, F Zandkarimi, P Kaur, L Alkhalil, R Singh, X Zhong, S Ghosh, N Aykin-Burns, M Hauer-Jensen (2014) Liver metabolomics reveals increased oxidative stress and fibrogenic potential in gfrp transgenic mice in response to ionizing radiation. J Proteome Res 13:3065–3074
https://doi.org/10.1021/pr500278t
|
| 22 |
C-Y Chen, JD Oliner, Q Zhan, AJ Fornace, B Vogelstein, MB Kastan (1994) Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway. Proc Natl Acad Sci 91:2684–2688
https://doi.org/10.1073/pnas.91.7.2684
|
| 23 |
D Chen, Z Fan, M Rauh, M Buchfelder, I Eyupoglu, N Savaskan (2017a) ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene 36:5593–5608
https://doi.org/10.1038/onc.2017.146
|
| 24 |
D Chen, O Tavana, B Chu, L Erber, Y Chen, R Baer, W Gu (2017b) NRF2 is a major target of ARF in p53-independent tumor suppression. Mol Cell 68(224–232):
https://doi.org/10.1016/j.molcel.2017.09.009
|
| 25 |
P-H Chen, J Wu, C-KC Ding, C-C Lin, S Pan, N Bossa, Y Xu, W-H Yang, B Mathey-Prevot, J-T Chi (2020) Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ 27:1008–1022
https://doi.org/10.1038/s41418-019-0393-7
|
| 26 |
SH Chew, Y Okazaki, S Akatsuka, S Wang, L Jiang, Y Ohara, F Ito, H Saya, Y Sekido, S Toyokuni (2017) Rheostatic CD44 isoform expression and its association with oxidative stress in human malignant mesothelioma. Free Radical Biol Med 106:91–99
https://doi.org/10.1016/j.freeradbiomed.2017.02.011
|
| 27 |
IIC Chio, DA Tuveson (2017) ROS in cancer: the burning question. Trends Mol Med 23:411–429
https://doi.org/10.1016/j.molmed.2017.03.004
|
| 28 |
S Choudhary, SC Burns, H Mirsafian, W Li, DT Vo, M Qiao, X Lei, AD Smith, LO Penalva (2020) Genomic analyses of early responses to radiation inglioblastoma reveal new alterations at transcription, splicing, and translation levels. Sci Rep 10:1–12
https://doi.org/10.1038/s41598-020-69585-9
|
| 29 |
B Chu, N Kon, D Chen, T Li, T Liu, L Jiang, S Song, O Tavana, W Gu (2019) ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 21:579–591
https://doi.org/10.1038/s41556-019-0305-6
|
| 30 |
SM Colles, GM Chisolm (2000) Lysophosphatidylcholine-induced cellular injury in cultured fibroblasts involves oxidative events. J Lipid Res 41:1188–1198
https://doi.org/10.1016/S0022-2275(20)33425-8
|
| 31 |
M Conrad, DA Pratt (2019) The chemical basis of ferroptosis. Nat Chem Biol 15:1137–1147
https://doi.org/10.1038/s41589-019-0408-1
|
| 32 |
M Conrad, B Proneth (2020) Selenium: tracing another essential element of ferroptotic cell death. Cell Chem Biol
https://doi.org/10.1016/j.chembiol.2020.03.012
|
| 33 |
M Conrad, H Sato (2012) The oxidative stress-inducible cystine/glutamate antiporter, system x c−: cystine supplier and beyond. Amino Acids 42:231–246
https://doi.org/10.1007/s00726-011-0867-5
|
| 34 |
MJ Crabtree, AL Tatham, AB Hale, NJ Alp, KM Channon (2009) Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling relative importance of the de novo biopterin synthesis versus salvage pathways. J Biol Chem 284:28128–28136
https://doi.org/10.1074/jbc.M109.041483
|
| 35 |
MR de la Vega, E Chapman, DD Zhang (2018) NRF2 and the hallmarks of cancer. Cancer Cell 34:21–43
https://doi.org/10.1016/j.ccell.2018.03.022
|
| 36 |
G Delaney, S Jacob, C Featherstone, M Barton (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104:1129–1137
https://doi.org/10.1002/cncr.21324
|
| 37 |
SJ Dixon, KM Lemberg, MR Lamprecht, R Skouta, EM Zaitsev, CE Gleason, DN Patel, AJ Bauer, AM Cantley, WS Yang (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072
https://doi.org/10.1016/j.cell.2012.03.042
|
| 38 |
SJ Dixon, DN Patel, M Welsch, R Skouta, ED Lee, M Hayano, AG Thomas, CE Gleason, NP Tatonetti, BS Slusher (2014) Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3:
https://doi.org/10.7554/eLife.02523
|
| 39 |
SJ Dixon, GE Winter, LS Musavi, ED Lee, B Snijder, M Rebsamen, G Superti-Furga, BR Stockwell (2015) Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol 10:1604–1609
https://doi.org/10.1021/acschembio.5b00245
|
| 40 |
S Doll, B Proneth, YY Tyurina, E Panzilius, S Kobayashi, I Ingold, M Irmler, J Beckers, M Aichler, A Walch (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13:91–98
https://doi.org/10.1038/nchembio.2239
|
| 41 |
S Doll, FP Freitas, R Shah, M Aldrovandi, MC da Silva, I Ingold, AG Grocin, TNX da Silva, E Panzilius, C Scheel (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693
https://doi.org/10.1038/s41586-019-1707-0
|
| 42 |
K Duberley, S Heales, A Abramov, A Chalasani, J Land, S Rahman, I Hargreaves (2014) Effect of Coenzyme Q10 supplementation on mitochondrial electron transport chain activity and mitochondrial oxidative stress in Coenzyme Q10 deficient human neuronal cells. Int J Biochem Cell Biol 50:60–63
https://doi.org/10.1016/j.biocel.2014.02.003
|
| 43 |
MM Elguindy, E Nakamaru-Ogiso (2015) Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenonesensitive NADH: ubiquinone oxidoreductases (NDH-2). J Biol Chem 290:20815–20826
https://doi.org/10.1074/jbc.M115.641498
|
| 44 |
Z Fan, A Wirth, D Chen, C Wruck, M Rauh, M Buchfelder, N Savaskan (2017) Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 6:e371–e371
https://doi.org/10.1038/oncsis.2017.65
|
| 45 |
P Fei, WS El-Deiry (2003) P53 and radiation responses. Oncogene 22:5774–5783
https://doi.org/10.1038/sj.onc.1206677
|
| 46 |
H Feng, K Schorpp, J Jin, CE Yozwiak, BG Hoffstrom, AM Decker, P Rajbhandari, ME Stokes, HG Bender, JM Csuka (2020) Transferrin receptor is a specific ferroptosis marker. Cell Rep 30(3411–3423):
https://doi.org/10.1016/j.celrep.2020.02.049
|
| 47 |
B Frei, MC Kim, BN Ames (1990) Ubiquinol-10 is an effective lipidsoluble antioxidant at physiological concentrations. Proc Natl Acad Sci 87:4879–4883
https://doi.org/10.1073/pnas.87.12.4879
|
| 48 |
L Galluzzi, I Vitale, SA Aaronson, JM Abrams, D Adam, P Agostinis, ES Alnemri, L Altucci, I Amelio, DW Andrews (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541
https://doi.org/10.1038/s41418-017-0012-4
|
| 49 |
M Gao, P Monian, N Quadri, R Ramasamy, X Jiang (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59:298–308
https://doi.org/10.1016/j.molcel.2015.06.011
|
| 50 |
M Gao, P Monian, Q Pan, W Zhang, J Xiang, X Jiang (2016) Ferroptosis is an autophagic cell death process. Cell Res 26:1021–1032
https://doi.org/10.1038/cr.2016.95
|
| 51 |
J Garcia-Bermudez, L Baudrier, EC Bayraktar, Y Shen, K La, R Guarecuco, B Yucel, D Fiore, B Tavora, E Freinkman (2019) Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567:118–122
https://doi.org/10.1038/s41586-019-0945-5
|
| 52 |
N Geng, B Shi, S Li, Z Zhong, Y Li, W Xua, H Zhou, J Cai (2018) Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur Rev Med Pharmacol Sci 22:3826–3836
|
| 53 |
AG Georgakilas, OA Martin, WM Bonner (2017) p21: a two-faced genome guardian. Trends Mol Med 23:310–319
https://doi.org/10.1016/j.molmed.2017.02.001
|
| 54 |
DR Green (2019) The coming decade of cell death research: five riddles. Cell 177:1094–1107
https://doi.org/10.1016/j.cell.2019.04.024
|
| 55 |
AV Gudkov, EA Komarova (2003) The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer 3:117–129
https://doi.org/10.1038/nrc992
|
| 56 |
J Guo, B Xu, Q Han, H Zhou, Y Xia, C Gong, X Dai, Z Li, G Wu(2018) Ferroptosis: a novel anti-tumor action for cisplatin. Cancer Res Treat 50:445
https://doi.org/10.4143/crt.2016.572
|
| 57 |
E Habib, K Linher-Melville, H-X Lin, G Singh (2015) Expression of xCT and activity of system xc− are regulated by NRF2 in human breast cancer cells in response to oxidative stress. Redox Biol 5:33–42
https://doi.org/10.1016/j.redox.2015.03.003
|
| 58 |
Y Han, A Platonov, M Akhalaia, Y-S Yun, J-Y Song (2005) Differential effect of γ-radiation-induced heme oxygenase-1 activity in female and male C57BL/6 mice. J Korean Med Sci 20:535–541
https://doi.org/10.3346/jkms.2005.20.4.535
|
| 59 |
D Hanahan, RA Weinberg (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
https://doi.org/10.1016/j.cell.2011.02.013
|
| 60 |
MJ Hangauer, VS Viswanathan, MJ Ryan, D Bole, JK Eaton, A Matov, J Galeas, HD Dhruv, ME Berens, SL Schreiber (2017) Drugtolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551:247–250
https://doi.org/10.1038/nature24297
|
| 61 |
B Hassannia, B Wiernicki, I Ingold, F Qu, S Van Herck, YY Tyurina, H Bayır, BA Abhari, JPF Angeli, SM Choi (2018) Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Investig 128:3341–3355
https://doi.org/10.1172/JCI99032
|
| 62 |
B Hassannia, P Vandenabeele, TV Berghe (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35:830–849
https://doi.org/10.1016/j.ccell.2019.04.002
|
| 63 |
M Hayano, W Yang, C Corn, N Pagano, B Stockwell (2016) Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ 23:270–278
https://doi.org/10.1038/cdd.2015.93
|
| 64 |
FG Herrera, J Bourhis, G Coukos (2017) Radiotherapy combination opportunities leveraging immunity for the next oncology practice. Cancer J Clin 67:65–85
https://doi.org/10.3322/caac.21358
|
| 65 |
N Horikoshi, J Cong, N Kley, T Shenk (1999) Isolation of differentially expressed cDNAs from p53-dependent apoptotic cells: activation of the human homologue of the Drosophila peroxidasin gene. Biochem Biophys Res Commun 261:864–869
https://doi.org/10.1006/bbrc.1999.1123
|
| 66 |
W Hou, Y Xie, X Song, X Sun, MT Lotze, HJ III Zeh, R Kang, D Tang (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12:1425–1428
https://doi.org/10.1080/15548627.2016.1187366
|
| 67 |
W Hu, C Zhang, R Wu, Y Sun, A Levine, Z Feng (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci 107:7455–7460
https://doi.org/10.1073/pnas.1001006107
|
| 68 |
L Hu, H Wang, L Huang, Y Zhao, J Wang (2016) Crosstalk between autophagy and intracellular radiation response. Int J Oncol 49:2217–2226
https://doi.org/10.3892/ijo.2016.3719
|
| 69 |
K Hu, K Li, J Lv, J Feng, J Chen, H Wu, F Cheng, W Jiang, J Wang, H Pei (2020) Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest 130:1752
https://doi.org/10.1172/JCI124049
|
| 70 |
R-X Huang, P-K Zhou (2020) DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transd Target Therapy 5:1–27
https://doi.org/10.1038/s41392-020-0150-x
|
| 71 |
PM Hwang, F Bunz, J Yu, C Rago, TA Chan, MP Murphy, GF Kelso, RA Smith, KW Kinzler, B Vogelstein (2001) Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nat Med 7:1111–1117
https://doi.org/10.1038/nm1001-1111
|
| 72 |
I Ingold, C Berndt, S Schmitt, S Doll, G Poschmann, K Buday, A Roveri, X Peng, FP Freitas, T Seibt (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172(409–422):
https://doi.org/10.1016/j.cell.2017.11.048
|
| 73 |
T Ishimoto, O Nagano, T Yae, M Tamada, T Motohara, H Oshima, M Oshima, T Ikeda, R Asaba, H Yagi (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc− and thereby promotes tumor growth. Cancer Cell 19:387–400
https://doi.org/10.1016/j.ccr.2011.01.038
|
| 74 |
DA Jaffray (2012) Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol 9:688
https://doi.org/10.1038/nrclinonc.2012.194
|
| 75 |
L Jiang, N Kon, T Li, S-J Wang, T Su, H Hibshoosh, R Baer, W Gu (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62
https://doi.org/10.1038/nature14344
|
| 76 |
VE Kagan, G Mao, F Qu, JPF Angeli, S Doll, C St Croix, HH Dar, B Liu, VA Tyurin, VB Ritov (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13:81–90
https://doi.org/10.1038/nchembio.2238
|
| 77 |
Y Kaku, A Tsuchiya, T Kanno, T Nishizaki (2015) HUHS1015 induces necroptosis and caspase-independent apoptosis of MKN28human gastric cancer cells in association with AMID accumulation in the nucleus. Anti-Cancer Agents Med Chem 15:242–247
https://doi.org/10.2174/1871520614666140922122700
|
| 78 |
WW-Y Kam, RB Banati (2013) Effects of ionizing radiation on mitochondria. Free Radical Biol Med 65:607–619
https://doi.org/10.1016/j.freeradbiomed.2013.07.024
|
| 79 |
R Kang, D Tang (2016) What is the pathobiology of inflammation to cell death? Apoptosis, necrosis, necroptosis, autophagic cell death, pyroptosis, and NETosis. In: Autophagy networks in inflammation. Springer, Berlin, pp 81–106
https://doi.org/10.1007/978-3-319-30079-5_5
|
| 80 |
R Kang, G Kroemer, D Tang (2019) The tumor suppressor protein p53 and the ferroptosis network. Free Radical Biol Med 133:162–168
https://doi.org/10.1016/j.freeradbiomed.2018.05.074
|
| 81 |
SE Kim, L Zhang, K Ma, M Riegman, F Chen, I Ingold, M Conrad, MZ Turker, M Gao, X Jiang (2016) Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotechnol 11:977
https://doi.org/10.1038/nnano.2016.164
|
| 82 |
P Koppula, Y Zhang, L Zhuang, B Gan (2018) Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun 38:1–13
https://doi.org/10.1186/s40880-018-0288-x
|
| 83 |
P Koppula, L Zhuang, B Gan (2020) Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell.
https://doi.org/10.1007/s13238-020-00789-5
|
| 84 |
T Kordbacheh, J Honeychurch, F Blackhall, C Faivre-Finn, T Illidge (2018) Radiotherapy and anti-PD-1/PD-L1 combinations in lung cancer: building better translational research platforms. Ann Oncol 29:301–310
https://doi.org/10.1093/annonc/mdx790
|
| 85 |
VA Kraft, CT Bezjian, S Pfeiffer, L Ringelstetter, C Müller, F Zandkarimi, J Merl-Pham, X Bao, N Anastasov, J Kössl (2019) GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Central Sci 6:41–53
https://doi.org/10.1021/acscentsci.9b01063
|
| 86 |
X Lang, MD Green, W Wang, J Yu, JE Choi, L Jiang, P Liao, J Zhou, Q Zhang, A Dow (2019) Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov 9:1673–1685
https://doi.org/10.1158/2159-8290.CD-19-0338
|
| 87 |
JK Leach, G Van Tuyle, P-S Lin, R Schmidt-Ullrich, RB Mikkelsen (2001) Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 61:3894–3901
|
| 88 |
H Lee, F Zandkarimi, Y Zhang, JK Meena, J Kim, L Zhuang, S Tyagi, L Ma, TF Westbrook, GR Steinberg (2020) Energy-stressmediated AMPK activation inhibits ferroptosis. Nat Cell Biol 22:225–234
https://doi.org/10.1038/s41556-020-0461-8
|
| 89 |
G Lei, Y Zhang, P Koppula, X Liu, J Zhang, SH Lin, JA Ajani, Q Xiao, Z Liao, H Wang (2020) The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res 30:146–162
https://doi.org/10.1038/s41422-019-0263-3
|
| 90 |
L Li, A Rezvan, JC Salerno, A Husain, K Kwon, H Jo, DG Harrison, W Chen (2010) GTP cyclohydrolase I phosphorylation and interaction with GTP cyclohydrolase feedback regulatory protein provide novel regulation of endothelial tetrahydrobiopterin and nitric oxide. Circ Res 106:328–336
https://doi.org/10.1161/CIRCRESAHA.109.210658
|
| 91 |
M Li, L You, J Xue, Y Lu (2018) Ionizing radiation-induced cellular senescence in normal, non-transformed cells and the involved DNA damage response: a mini review. Front Pharmacol 9:522
https://doi.org/10.3389/fphar.2018.00522
|
| 92 |
X Li, L Duan, S Yuan, X Zhuang, T Qiao, J He (2019a) Ferroptosis inhibitor alleviates radiation-induced lung fibrosis (RILF) via down-regulation of TGF-β1. J Inflamm 16:11
https://doi.org/10.1186/s12950-019-0216-0
|
| 93 |
X Li, X Zhuang, T Qiao (2019b) Role of ferroptosis in the process of acute radiation-induced lung injury in mice. Biochem Biophys Res Commun 519:240–245
https://doi.org/10.1016/j.bbrc.2019.08.165
|
| 94 |
C Li, X Dong, W Du, X Shi, K Chen, W Zhang, M Gao (2020) LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis. Signal Transd Target Ther 5:1–4
https://doi.org/10.1038/s41392-019-0089-y
|
| 95 |
C Liang, X Zhang, M Yang, X Dong (2019) Recent progress in ferroptosis inducers for cancer therapy. Adv Mater 31:1904197
https://doi.org/10.1002/adma.201904197
|
| 96 |
B Liu, J Yi, X Yang, L Liu, X Lou, Z Zhang, H Qi, Z Wang, J Zou, W-G Zhu (2019a) MDM2-mediated degradation of WRN promotes cellular senescence in a p53-independent manner. Oncogene 38:2501–2515
https://doi.org/10.1038/s41388-018-0605-5
|
| 97 |
T Liu, L Jiang, O Tavana, W Gu (2019b) The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11. Cancer Res 79:1913–1924
https://doi.org/10.1158/0008-5472.CAN-18-3037
|
| 98 |
J Liu, F Kuang, G Kroemer, DJ Klionsky, R Kang, D Tang (2020a) Autophagy-dependent ferroptosis: machinery and regulation. Cell Chem Biol 27:420
https://doi.org/10.1016/j.chembiol.2020.02.005
|
| 99 |
J Liu, Z Zhu, Y Liu, L Wei, B Li, F Mao, J Zhang, Y Wang, Y Liu (2020b) MDM2 inhibition-mediated autophagy contributes to the pro-apoptotic effect of berberine in p53-null leukemic cells. Life Sci 242:
https://doi.org/10.1016/j.lfs.2019.117228
|
| 100 |
X Liu, K Olszewski, Y Zhang, EW Lim, J Shi, X Zhang, J Zhang, H Lee, P Koppula, G Lei (2020c) Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer. Nat Cell Biol 22:476–486
https://doi.org/10.1038/s41556-020-0496-x
|
| 101 |
X Liu, Y Zhang, L Zhuang, K Olszewski, B Gan (2020d) NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edge sword in cellular redox regulation. Genes Dis.
https://doi.org/10.1016/j.gendis.2020.11.010
|
| 102 |
C Louandre, I Marcq, H Bouhlal, E Lachaier, C Godin, Z Saidak, C François, D Chatelain, V Debuysscher, J-C Barbare (2015) The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett 356:971–977
https://doi.org/10.1016/j.canlet.2014.11.014
|
| 103 |
S Ma, E Henson, Y Chen, S Gibson (2016) Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis 7:e2307–e2307
https://doi.org/10.1038/cddis.2016.208
|
| 104 |
L Magtanong, P-J Ko, M To, JY Cao, GC Forcina, A Tarangelo, CC Ward, K Cho, GJ Patti, DK Nomura (2019) Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem Biol 26(420–432):
https://doi.org/10.1016/j.chembiol.2018.11.016
|
| 105 |
P Maier, L Hartmann, F Wenz, C Herskind (2016) Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int J Mol Sci 17:102
https://doi.org/10.3390/ijms17010102
|
| 106 |
J Malhotra, SK Jabbour, J Aisner (2017) Current state of immunotherapy for non-small cell lung cancer. Transl Lung Cancer Res 6:196
https://doi.org/10.21037/tlcr.2017.03.01
|
| 107 |
KR Marshall, M Gong, L Wodke, JH Lamb, DJ Jones, PB Farmer, NS Scrutton, AW Munro (2005) The human apoptosis-inducing protein AMID is an oxidoreductase with a modified flavin cofactor and DNA binding activity. J Biol Chem 280:30735–30740
https://doi.org/10.1074/jbc.M414018200
|
| 108 |
R Maya, M Balass, S-T Kim, D Shkedy, J-FM Leal, O Shifman, M Moas, T Buschmann, ZE Ronai, Y Shiloh (2001) ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 15:1067–1077
https://doi.org/10.1101/gad.886901
|
| 109 |
EA McCullagh, DE Featherstone (2014) Behavioral characterization of system xc-mutant mice. Behav Brain Res 265:1–11
https://doi.org/10.1016/j.bbr.2014.02.010
|
| 110 |
JT McDonald, K Kim, AJ Norris, E Vlashi, TM Phillips, C Lagadec, L Della Donna, J Ratikan, H Szelag, L Hlatky (2010) Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res 70:8886–8895
https://doi.org/10.1158/0008-5472.CAN-10-0171
|
| 111 |
M Mijit, V Caracciolo, A Melillo, F Amicarelli, A Giordano (2020) Role of p53 in the regulation of cellular senescence. Biomolecules 10:420
https://doi.org/10.3390/biom10030420
|
| 112 |
O Mohamad, T Tabuchi, Y Nitta, A Nomoto, A Sato, G Kasuya, H Makishima, H Choy, S Yamada, T Morishima (2019) Risk of subsequent primary cancers after carbon ion radiotherapy, photon radiotherapy, or surgery for localised prostate cancer: a propensity score-weighted, retrospective, cohort study. Lancet Oncol 20:674–685
https://doi.org/10.1016/S1470-2045(18)30931-8
|
| 113 |
R Mohan, D Grosshans (2017) Proton therapy: present and future. Adv Drug Deliv Rev 109:26–44
https://doi.org/10.1016/j.addr.2016.11.006
|
| 114 |
S Mumbauer, J Pascual, I Kolotuev, F Hamaratoglu (2019) Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis. PLoS Genet 15:
https://doi.org/10.1371/journal.pgen.1008396
|
| 115 |
MA Nehs, C-I Lin, DE Kozono, EE Whang, NL Cho, K Zhu, J Moalem, FD Jr Moore, DT Ruan (2011) Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenocortical cancers. Surgery 150:1032–1039
https://doi.org/10.1016/j.surg.2011.09.012
|
| 116 |
HP Nguyen, D Yi, F Lin, JA Viscarra, C Tabuchi, K Ngo, G Shinet al. (2020) Aifm2, a NADH oxidase, supports robust glycolysis and is required for cold-and diet-induced thermogenesis. Mol Cell 77 (600–617):
https://doi.org/10.1016/j.molcel.2019.12.002
|
| 117 |
Y Ohiro, I Garkavtsev, S Kobayashi, KR Sreekumar, R Nantz, BT Higashikubo, SL Duffy, R Higashikubo, A Usheva, D Gius (2002) A novel p53-inducible apoptogenic gene, PRG3, encodes a homologue of the apoptosis-inducing factor (AIF). FEBS Lett 524:163–171
https://doi.org/10.1016/S0014-5793(02)03049-1
|
| 118 |
Y Ou, S-J Wang, D Li, B Chu, W Gu (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci 113:E6806–E6812
https://doi.org/10.1073/pnas.1607152113
|
| 119 |
MS Padanad, G Konstantinidou, N Venkateswaran, M Melegari, S Rindhe, M Mitsche, C Yang, K Batten, KE Huffman, J Liu (2016) Fatty acid oxidation mediated by Acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep 16:1614–1628
https://doi.org/10.1016/j.celrep.2016.07.009
|
| 120 |
X Pan, Z Lin, D Jiang, Y Yu, D Yang, H Zhou, D Zhan, S Liu, G Peng, Z Chen (2019) Erastin decreases radioresistance of NSCLC cells partially by inducing GPX4-mediated ferroptosis. Oncol Lett 17:3001–3008
https://doi.org/10.3892/ol.2019.9888
|
| 121 |
M Pang, X Liu, B Slagle-Webb, A Madhankumar, J Connor (2016) Role of h-ferritin in radiosensitivity of human gliomacells. J Cancer Biol Treat 3:1–10
https://doi.org/10.24966/CBT-7546/100006
|
| 122 |
R Pathak, SA Pawar, Q Fu, PK Gupta, M Berbée, S Garg, V Sridharan, W Wang, PG Biju, KJ Krager (2014) Characterization of transgenic Gfrp knock-in mice: implications for tetrahydrobiopterin in modulation of normal tissue radiation responses. Antioxid Redox Signal 20:1436–1446
https://doi.org/10.1089/ars.2012.5025
|
| 123 |
CM Paton, JM Ntambi (2009) Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 297: E28–E37
https://doi.org/10.1152/ajpendo.90897.2008
|
| 124 |
Q Ran, H Liang, Y Ikeno, W Qi, TA Prolla, LJ Roberts, N Wolf, H VanRemmen, A Richardson (2007) Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J Gerontol A 62:932–942
https://doi.org/10.1093/gerona/62.9.932
|
| 125 |
SG Rao, JG Jackson (2016) SASP: tumor suppressor or promoter? Yes! Trends Cancer 2:676–687
https://doi.org/10.1016/j.trecan.2016.10.001
|
| 126 |
JA Reisz, N Bansal, J Qian, W Zhao, CM Furdui (2014) Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 21:260–292
https://doi.org/10.1089/ars.2013.5489
|
| 127 |
RJ Sabin, RM Anderson (2011) Cellular Senescence-its role in cancer and the response to ionizing radiation. Genome Integrity 2:7
https://doi.org/10.1186/2041-9414-2-7
|
| 128 |
T Sanli, A Rashid, C Liu, S Harding, RG Bristow, J-C Cutz, G Singh, J Wright, T Tsakiridis (2010) Ionizing radiation activates AMPactivated kinase (AMPK): a target for radiosensitization of human cancer cells. Int J Radiat Oncol Biol Phys 78:221–229
https://doi.org/10.1016/j.ijrobp.2010.03.005
|
| 129 |
T Sanli, GR Steinberg, G Singh, T Tsakiridis (2014) AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol Ther 15:156–169
https://doi.org/10.4161/cbt.26726
|
| 130 |
H Sato, M Tamba, T Ishii, S Bannai (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274:11455–11458
https://doi.org/10.1074/jbc.274.17.11455
|
| 131 |
H Sato, A Shiiya, M Kimata, K Maebara, M Tamba, Y Sakakura, N Makino, F Sugiyama, K-I Yagami, T Moriguchi (2005) Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem 280:37423–37429
https://doi.org/10.1074/jbc.M506439200
|
| 132 |
O Shadyro, I Yurkova, M Kisel (2002) Radiation-induced peroxidation and fragmentation of lipids in a model membrane. Int J Radiat Biol 78:211–217
https://doi.org/10.1080/09553000110104065
|
| 133 |
R Shah, MS Shchepinov, DA Pratt (2018) Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Central Sci 4:387–396
https://doi.org/10.1021/acscentsci.7b00589
|
| 134 |
M Sheikh, AJ Fornace (2000) Death and decoy receptors and p53-mediated apoptosis. Leukemia 14:1509–1513
https://doi.org/10.1038/sj.leu.2401865
|
| 135 |
K Shimada, R Skouta, A Kaplan, WS Yang, M Hayano, SJ Dixon, LM Brown, CA Valenzuela, AJ Wolpaw, BR Stockwell (2016) Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol 12:497–503
https://doi.org/10.1038/nchembio.2079
|
| 136 |
R Singhal, SR Mitta, KP Olive, CA Lyssiotis, YM Shah (2019) Hypoxia inducible factor-2α increases sensitivity of colon cancer cells towards oxidative cell death. BioRxiv, 823997
https://doi.org/10.1101/823997
|
| 137 |
YP Song, RJ Colaco (2018) Radiation necrosis-a growing problem in a case of brain metastases following whole brain radiotherapy and stereotactic radiosurgery. Cureus 10
https://doi.org/10.7759/cureus.2037
|
| 138 |
X Song, S Zhu, P Chen, W Hou, Q Wen, J Liu, Y Xie, J Liu, DJ Klionsky, G Kroemer (2018) AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc-activity. Curr Biol 28(2388–2399):
https://doi.org/10.1016/j.cub.2018.05.094
|
| 139 |
M Soula, RA Weber, O Zilka, H Alwaseem, K La, F Yen, H Molina, J Garcia-Bermudez, DA Pratt, K Birsoy (2020) Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol 16:1351–1360
https://doi.org/10.1038/s41589-020-0613-y
|
| 140 |
BR Stockwell, JPF Angeli, H Bayir, AI Bush, M Conrad, SJ Dixon, S Fulda, S Gascón, SK Hatzios, VE Kagan (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285
https://doi.org/10.1016/j.cell.2017.09.021
|
| 141 |
BR Stockwell, X Jiang, W Gu (2020) Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol
https://doi.org/10.1016/j.tcb.2020.02.009
|
| 142 |
X Sun, X Niu, R Chen, W He, D Chen, R Kang, D Tang (2016) Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology 64:488–500
https://doi.org/10.1002/hep.28574
|
| 143 |
S Suzuki, T Tanaka, MV Poyurovsky, H Nagano, T Mayama, S Ohkubo, M Lokshin, H Hosokawa, T Nakayama, Y Suzuki (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci 107:7461–7466
https://doi.org/10.1073/pnas.1002459107
|
| 144 |
A Tarangelo, L Magtanong, KT Bieging-Rolett, Y Li, J Ye, LD Attardi, SJ Dixon (2018) p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep 22:569–575
https://doi.org/10.1016/j.celrep.2017.12.077
|
| 145 |
L Tesfay, BT Paul, A Konstorum, Z Deng, AO Cox, J Lee, CM Furdui, P Hegde, FM Torti, SV Torti (2019) Stearoyl-coa desaturase 1protects ovarian cancer cells from ferroptotic cell death. Cancer Res 79:5355–5366
https://doi.org/10.1158/0008-5472.CAN-19-0369
|
| 146 |
J Thariat, J-M Hannoun-Levi, AS Myint, T Vuong, J-P Gérard (2013) Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol 10:52
https://doi.org/10.1038/nrclinonc.2012.203
|
| 147 |
J Tsoi, L Robert, K Paraiso, C Galvan, KM Sheu, J Lay, DJ Wong, M Atefi, R Shirazi, X Wang (2018) Multi-stage differentiation defines melanoma subtypes with differential vulnerability to druginduced iron-dependent oxidative stress. Cancer Cell 33(890–904):
https://doi.org/10.1016/j.ccell.2018.03.017
|
| 148 |
H Vakifahmetoglu, M Olsson, B Zhivotovsky (2008) Death through a tragedy: mitotic catastrophe. Cell Death Differ 15:1153–1162
https://doi.org/10.1038/cdd.2008.47
|
| 149 |
M Vařecha, J Amrichová, M Zimmermann, V Ulman, E Lukášová, M Kozubek (2007) Bioinformatic and image analyses of the cellular localization of the apoptotic proteins endonuclease G, AIF, and AMID during apoptosis in human cells. Apoptosis 12:1155–1171
https://doi.org/10.1007/s10495-007-0061-0
|
| 150 |
D Venkatesh, NA O’Brien, F Zandkarimi, DR Tong, ME Stokes, DE Dunn, ES Kengmana, AT Aron, AM Klein, JM Csuka (2020) MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling. Genes Dev 34:526–543
https://doi.org/10.1101/gad.334219.119
|
| 151 |
VS Viswanathan, MJ Ryan, HD Dhruv, S Gill, OM Eichhoff, B Seashore-Ludlow, SD Kaffenberger, JK Eaton, K Shimada, AJ Aguirre (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547:453–457
https://doi.org/10.1038/nature23007
|
| 152 |
KH Vousden (2000) p53: death star. Cell 103:691–694
https://doi.org/10.1016/S0092-8674(00)00171-9
|
| 153 |
T Walden, H Hughes (1988) SpringerLink (Online service). Prostaglandin and lipid metabolism in radiation injury. Springer, Boston
https://doi.org/10.1007/978-1-4684-5457-4
|
| 154 |
L Wang, H Cai, Y Hu, F Liu, S Huang, Y Zhou, J Yu, J Xu, F Wu (2018) A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death Dis 9:1–17
https://doi.org/10.1038/s41419-018-1063-2
|
| 155 |
H Wang, H Jiang, M Van De Gucht, M De Ridder (2019a) Hypoxic radioresistance: can ROS be the key to overcome it? Cancers 11:112
https://doi.org/10.3390/cancers11010112
|
| 156 |
W Wang, M Green, JE Choi, M Gijón, PD Kennedy, JK Johnson, P Liao, X Lang, I Kryczek, A Sell (2019b) CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569:270–274
https://doi.org/10.1038/s41586-019-1170-y
|
| 157 |
Y Wang, L Yang, X Zhang, W Cui, Y Liu, QR Sun, Q He, S Zhao, GA Zhang, Y Wang (2019c) Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep 20:
https://doi.org/10.15252/embr.201847563
|
| 158 |
L Wang, Y Liu, T Du, H Yang, L Lei, M Guo, H-F Ding, J Zhang, H Wang, X Chen (2020) ATF3 promotes erastin-induced ferroptosis by suppressing system Xc–. Cell Death Differ 27:662–675
https://doi.org/10.1038/s41418-019-0380-z
|
| 159 |
SE Wenzel, YY Tyurina, J Zhao, CMS Croix, HH Dar, G Mao, VA Tyurin, TS Anthonymuthu, AA Kapralov, AA Amoscato (2017) PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171(628–641):
https://doi.org/10.1016/j.cell.2017.09.044
|
| 160 |
MV Williams, ND James, E Summers, A Barrett, DV Ash, A Sub-Committee (2006) National survey of radiotherapy fractionation practice in 2003. Clin Oncol 18:3–14
https://doi.org/10.1016/j.clon.2005.10.002
|
| 161 |
HR Withers (1985) Biologic basis for altered fractionation schemes. Cancer 55:2086–2095
https://doi.org/10.1002/1097-0142(19850501)55:9+<2086::AID-CNCR2820551409>3.0.CO;2-1
|
| 162 |
M Wolszczak, J Gajda (2010) Iron release from ferritin induced by light and ionizing radiation. Res Chem Intermed 36:549–563
https://doi.org/10.1007/s11164-010-0155-0
|
| 163 |
JH Woo, Y Shimoni, WS Yang, P Subramaniam, A Iyer, P Nicoletti, MR Martínez, G López, M Mattioli, R Realubit (2015) Elucidating compound mechanism of action by network perturbation analysis. Cell 162:441–451
https://doi.org/10.1016/j.cell.2015.05.056
|
| 164 |
D Wu, C Prives (2018) Relevance of the p53–MDM2 axis to aging. Cell Death Differ 25:169–179
https://doi.org/10.1038/cdd.2017.187
|
| 165 |
M Wu, L-G Xu, X Li, Z Zhai, H-B Shu (2002) AMID, an apoptosisinducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem 277:25617–25623
https://doi.org/10.1074/jbc.M202285200
|
| 166 |
M Wu, L-G Xu, T Su, Y Tian, Z Zhai, H-B Shu (2004) AMID is a p53-inducible gene downregulated in tumors. Oncogene 23:6815–6819
https://doi.org/10.1038/sj.onc.1207909
|
| 167 |
L Xie, X Song, J Yu, W Guo, L Wei, Y Liu, X Wang (2011) Solute carrier protein family may involve in radiation-induced radioresistance of non-small cell lung cancer. J Cancer Res Clin Oncol 137:1739
https://doi.org/10.1007/s00432-011-1050-9
|
| 168 |
Y Xie, S Zhu, X Song, X Sun, Y Fan, J Liu, M Zhong, H Yuan, L Zhang, TR Billiar (2017) The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 20:1692–1704
https://doi.org/10.1016/j.celrep.2017.07.055
|
| 169 |
B Yan, Y Ai, Q Sun, Y Ma, Y Cao, J Wang, Z Zhang, X Wang (2020) Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol Cell
https://doi.org/10.1016/j.molcel.2020.11.024
|
| 170 |
D Yang, T Yaguchi, T Nagata, A Gotoh, S Dovat, C Song, T Nishizaki (2011) AMID mediates adenosine-induced caspase-independent HuH-7 cell apoptosis. Cell Physiol Biochem 27:37–44
https://doi.org/10.1159/000325203
|
| 171 |
WS Yang, R SriRamaratnam, ME Welsch, K Shimada, R Skouta, VS Viswanathan, JH Cheah, PA Clemons, AF Shamji, CB Clish (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331
https://doi.org/10.1016/j.cell.2013.12.010
|
| 172 |
WS Yang, KJ Kim, MM Gaschler, M Patel, MS Shchepinov, BR Stockwell (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci 113: E4966–E4975
https://doi.org/10.1073/pnas.1603244113
|
| 173 |
LF Ye, KR Chaudhary, F Zandkarimi, AD Harken, CJ Kinslow, PS Upadhyayula, A Dovas, DM Higgins, H Tan, Y Zhang (2020) Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem Biol 15:469–484
https://doi.org/10.1021/acschembio.9b00939
|
| 174 |
J Yi, J Zhu, J Wu, CB Thompson, X Jiang (2020) Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci 117:31189–31197
https://doi.org/10.1073/pnas.2017152117
|
| 175 |
S-E Yoo, L Chen, R Na, Y Liu, C Rios, H Van Remmen, A Richardson, Q Ran (2012) Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain. Free Radical Biol Med 52:1820–1827
https://doi.org/10.1016/j.freeradbiomed.2012.02.043
|
| 176 |
D Zhang, W Wang , X Sun, D Xu, C Wang, Q Zhang, H Wang, W Luo, Y Chen, H Chen (2016) AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy 12:1447–1459
https://doi.org/10.1080/15548627.2016.1185576
|
| 177 |
Y Zhang, Y Qian, J Zhang, W Yan, Y-S Jung, M Chen, E Huang, K Lloyd, Y Duan, J Wang (2017) Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes Dev 31:1243–1256
https://doi.org/10.1101/gad.299388.117
|
| 178 |
Y Zhang, J Shi, X Liu, L Feng, Z Gong, P Koppula, K Sirohi, X Li, Y Wei, H Lee (2018) BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 20:1181–1192
https://doi.org/10.1038/s41556-018-0178-0
|
| 179 |
Y Zhang, H Tan, JD Daniels, F Zandkarimi, H Liu, LM Brown, K Uchida, OA O’Connor, BR Stockwell (2019a) Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol 26(623–633):
https://doi.org/10.1016/j.chembiol.2019.01.008
|
| 180 |
Y Zhang, L Zhuang, B Gan (2019b) BAP1 suppresses tumor development by inducing ferroptosis upon SLC7A11 repression. Mol Cell Oncol 6:1536845
https://doi.org/10.1080/23723556.2018.1536845
|
| 181 |
X Zhang, S Sui, L Wang, H Li, L Zhang, S Xu, X Zheng (2020) Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol 235:3425–3437
https://doi.org/10.1002/jcp.29232
|
| 182 |
J Zheng, M Conrad (2020) The metabolic underpinnings of ferroptosis. Cell Metabol
https://doi.org/10.1016/j.cmet.2020.10.011
|
| 183 |
J Zhu, M Berisa, S Schwörer, W Qin, JR Cross, CB Thompson (2019) Transsulfuration activity can support cell growth upon extracellular cysteine limitation. Cell Metab 30(865–876):
https://doi.org/10.1016/j.cmet.2019.09.009
|
| 184 |
Y Zong, S Feng, C Yu, J Cheng, G Lu (2017) Up-regulated ATF4 expression increases cell sensitivity to apoptosis in response to radiation. Cell Physiol Biochem 41:784–794
https://doi.org/10.1159/000458742
|
| 185 |
Y Zou, SL Schreiber (2020) Progress in understanding ferroptosis and challenges in its targeting for therapeutic benefit. Cell Chem Biol 27:463–471
https://doi.org/10.1016/j.chembiol.2020.03.015
|
| 186 |
Y Zou, MJ Palte, AA Deik, H Li, JK Eaton, W Wang, Y-Y Tseng, R Deasy, M Kost-Alimova, V Dančík (2019) A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun 10:1–13
https://doi.org/10.1038/s41467-019-09277-9
|
| 187 |
Y Zou, WS Henry, EL Ricq, ET Graham, VV Phadnis, P Maretich, S Paradkar, N Boehnke, AA Deik, F Reinhardt (2020a) Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585:603–608
https://doi.org/10.1038/s41586-020-2732-8
|
| 188 |
Y Zou, H Li, ET Graham, AA Deik, JK Eaton, W Wang, G Sandoval-Gomez, CB Clish, JG Doench, SL Schreiber (2020b) Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 16:302–309
https://doi.org/10.1038/s41589-020-0472-6
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|