Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2021, Vol. 12 Issue (11) : 836-857    https://doi.org/10.1007/s13238-021-00841-y
REVIEW
Ferroptosis, radiotherapy, and combination therapeutic strategies
Guang Lei1,2, Chao Mao2, Yuelong Yan2, Li Zhuang2, Boyi Gan2,3()
1. Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
2. 2Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
3. The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
 Download: PDF(2124 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ferroptosis, an iron-dependent form of regulated cell death driven by peroxidative damages of polyunsaturated-fatty-acid-containing phospholipids in cellular membranes, has recently been revealed to play an important role in radiotherapy-induced cell death and tumor suppression, and to mediate the synergy between radiotherapy and immunotherapy. In this review, we summarize known as well as putative mechanisms underlying the crosstalk between radiotherapy and ferroptosis, discuss the interactions between ferroptosis and other forms of regulated cell death induced by radiotherapy, and explore combination therapeutic strategies targeting ferroptosis in radiotherapy and immunotherapy. This review will provide important frameworks for future investigations of ferroptosis in cancer therapy.

Keywords ferroptosis      lipid peroxidation      GPX4      SLC7A11      radiotherapy      immunotherapy      radiosensitization      combination therapy     
Corresponding Author(s): Boyi Gan   
Online First Date: 21 May 2021    Issue Date: 01 December 2021
 Cite this article:   
Guang Lei,Chao Mao,Yuelong Yan, et al. Ferroptosis, radiotherapy, and combination therapeutic strategies[J]. Protein Cell, 2021, 12(11): 836-857.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-021-00841-y
https://academic.hep.com.cn/pac/EN/Y2021/V12/I11/836
1 S Adjemian, T Oltean, S Martens, B Wiernicki, V Goossens, TV Berghe, B Cappe, M Ladik, FB Riquet, L Heyndrickx (2020) Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death. Cell Death Dis 11:1–15
https://doi.org/10.1038/s41419-020-03209-y
2 I Alim, JT Caulfield, Y Chen, V Swarup, DH Geschwind, E Ivanova, J Seravalli, Y Ai, LH Sansing, EJS Marie (2019) Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177(1262–1279):
https://doi.org/10.1016/j.cell.2019.03.032
3 SW Alvarez, VO Sviderskiy, EM Terzi, T Papagiannakopoulos, AL Moreira, S Adams, DM Sabatini, K Birsoy, R Possemato (2017) NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551:639–643
https://doi.org/10.1038/nature24637
4 GJ Anderson, CD Vulpe (2009) Mammalian iron transport. Cell Mol Life Sci 66:3241
https://doi.org/10.1007/s00018-009-0051-1
5 JPF Angeli, M Conrad (2018) Selenium and GPX4, a vital symbiosis. Free Radical Biol Med 127:153–159
https://doi.org/10.1016/j.freeradbiomed.2018.03.001
6 JPF Angeli, M Schneider, B Proneth, YY Tyurina, VA Tyurin, VJ Hammond, N Herbach, M Aichler, A Walch, E Eggenhofer (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16:1180–1191
https://doi.org/10.1038/ncb3064
7 BJ Aubrey, GL Kelly, A Janic, MJ Herold, A Strasser (2018) How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ 25:104–113
https://doi.org/10.1038/cdd.2017.169
8 A Ayala, MF Muñoz, S Argüelles (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longevity
https://doi.org/10.1155/2014/360438
9 EI Azzam, J-P Jay-Gerin, D Pain (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327:48–60
https://doi.org/10.1016/j.canlet.2011.12.012
10 MA Badgley, DM Kremer, HC Maurer, KE DelGiorno, H-J Lee, V Purohit, IR Sagalovskiy, A Ma, J Kapilian, CE Firl (2020) Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368:85–89
https://doi.org/10.1126/science.aaw9872
11 KE Baidoo, K Yong, MW Brechbiel (2013) Molecular pathways: targeted α-particle radiation therapy. Clin Cancer Res 19:530–537
https://doi.org/10.1158/1078-0432.CCR-12-0298
12 MF Benveniste, D Gomez, BW Carter, SL Betancourt Cuellar, GS Shroff, APA Benveniste, EG Odisio, EM Marom (2019) Recognizing radiation therapy-related complications in the chest. Radiographics 39:344–366
https://doi.org/10.1148/rg.2019180061
13 M Berbee, Q Fu, M Boerma, R Pathak, D Zhou, KS Kumar, M Hauer-Jensen (2011) Reduction of radiation-induced vascular nitrosative stress by the vitamin E analog γ-tocotrienol: evidence of a role for tetrahydrobiopterin. Int J Radiat Oncol Biol Phys 79:884–891
https://doi.org/10.1016/j.ijrobp.2010.08.032
14 K Bersuker, J Hendricks, Z Li, L Magtanong, B Ford, PH Tang, MA Roberts, B Tong, TJ Maimone, R Zoncu (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575:688
https://doi.org/10.1038/s41586-019-1705-2
15 KT Bieging, SS Mello, LD Attardi (2014) Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14:359–370
https://doi.org/10.1038/nrc3711
16 S Boumahdi, FJ de Sauvage (2020) The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov 19:39–56
https://doi.org/10.1038/s41573-019-0044-1
17 M Braig, S Lee, C Loddenkemper, C Rudolph, AH Peters, B Schlegelberger, H Stein, B Dörken, T Jenuwein, CA Schmitt (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665
https://doi.org/10.1038/nature03841
18 ML Bristol, X Di, MJ Beckman, EN Wilson, SC Henderson, A Maiti, Z Fan, DA Gewirtz (2012) Dual functions of autophagy in the response of breast tumor cells to radiation: cytoprotective autophagy with radiation alone and cytotoxic autophagy in radiosensitization by vitamin D3. Autophagy 8:739–753
https://doi.org/10.4161/auto.19313
19 CW Brown, JJ Amante, P Chhoy, AL Elaimy, H Liu, LJ Zhu, CE Baer, SJ Dixon, AM Mercurio (2019) Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell 51(575–586):
https://doi.org/10.1016/j.devcel.2019.10.007
20 EA Bump, JM Brown (1990) Role of glutathione in the radiation response of mammalian cells invitro and in vivo. Pharmacol Ther 47:117–136
https://doi.org/10.1016/0163-7258(90)90048-7
21 AK Cheema, R Pathak, F Zandkarimi, P Kaur, L Alkhalil, R Singh, X Zhong, S Ghosh, N Aykin-Burns, M Hauer-Jensen (2014) Liver metabolomics reveals increased oxidative stress and fibrogenic potential in gfrp transgenic mice in response to ionizing radiation. J Proteome Res 13:3065–3074
https://doi.org/10.1021/pr500278t
22 C-Y Chen, JD Oliner, Q Zhan, AJ Fornace, B Vogelstein, MB Kastan (1994) Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway. Proc Natl Acad Sci 91:2684–2688
https://doi.org/10.1073/pnas.91.7.2684
23 D Chen, Z Fan, M Rauh, M Buchfelder, I Eyupoglu, N Savaskan (2017a) ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene 36:5593–5608
https://doi.org/10.1038/onc.2017.146
24 D Chen, O Tavana, B Chu, L Erber, Y Chen, R Baer, W Gu (2017b) NRF2 is a major target of ARF in p53-independent tumor suppression. Mol Cell 68(224–232):
https://doi.org/10.1016/j.molcel.2017.09.009
25 P-H Chen, J Wu, C-KC Ding, C-C Lin, S Pan, N Bossa, Y Xu, W-H Yang, B Mathey-Prevot, J-T Chi (2020) Kinome screen of ferroptosis reveals a novel role of ATM in regulating iron metabolism. Cell Death Differ 27:1008–1022
https://doi.org/10.1038/s41418-019-0393-7
26 SH Chew, Y Okazaki, S Akatsuka, S Wang, L Jiang, Y Ohara, F Ito, H Saya, Y Sekido, S Toyokuni (2017) Rheostatic CD44 isoform expression and its association with oxidative stress in human malignant mesothelioma. Free Radical Biol Med 106:91–99
https://doi.org/10.1016/j.freeradbiomed.2017.02.011
27 IIC Chio, DA Tuveson (2017) ROS in cancer: the burning question. Trends Mol Med 23:411–429
https://doi.org/10.1016/j.molmed.2017.03.004
28 S Choudhary, SC Burns, H Mirsafian, W Li, DT Vo, M Qiao, X Lei, AD Smith, LO Penalva (2020) Genomic analyses of early responses to radiation inglioblastoma reveal new alterations at transcription, splicing, and translation levels. Sci Rep 10:1–12
https://doi.org/10.1038/s41598-020-69585-9
29 B Chu, N Kon, D Chen, T Li, T Liu, L Jiang, S Song, O Tavana, W Gu (2019) ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 21:579–591
https://doi.org/10.1038/s41556-019-0305-6
30 SM Colles, GM Chisolm (2000) Lysophosphatidylcholine-induced cellular injury in cultured fibroblasts involves oxidative events. J Lipid Res 41:1188–1198
https://doi.org/10.1016/S0022-2275(20)33425-8
31 M Conrad, DA Pratt (2019) The chemical basis of ferroptosis. Nat Chem Biol 15:1137–1147
https://doi.org/10.1038/s41589-019-0408-1
32 M Conrad, B Proneth (2020) Selenium: tracing another essential element of ferroptotic cell death. Cell Chem Biol
https://doi.org/10.1016/j.chembiol.2020.03.012
33 M Conrad, H Sato (2012) The oxidative stress-inducible cystine/glutamate antiporter, system x c−: cystine supplier and beyond. Amino Acids 42:231–246
https://doi.org/10.1007/s00726-011-0867-5
34 MJ Crabtree, AL Tatham, AB Hale, NJ Alp, KM Channon (2009) Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling relative importance of the de novo biopterin synthesis versus salvage pathways. J Biol Chem 284:28128–28136
https://doi.org/10.1074/jbc.M109.041483
35 MR de la Vega, E Chapman, DD Zhang (2018) NRF2 and the hallmarks of cancer. Cancer Cell 34:21–43
https://doi.org/10.1016/j.ccell.2018.03.022
36 G Delaney, S Jacob, C Featherstone, M Barton (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104:1129–1137
https://doi.org/10.1002/cncr.21324
37 SJ Dixon, KM Lemberg, MR Lamprecht, R Skouta, EM Zaitsev, CE Gleason, DN Patel, AJ Bauer, AM Cantley, WS Yang (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072
https://doi.org/10.1016/j.cell.2012.03.042
38 SJ Dixon, DN Patel, M Welsch, R Skouta, ED Lee, M Hayano, AG Thomas, CE Gleason, NP Tatonetti, BS Slusher (2014) Pharmacological inhibition of cystine–glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3:
https://doi.org/10.7554/eLife.02523
39 SJ Dixon, GE Winter, LS Musavi, ED Lee, B Snijder, M Rebsamen, G Superti-Furga, BR Stockwell (2015) Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol 10:1604–1609
https://doi.org/10.1021/acschembio.5b00245
40 S Doll, B Proneth, YY Tyurina, E Panzilius, S Kobayashi, I Ingold, M Irmler, J Beckers, M Aichler, A Walch (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13:91–98
https://doi.org/10.1038/nchembio.2239
41 S Doll, FP Freitas, R Shah, M Aldrovandi, MC da Silva, I Ingold, AG Grocin, TNX da Silva, E Panzilius, C Scheel (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693
https://doi.org/10.1038/s41586-019-1707-0
42 K Duberley, S Heales, A Abramov, A Chalasani, J Land, S Rahman, I Hargreaves (2014) Effect of Coenzyme Q10 supplementation on mitochondrial electron transport chain activity and mitochondrial oxidative stress in Coenzyme Q10 deficient human neuronal cells. Int J Biochem Cell Biol 50:60–63
https://doi.org/10.1016/j.biocel.2014.02.003
43 MM Elguindy, E Nakamaru-Ogiso (2015) Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenonesensitive NADH: ubiquinone oxidoreductases (NDH-2). J Biol Chem 290:20815–20826
https://doi.org/10.1074/jbc.M115.641498
44 Z Fan, A Wirth, D Chen, C Wruck, M Rauh, M Buchfelder, N Savaskan (2017) Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 6:e371–e371
https://doi.org/10.1038/oncsis.2017.65
45 P Fei, WS El-Deiry (2003) P53 and radiation responses. Oncogene 22:5774–5783
https://doi.org/10.1038/sj.onc.1206677
46 H Feng, K Schorpp, J Jin, CE Yozwiak, BG Hoffstrom, AM Decker, P Rajbhandari, ME Stokes, HG Bender, JM Csuka (2020) Transferrin receptor is a specific ferroptosis marker. Cell Rep 30(3411–3423):
https://doi.org/10.1016/j.celrep.2020.02.049
47 B Frei, MC Kim, BN Ames (1990) Ubiquinol-10 is an effective lipidsoluble antioxidant at physiological concentrations. Proc Natl Acad Sci 87:4879–4883
https://doi.org/10.1073/pnas.87.12.4879
48 L Galluzzi, I Vitale, SA Aaronson, JM Abrams, D Adam, P Agostinis, ES Alnemri, L Altucci, I Amelio, DW Andrews (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541
https://doi.org/10.1038/s41418-017-0012-4
49 M Gao, P Monian, N Quadri, R Ramasamy, X Jiang (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59:298–308
https://doi.org/10.1016/j.molcel.2015.06.011
50 M Gao, P Monian, Q Pan, W Zhang, J Xiang, X Jiang (2016) Ferroptosis is an autophagic cell death process. Cell Res 26:1021–1032
https://doi.org/10.1038/cr.2016.95
51 J Garcia-Bermudez, L Baudrier, EC Bayraktar, Y Shen, K La, R Guarecuco, B Yucel, D Fiore, B Tavora, E Freinkman (2019) Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567:118–122
https://doi.org/10.1038/s41586-019-0945-5
52 N Geng, B Shi, S Li, Z Zhong, Y Li, W Xua, H Zhou, J Cai (2018) Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur Rev Med Pharmacol Sci 22:3826–3836
53 AG Georgakilas, OA Martin, WM Bonner (2017) p21: a two-faced genome guardian. Trends Mol Med 23:310–319
https://doi.org/10.1016/j.molmed.2017.02.001
54 DR Green (2019) The coming decade of cell death research: five riddles. Cell 177:1094–1107
https://doi.org/10.1016/j.cell.2019.04.024
55 AV Gudkov, EA Komarova (2003) The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer 3:117–129
https://doi.org/10.1038/nrc992
56 J Guo, B Xu, Q Han, H Zhou, Y Xia, C Gong, X Dai, Z Li, G Wu(2018) Ferroptosis: a novel anti-tumor action for cisplatin. Cancer Res Treat 50:445
https://doi.org/10.4143/crt.2016.572
57 E Habib, K Linher-Melville, H-X Lin, G Singh (2015) Expression of xCT and activity of system xc− are regulated by NRF2 in human breast cancer cells in response to oxidative stress. Redox Biol 5:33–42
https://doi.org/10.1016/j.redox.2015.03.003
58 Y Han, A Platonov, M Akhalaia, Y-S Yun, J-Y Song (2005) Differential effect of γ-radiation-induced heme oxygenase-1 activity in female and male C57BL/6 mice. J Korean Med Sci 20:535–541
https://doi.org/10.3346/jkms.2005.20.4.535
59 D Hanahan, RA Weinberg (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
https://doi.org/10.1016/j.cell.2011.02.013
60 MJ Hangauer, VS Viswanathan, MJ Ryan, D Bole, JK Eaton, A Matov, J Galeas, HD Dhruv, ME Berens, SL Schreiber (2017) Drugtolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551:247–250
https://doi.org/10.1038/nature24297
61 B Hassannia, B Wiernicki, I Ingold, F Qu, S Van Herck, YY Tyurina, H Bayır, BA Abhari, JPF Angeli, SM Choi (2018) Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Investig 128:3341–3355
https://doi.org/10.1172/JCI99032
62 B Hassannia, P Vandenabeele, TV Berghe (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35:830–849
https://doi.org/10.1016/j.ccell.2019.04.002
63 M Hayano, W Yang, C Corn, N Pagano, B Stockwell (2016) Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ 23:270–278
https://doi.org/10.1038/cdd.2015.93
64 FG Herrera, J Bourhis, G Coukos (2017) Radiotherapy combination opportunities leveraging immunity for the next oncology practice. Cancer J Clin 67:65–85
https://doi.org/10.3322/caac.21358
65 N Horikoshi, J Cong, N Kley, T Shenk (1999) Isolation of differentially expressed cDNAs from p53-dependent apoptotic cells: activation of the human homologue of the Drosophila peroxidasin gene. Biochem Biophys Res Commun 261:864–869
https://doi.org/10.1006/bbrc.1999.1123
66 W Hou, Y Xie, X Song, X Sun, MT Lotze, HJ III Zeh, R Kang, D Tang (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12:1425–1428
https://doi.org/10.1080/15548627.2016.1187366
67 W Hu, C Zhang, R Wu, Y Sun, A Levine, Z Feng (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci 107:7455–7460
https://doi.org/10.1073/pnas.1001006107
68 L Hu, H Wang, L Huang, Y Zhao, J Wang (2016) Crosstalk between autophagy and intracellular radiation response. Int J Oncol 49:2217–2226
https://doi.org/10.3892/ijo.2016.3719
69 K Hu, K Li, J Lv, J Feng, J Chen, H Wu, F Cheng, W Jiang, J Wang, H Pei (2020) Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest 130:1752
https://doi.org/10.1172/JCI124049
70 R-X Huang, P-K Zhou (2020) DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transd Target Therapy 5:1–27
https://doi.org/10.1038/s41392-020-0150-x
71 PM Hwang, F Bunz, J Yu, C Rago, TA Chan, MP Murphy, GF Kelso, RA Smith, KW Kinzler, B Vogelstein (2001) Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nat Med 7:1111–1117
https://doi.org/10.1038/nm1001-1111
72 I Ingold, C Berndt, S Schmitt, S Doll, G Poschmann, K Buday, A Roveri, X Peng, FP Freitas, T Seibt (2018) Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis. Cell 172(409–422):
https://doi.org/10.1016/j.cell.2017.11.048
73 T Ishimoto, O Nagano, T Yae, M Tamada, T Motohara, H Oshima, M Oshima, T Ikeda, R Asaba, H Yagi (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc− and thereby promotes tumor growth. Cancer Cell 19:387–400
https://doi.org/10.1016/j.ccr.2011.01.038
74 DA Jaffray (2012) Image-guided radiotherapy: from current concept to future perspectives. Nat Rev Clin Oncol 9:688
https://doi.org/10.1038/nrclinonc.2012.194
75 L Jiang, N Kon, T Li, S-J Wang, T Su, H Hibshoosh, R Baer, W Gu (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62
https://doi.org/10.1038/nature14344
76 VE Kagan, G Mao, F Qu, JPF Angeli, S Doll, C St Croix, HH Dar, B Liu, VA Tyurin, VB Ritov (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13:81–90
https://doi.org/10.1038/nchembio.2238
77 Y Kaku, A Tsuchiya, T Kanno, T Nishizaki (2015) HUHS1015 induces necroptosis and caspase-independent apoptosis of MKN28human gastric cancer cells in association with AMID accumulation in the nucleus. Anti-Cancer Agents Med Chem 15:242–247
https://doi.org/10.2174/1871520614666140922122700
78 WW-Y Kam, RB Banati (2013) Effects of ionizing radiation on mitochondria. Free Radical Biol Med 65:607–619
https://doi.org/10.1016/j.freeradbiomed.2013.07.024
79 R Kang, D Tang (2016) What is the pathobiology of inflammation to cell death? Apoptosis, necrosis, necroptosis, autophagic cell death, pyroptosis, and NETosis. In: Autophagy networks in inflammation. Springer, Berlin, pp 81–106
https://doi.org/10.1007/978-3-319-30079-5_5
80 R Kang, G Kroemer, D Tang (2019) The tumor suppressor protein p53 and the ferroptosis network. Free Radical Biol Med 133:162–168
https://doi.org/10.1016/j.freeradbiomed.2018.05.074
81 SE Kim, L Zhang, K Ma, M Riegman, F Chen, I Ingold, M Conrad, MZ Turker, M Gao, X Jiang (2016) Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotechnol 11:977
https://doi.org/10.1038/nnano.2016.164
82 P Koppula, Y Zhang, L Zhuang, B Gan (2018) Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun 38:1–13
https://doi.org/10.1186/s40880-018-0288-x
83 P Koppula, L Zhuang, B Gan (2020) Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell.
https://doi.org/10.1007/s13238-020-00789-5
84 T Kordbacheh, J Honeychurch, F Blackhall, C Faivre-Finn, T Illidge (2018) Radiotherapy and anti-PD-1/PD-L1 combinations in lung cancer: building better translational research platforms. Ann Oncol 29:301–310
https://doi.org/10.1093/annonc/mdx790
85 VA Kraft, CT Bezjian, S Pfeiffer, L Ringelstetter, C Müller, F Zandkarimi, J Merl-Pham, X Bao, N Anastasov, J Kössl (2019) GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Central Sci 6:41–53
https://doi.org/10.1021/acscentsci.9b01063
86 X Lang, MD Green, W Wang, J Yu, JE Choi, L Jiang, P Liao, J Zhou, Q Zhang, A Dow (2019) Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov 9:1673–1685
https://doi.org/10.1158/2159-8290.CD-19-0338
87 JK Leach, G Van Tuyle, P-S Lin, R Schmidt-Ullrich, RB Mikkelsen (2001) Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 61:3894–3901
88 H Lee, F Zandkarimi, Y Zhang, JK Meena, J Kim, L Zhuang, S Tyagi, L Ma, TF Westbrook, GR Steinberg (2020) Energy-stressmediated AMPK activation inhibits ferroptosis. Nat Cell Biol 22:225–234
https://doi.org/10.1038/s41556-020-0461-8
89 G Lei, Y Zhang, P Koppula, X Liu, J Zhang, SH Lin, JA Ajani, Q Xiao, Z Liao, H Wang (2020) The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res 30:146–162
https://doi.org/10.1038/s41422-019-0263-3
90 L Li, A Rezvan, JC Salerno, A Husain, K Kwon, H Jo, DG Harrison, W Chen (2010) GTP cyclohydrolase I phosphorylation and interaction with GTP cyclohydrolase feedback regulatory protein provide novel regulation of endothelial tetrahydrobiopterin and nitric oxide. Circ Res 106:328–336
https://doi.org/10.1161/CIRCRESAHA.109.210658
91 M Li, L You, J Xue, Y Lu (2018) Ionizing radiation-induced cellular senescence in normal, non-transformed cells and the involved DNA damage response: a mini review. Front Pharmacol 9:522
https://doi.org/10.3389/fphar.2018.00522
92 X Li, L Duan, S Yuan, X Zhuang, T Qiao, J He (2019a) Ferroptosis inhibitor alleviates radiation-induced lung fibrosis (RILF) via down-regulation of TGF-β1. J Inflamm 16:11
https://doi.org/10.1186/s12950-019-0216-0
93 X Li, X Zhuang, T Qiao (2019b) Role of ferroptosis in the process of acute radiation-induced lung injury in mice. Biochem Biophys Res Commun 519:240–245
https://doi.org/10.1016/j.bbrc.2019.08.165
94 C Li, X Dong, W Du, X Shi, K Chen, W Zhang, M Gao (2020) LKB1-AMPK axis negatively regulates ferroptosis by inhibiting fatty acid synthesis. Signal Transd Target Ther 5:1–4
https://doi.org/10.1038/s41392-019-0089-y
95 C Liang, X Zhang, M Yang, X Dong (2019) Recent progress in ferroptosis inducers for cancer therapy. Adv Mater 31:1904197
https://doi.org/10.1002/adma.201904197
96 B Liu, J Yi, X Yang, L Liu, X Lou, Z Zhang, H Qi, Z Wang, J Zou, W-G Zhu (2019a) MDM2-mediated degradation of WRN promotes cellular senescence in a p53-independent manner. Oncogene 38:2501–2515
https://doi.org/10.1038/s41388-018-0605-5
97 T Liu, L Jiang, O Tavana, W Gu (2019b) The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11. Cancer Res 79:1913–1924
https://doi.org/10.1158/0008-5472.CAN-18-3037
98 J Liu, F Kuang, G Kroemer, DJ Klionsky, R Kang, D Tang (2020a) Autophagy-dependent ferroptosis: machinery and regulation. Cell Chem Biol 27:420
https://doi.org/10.1016/j.chembiol.2020.02.005
99 J Liu, Z Zhu, Y Liu, L Wei, B Li, F Mao, J Zhang, Y Wang, Y Liu (2020b) MDM2 inhibition-mediated autophagy contributes to the pro-apoptotic effect of berberine in p53-null leukemic cells. Life Sci 242:
https://doi.org/10.1016/j.lfs.2019.117228
100 X Liu, K Olszewski, Y Zhang, EW Lim, J Shi, X Zhang, J Zhang, H Lee, P Koppula, G Lei (2020c) Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer. Nat Cell Biol 22:476–486
https://doi.org/10.1038/s41556-020-0496-x
101 X Liu, Y Zhang, L Zhuang, K Olszewski, B Gan (2020d) NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edge sword in cellular redox regulation. Genes Dis.
https://doi.org/10.1016/j.gendis.2020.11.010
102 C Louandre, I Marcq, H Bouhlal, E Lachaier, C Godin, Z Saidak, C François, D Chatelain, V Debuysscher, J-C Barbare (2015) The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett 356:971–977
https://doi.org/10.1016/j.canlet.2014.11.014
103 S Ma, E Henson, Y Chen, S Gibson (2016) Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis 7:e2307–e2307
https://doi.org/10.1038/cddis.2016.208
104 L Magtanong, P-J Ko, M To, JY Cao, GC Forcina, A Tarangelo, CC Ward, K Cho, GJ Patti, DK Nomura (2019) Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem Biol 26(420–432):
https://doi.org/10.1016/j.chembiol.2018.11.016
105 P Maier, L Hartmann, F Wenz, C Herskind (2016) Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int J Mol Sci 17:102
https://doi.org/10.3390/ijms17010102
106 J Malhotra, SK Jabbour, J Aisner (2017) Current state of immunotherapy for non-small cell lung cancer. Transl Lung Cancer Res 6:196
https://doi.org/10.21037/tlcr.2017.03.01
107 KR Marshall, M Gong, L Wodke, JH Lamb, DJ Jones, PB Farmer, NS Scrutton, AW Munro (2005) The human apoptosis-inducing protein AMID is an oxidoreductase with a modified flavin cofactor and DNA binding activity. J Biol Chem 280:30735–30740
https://doi.org/10.1074/jbc.M414018200
108 R Maya, M Balass, S-T Kim, D Shkedy, J-FM Leal, O Shifman, M Moas, T Buschmann, ZE Ronai, Y Shiloh (2001) ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 15:1067–1077
https://doi.org/10.1101/gad.886901
109 EA McCullagh, DE Featherstone (2014) Behavioral characterization of system xc-mutant mice. Behav Brain Res 265:1–11
https://doi.org/10.1016/j.bbr.2014.02.010
110 JT McDonald, K Kim, AJ Norris, E Vlashi, TM Phillips, C Lagadec, L Della Donna, J Ratikan, H Szelag, L Hlatky (2010) Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res 70:8886–8895
https://doi.org/10.1158/0008-5472.CAN-10-0171
111 M Mijit, V Caracciolo, A Melillo, F Amicarelli, A Giordano (2020) Role of p53 in the regulation of cellular senescence. Biomolecules 10:420
https://doi.org/10.3390/biom10030420
112 O Mohamad, T Tabuchi, Y Nitta, A Nomoto, A Sato, G Kasuya, H Makishima, H Choy, S Yamada, T Morishima (2019) Risk of subsequent primary cancers after carbon ion radiotherapy, photon radiotherapy, or surgery for localised prostate cancer: a propensity score-weighted, retrospective, cohort study. Lancet Oncol 20:674–685
https://doi.org/10.1016/S1470-2045(18)30931-8
113 R Mohan, D Grosshans (2017) Proton therapy: present and future. Adv Drug Deliv Rev 109:26–44
https://doi.org/10.1016/j.addr.2016.11.006
114 S Mumbauer, J Pascual, I Kolotuev, F Hamaratoglu (2019) Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis. PLoS Genet 15:
https://doi.org/10.1371/journal.pgen.1008396
115 MA Nehs, C-I Lin, DE Kozono, EE Whang, NL Cho, K Zhu, J Moalem, FD Jr Moore, DT Ruan (2011) Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenocortical cancers. Surgery 150:1032–1039
https://doi.org/10.1016/j.surg.2011.09.012
116 HP Nguyen, D Yi, F Lin, JA Viscarra, C Tabuchi, K Ngo, G Shinet al. (2020) Aifm2, a NADH oxidase, supports robust glycolysis and is required for cold-and diet-induced thermogenesis. Mol Cell 77 (600–617):
https://doi.org/10.1016/j.molcel.2019.12.002
117 Y Ohiro, I Garkavtsev, S Kobayashi, KR Sreekumar, R Nantz, BT Higashikubo, SL Duffy, R Higashikubo, A Usheva, D Gius (2002) A novel p53-inducible apoptogenic gene, PRG3, encodes a homologue of the apoptosis-inducing factor (AIF). FEBS Lett 524:163–171
https://doi.org/10.1016/S0014-5793(02)03049-1
118 Y Ou, S-J Wang, D Li, B Chu, W Gu (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci 113:E6806–E6812
https://doi.org/10.1073/pnas.1607152113
119 MS Padanad, G Konstantinidou, N Venkateswaran, M Melegari, S Rindhe, M Mitsche, C Yang, K Batten, KE Huffman, J Liu (2016) Fatty acid oxidation mediated by Acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep 16:1614–1628
https://doi.org/10.1016/j.celrep.2016.07.009
120 X Pan, Z Lin, D Jiang, Y Yu, D Yang, H Zhou, D Zhan, S Liu, G Peng, Z Chen (2019) Erastin decreases radioresistance of NSCLC cells partially by inducing GPX4-mediated ferroptosis. Oncol Lett 17:3001–3008
https://doi.org/10.3892/ol.2019.9888
121 M Pang, X Liu, B Slagle-Webb, A Madhankumar, J Connor (2016) Role of h-ferritin in radiosensitivity of human gliomacells. J Cancer Biol Treat 3:1–10
https://doi.org/10.24966/CBT-7546/100006
122 R Pathak, SA Pawar, Q Fu, PK Gupta, M Berbée, S Garg, V Sridharan, W Wang, PG Biju, KJ Krager (2014) Characterization of transgenic Gfrp knock-in mice: implications for tetrahydrobiopterin in modulation of normal tissue radiation responses. Antioxid Redox Signal 20:1436–1446
https://doi.org/10.1089/ars.2012.5025
123 CM Paton, JM Ntambi (2009) Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 297: E28–E37
https://doi.org/10.1152/ajpendo.90897.2008
124 Q Ran, H Liang, Y Ikeno, W Qi, TA Prolla, LJ Roberts, N Wolf, H VanRemmen, A Richardson (2007) Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J Gerontol A 62:932–942
https://doi.org/10.1093/gerona/62.9.932
125 SG Rao, JG Jackson (2016) SASP: tumor suppressor or promoter? Yes! Trends Cancer 2:676–687
https://doi.org/10.1016/j.trecan.2016.10.001
126 JA Reisz, N Bansal, J Qian, W Zhao, CM Furdui (2014) Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxid Redox Signal 21:260–292
https://doi.org/10.1089/ars.2013.5489
127 RJ Sabin, RM Anderson (2011) Cellular Senescence-its role in cancer and the response to ionizing radiation. Genome Integrity 2:7
https://doi.org/10.1186/2041-9414-2-7
128 T Sanli, A Rashid, C Liu, S Harding, RG Bristow, J-C Cutz, G Singh, J Wright, T Tsakiridis (2010) Ionizing radiation activates AMPactivated kinase (AMPK): a target for radiosensitization of human cancer cells. Int J Radiat Oncol Biol Phys 78:221–229
https://doi.org/10.1016/j.ijrobp.2010.03.005
129 T Sanli, GR Steinberg, G Singh, T Tsakiridis (2014) AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol Ther 15:156–169
https://doi.org/10.4161/cbt.26726
130 H Sato, M Tamba, T Ishii, S Bannai (1999) Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 274:11455–11458
https://doi.org/10.1074/jbc.274.17.11455
131 H Sato, A Shiiya, M Kimata, K Maebara, M Tamba, Y Sakakura, N Makino, F Sugiyama, K-I Yagami, T Moriguchi (2005) Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem 280:37423–37429
https://doi.org/10.1074/jbc.M506439200
132 O Shadyro, I Yurkova, M Kisel (2002) Radiation-induced peroxidation and fragmentation of lipids in a model membrane. Int J Radiat Biol 78:211–217
https://doi.org/10.1080/09553000110104065
133 R Shah, MS Shchepinov, DA Pratt (2018) Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Central Sci 4:387–396
https://doi.org/10.1021/acscentsci.7b00589
134 M Sheikh, AJ Fornace (2000) Death and decoy receptors and p53-mediated apoptosis. Leukemia 14:1509–1513
https://doi.org/10.1038/sj.leu.2401865
135 K Shimada, R Skouta, A Kaplan, WS Yang, M Hayano, SJ Dixon, LM Brown, CA Valenzuela, AJ Wolpaw, BR Stockwell (2016) Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol 12:497–503
https://doi.org/10.1038/nchembio.2079
136 R Singhal, SR Mitta, KP Olive, CA Lyssiotis, YM Shah (2019) Hypoxia inducible factor-2α increases sensitivity of colon cancer cells towards oxidative cell death. BioRxiv, 823997
https://doi.org/10.1101/823997
137 YP Song, RJ Colaco (2018) Radiation necrosis-a growing problem in a case of brain metastases following whole brain radiotherapy and stereotactic radiosurgery. Cureus 10
https://doi.org/10.7759/cureus.2037
138 X Song, S Zhu, P Chen, W Hou, Q Wen, J Liu, Y Xie, J Liu, DJ Klionsky, G Kroemer (2018) AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc-activity. Curr Biol 28(2388–2399):
https://doi.org/10.1016/j.cub.2018.05.094
139 M Soula, RA Weber, O Zilka, H Alwaseem, K La, F Yen, H Molina, J Garcia-Bermudez, DA Pratt, K Birsoy (2020) Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol 16:1351–1360
https://doi.org/10.1038/s41589-020-0613-y
140 BR Stockwell, JPF Angeli, H Bayir, AI Bush, M Conrad, SJ Dixon, S Fulda, S Gascón, SK Hatzios, VE Kagan (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285
https://doi.org/10.1016/j.cell.2017.09.021
141 BR Stockwell, X Jiang, W Gu (2020) Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol
https://doi.org/10.1016/j.tcb.2020.02.009
142 X Sun, X Niu, R Chen, W He, D Chen, R Kang, D Tang (2016) Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology 64:488–500
https://doi.org/10.1002/hep.28574
143 S Suzuki, T Tanaka, MV Poyurovsky, H Nagano, T Mayama, S Ohkubo, M Lokshin, H Hosokawa, T Nakayama, Y Suzuki (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci 107:7461–7466
https://doi.org/10.1073/pnas.1002459107
144 A Tarangelo, L Magtanong, KT Bieging-Rolett, Y Li, J Ye, LD Attardi, SJ Dixon (2018) p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep 22:569–575
https://doi.org/10.1016/j.celrep.2017.12.077
145 L Tesfay, BT Paul, A Konstorum, Z Deng, AO Cox, J Lee, CM Furdui, P Hegde, FM Torti, SV Torti (2019) Stearoyl-coa desaturase 1protects ovarian cancer cells from ferroptotic cell death. Cancer Res 79:5355–5366
https://doi.org/10.1158/0008-5472.CAN-19-0369
146 J Thariat, J-M Hannoun-Levi, AS Myint, T Vuong, J-P Gérard (2013) Past, present, and future of radiotherapy for the benefit of patients. Nat Rev Clin Oncol 10:52
https://doi.org/10.1038/nrclinonc.2012.203
147 J Tsoi, L Robert, K Paraiso, C Galvan, KM Sheu, J Lay, DJ Wong, M Atefi, R Shirazi, X Wang (2018) Multi-stage differentiation defines melanoma subtypes with differential vulnerability to druginduced iron-dependent oxidative stress. Cancer Cell 33(890–904):
https://doi.org/10.1016/j.ccell.2018.03.017
148 H Vakifahmetoglu, M Olsson, B Zhivotovsky (2008) Death through a tragedy: mitotic catastrophe. Cell Death Differ 15:1153–1162
https://doi.org/10.1038/cdd.2008.47
149 M Vařecha, J Amrichová, M Zimmermann, V Ulman, E Lukášová, M Kozubek (2007) Bioinformatic and image analyses of the cellular localization of the apoptotic proteins endonuclease G, AIF, and AMID during apoptosis in human cells. Apoptosis 12:1155–1171
https://doi.org/10.1007/s10495-007-0061-0
150 D Venkatesh, NA O’Brien, F Zandkarimi, DR Tong, ME Stokes, DE Dunn, ES Kengmana, AT Aron, AM Klein, JM Csuka (2020) MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling. Genes Dev 34:526–543
https://doi.org/10.1101/gad.334219.119
151 VS Viswanathan, MJ Ryan, HD Dhruv, S Gill, OM Eichhoff, B Seashore-Ludlow, SD Kaffenberger, JK Eaton, K Shimada, AJ Aguirre (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547:453–457
https://doi.org/10.1038/nature23007
152 KH Vousden (2000) p53: death star. Cell 103:691–694
https://doi.org/10.1016/S0092-8674(00)00171-9
153 T Walden, H Hughes (1988) SpringerLink (Online service). Prostaglandin and lipid metabolism in radiation injury. Springer, Boston
https://doi.org/10.1007/978-1-4684-5457-4
154 L Wang, H Cai, Y Hu, F Liu, S Huang, Y Zhou, J Yu, J Xu, F Wu (2018) A pharmacological probe identifies cystathionine β-synthase as a new negative regulator for ferroptosis. Cell Death Dis 9:1–17
https://doi.org/10.1038/s41419-018-1063-2
155 H Wang, H Jiang, M Van De Gucht, M De Ridder (2019a) Hypoxic radioresistance: can ROS be the key to overcome it? Cancers 11:112
https://doi.org/10.3390/cancers11010112
156 W Wang, M Green, JE Choi, M Gijón, PD Kennedy, JK Johnson, P Liao, X Lang, I Kryczek, A Sell (2019b) CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569:270–274
https://doi.org/10.1038/s41586-019-1170-y
157 Y Wang, L Yang, X Zhang, W Cui, Y Liu, QR Sun, Q He, S Zhao, GA Zhang, Y Wang (2019c) Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep 20:
https://doi.org/10.15252/embr.201847563
158 L Wang, Y Liu, T Du, H Yang, L Lei, M Guo, H-F Ding, J Zhang, H Wang, X Chen (2020) ATF3 promotes erastin-induced ferroptosis by suppressing system Xc–. Cell Death Differ 27:662–675
https://doi.org/10.1038/s41418-019-0380-z
159 SE Wenzel, YY Tyurina, J Zhao, CMS Croix, HH Dar, G Mao, VA Tyurin, TS Anthonymuthu, AA Kapralov, AA Amoscato (2017) PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171(628–641):
https://doi.org/10.1016/j.cell.2017.09.044
160 MV Williams, ND James, E Summers, A Barrett, DV Ash, A Sub-Committee (2006) National survey of radiotherapy fractionation practice in 2003. Clin Oncol 18:3–14
https://doi.org/10.1016/j.clon.2005.10.002
161 HR Withers (1985) Biologic basis for altered fractionation schemes. Cancer 55:2086–2095
https://doi.org/10.1002/1097-0142(19850501)55:9+<2086::AID-CNCR2820551409>3.0.CO;2-1
162 M Wolszczak, J Gajda (2010) Iron release from ferritin induced by light and ionizing radiation. Res Chem Intermed 36:549–563
https://doi.org/10.1007/s11164-010-0155-0
163 JH Woo, Y Shimoni, WS Yang, P Subramaniam, A Iyer, P Nicoletti, MR Martínez, G López, M Mattioli, R Realubit (2015) Elucidating compound mechanism of action by network perturbation analysis. Cell 162:441–451
https://doi.org/10.1016/j.cell.2015.05.056
164 D Wu, C Prives (2018) Relevance of the p53–MDM2 axis to aging. Cell Death Differ 25:169–179
https://doi.org/10.1038/cdd.2017.187
165 M Wu, L-G Xu, X Li, Z Zhai, H-B Shu (2002) AMID, an apoptosisinducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem 277:25617–25623
https://doi.org/10.1074/jbc.M202285200
166 M Wu, L-G Xu, T Su, Y Tian, Z Zhai, H-B Shu (2004) AMID is a p53-inducible gene downregulated in tumors. Oncogene 23:6815–6819
https://doi.org/10.1038/sj.onc.1207909
167 L Xie, X Song, J Yu, W Guo, L Wei, Y Liu, X Wang (2011) Solute carrier protein family may involve in radiation-induced radioresistance of non-small cell lung cancer. J Cancer Res Clin Oncol 137:1739
https://doi.org/10.1007/s00432-011-1050-9
168 Y Xie, S Zhu, X Song, X Sun, Y Fan, J Liu, M Zhong, H Yuan, L Zhang, TR Billiar (2017) The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 20:1692–1704
https://doi.org/10.1016/j.celrep.2017.07.055
169 B Yan, Y Ai, Q Sun, Y Ma, Y Cao, J Wang, Z Zhang, X Wang (2020) Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1. Mol Cell
https://doi.org/10.1016/j.molcel.2020.11.024
170 D Yang, T Yaguchi, T Nagata, A Gotoh, S Dovat, C Song, T Nishizaki (2011) AMID mediates adenosine-induced caspase-independent HuH-7 cell apoptosis. Cell Physiol Biochem 27:37–44
https://doi.org/10.1159/000325203
171 WS Yang, R SriRamaratnam, ME Welsch, K Shimada, R Skouta, VS Viswanathan, JH Cheah, PA Clemons, AF Shamji, CB Clish (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331
https://doi.org/10.1016/j.cell.2013.12.010
172 WS Yang, KJ Kim, MM Gaschler, M Patel, MS Shchepinov, BR Stockwell (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci 113: E4966–E4975
https://doi.org/10.1073/pnas.1603244113
173 LF Ye, KR Chaudhary, F Zandkarimi, AD Harken, CJ Kinslow, PS Upadhyayula, A Dovas, DM Higgins, H Tan, Y Zhang (2020) Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem Biol 15:469–484
https://doi.org/10.1021/acschembio.9b00939
174 J Yi, J Zhu, J Wu, CB Thompson, X Jiang (2020) Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci 117:31189–31197
https://doi.org/10.1073/pnas.2017152117
175 S-E Yoo, L Chen, R Na, Y Liu, C Rios, H Van Remmen, A Richardson, Q Ran (2012) Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain. Free Radical Biol Med 52:1820–1827
https://doi.org/10.1016/j.freeradbiomed.2012.02.043
176 D Zhang, W Wang , X Sun, D Xu, C Wang, Q Zhang, H Wang, W Luo, Y Chen, H Chen (2016) AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy 12:1447–1459
https://doi.org/10.1080/15548627.2016.1185576
177 Y Zhang, Y Qian, J Zhang, W Yan, Y-S Jung, M Chen, E Huang, K Lloyd, Y Duan, J Wang (2017) Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes Dev 31:1243–1256
https://doi.org/10.1101/gad.299388.117
178 Y Zhang, J Shi, X Liu, L Feng, Z Gong, P Koppula, K Sirohi, X Li, Y Wei, H Lee (2018) BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 20:1181–1192
https://doi.org/10.1038/s41556-018-0178-0
179 Y Zhang, H Tan, JD Daniels, F Zandkarimi, H Liu, LM Brown, K Uchida, OA O’Connor, BR Stockwell (2019a) Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol 26(623–633):
https://doi.org/10.1016/j.chembiol.2019.01.008
180 Y Zhang, L Zhuang, B Gan (2019b) BAP1 suppresses tumor development by inducing ferroptosis upon SLC7A11 repression. Mol Cell Oncol 6:1536845
https://doi.org/10.1080/23723556.2018.1536845
181 X Zhang, S Sui, L Wang, H Li, L Zhang, S Xu, X Zheng (2020) Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol 235:3425–3437
https://doi.org/10.1002/jcp.29232
182 J Zheng, M Conrad (2020) The metabolic underpinnings of ferroptosis. Cell Metabol
https://doi.org/10.1016/j.cmet.2020.10.011
183 J Zhu, M Berisa, S Schwörer, W Qin, JR Cross, CB Thompson (2019) Transsulfuration activity can support cell growth upon extracellular cysteine limitation. Cell Metab 30(865–876):
https://doi.org/10.1016/j.cmet.2019.09.009
184 Y Zong, S Feng, C Yu, J Cheng, G Lu (2017) Up-regulated ATF4 expression increases cell sensitivity to apoptosis in response to radiation. Cell Physiol Biochem 41:784–794
https://doi.org/10.1159/000458742
185 Y Zou, SL Schreiber (2020) Progress in understanding ferroptosis and challenges in its targeting for therapeutic benefit. Cell Chem Biol 27:463–471
https://doi.org/10.1016/j.chembiol.2020.03.015
186 Y Zou, MJ Palte, AA Deik, H Li, JK Eaton, W Wang, Y-Y Tseng, R Deasy, M Kost-Alimova, V Dančík (2019) A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun 10:1–13
https://doi.org/10.1038/s41467-019-09277-9
187 Y Zou, WS Henry, EL Ricq, ET Graham, VV Phadnis, P Maretich, S Paradkar, N Boehnke, AA Deik, F Reinhardt (2020a) Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585:603–608
https://doi.org/10.1038/s41586-020-2732-8
188 Y Zou, H Li, ET Graham, AA Deik, JK Eaton, W Wang, G Sandoval-Gomez, CB Clish, JG Doench, SL Schreiber (2020b) Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 16:302–309
https://doi.org/10.1038/s41589-020-0472-6
[1] Pranavi Koppula, Li Zhuang, Boyi Gan. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620.
[2] Abigail Wong-Rolle, Haohan Karen Wei, Chen Zhao, Chengcheng Jin. Unexpected guests in the tumor microenvironment: microbiome in cancer[J]. Protein Cell, 2021, 12(5): 426-435.
[3] Juanjuan Yuan, Ting Cai, Xiaojun Zheng, Yangzi Ren, Jingwen Qi, Xiaofei Lu, Huihui Chen, Huizhen Lin, Zijie Chen, Mengnan Liu, Shangwen He, Qijun Chen, Siyang Feng, Yingjun Wu, Zhenhai Zhang, Yanqing Ding, Wei Yang. Potentiating CD8+ T cell antitumor activity by inhibiting PCSK9 to promote LDLRmediated TCR recycling and signaling[J]. Protein Cell, 2021, 12(4): 240-260.
[4] Yelei Guo, Kaichao Feng, Yao Wang, Weidong Han. Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment[J]. Protein Cell, 2018, 9(6): 516-526.
[5] Yanjing Song, Chuan Tong, Yao Wang, Yunhe Gao, Hanren Dai, Yelei Guo, Xudong Zhao, Yi Wang, Zizheng Wang, Weidong Han, Lin Chen. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo[J]. Protein Cell, 2018, 9(10): 867-878.
[6] Jiangtao Ren, Yangbing Zhao. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9[J]. Protein Cell, 2017, 8(9): 634-643.
[7] Hua Li, Yangbing Zhao. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy[J]. Protein Cell, 2017, 8(8): 573-589.
[8] Dongfang Liu, Shuo Tian, Kai Zhang, Wei Xiong, Ndongala Michel Lubaki, Zhiying Chen, Weidong Han. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV[J]. Protein Cell, 2017, 8(12): 861-877.
[9] Nicholas Borcherding,David Kusner,Guang-Hui Liu,Weizhou Zhang. ROR1, an embryonic protein with an emerging role in cancer biology[J]. Protein Cell, 2014, 5(7): 496-502.
[10] Juan Ma,Huamin Han,Li Ma,Changzhen Liu,Xin Xue,Pan Ma,Xiaomei Li,Hua Tao. The immunostimulatory effects of retinoblastoma cell supernatant on dendritic cells[J]. Protein Cell, 2014, 5(4): 307-316.
[11] Shuanglin Deng,Shan Zhu,Yuan Qiao,Yong-Jun Liu,Wei Chen,Gang Zhao,Jingtao Chen. Recent advances in the role of toll-like receptors and TLR agonists in immunotherapy for human glioma[J]. Protein Cell, 2014, 5(12): 899-911.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed