Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2022, Vol. 13 Issue (12) : 877-919    https://doi.org/10.1007/s13238-021-00846-7
REVIEW
Metabolic reprogramming and epigenetic modifications on the path to cancer
Linchong Sun1(), Huafeng Zhang2,3(), Ping Gao1,4,5()
1. Guangzhou First People’s Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou 510006, China
2. The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230027, China
3. CAS Centre for Excellence in Cell and Molecular Biology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
4. School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
5. Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
 Download: PDF(1773 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metabolic rewiring and epigenetic remodeling, which are closely linked and reciprocally regulate each other, are among the well-known cancer hallmarks. Recent evidence suggests that many metabolites serve as substrates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regionalization of enzymes or metabolites. Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts, playing important roles in tumor progression. In this review, we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations, in particular the acetylation and methylation of histone proteins and DNA. We also discuss other eminent metabolic modifications such as, succinylation, hydroxybutyrylation, and lactylation, and update the current advances in metabolismand epigenetic modification-based therapeutic prospects in cancer.

Keywords metabolic reprogramming      epigenetics      tumorigenesis      tumor immunity      cancer therapy     
Corresponding Author(s): Linchong Sun,Huafeng Zhang,Ping Gao   
Online First Date: 30 July 2021    Issue Date: 22 December 2022
 Cite this article:   
Linchong Sun,Huafeng Zhang,Ping Gao. Metabolic reprogramming and epigenetic modifications on the path to cancer[J]. Protein Cell, 2022, 13(12): 877-919.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-021-00846-7
https://academic.hep.com.cn/pac/EN/Y2022/V13/I12/877
1 SM Abmayr, JL Workman (2019) Histone lysine de-beta-hydroxybutyrylation by SIRT3. Cell Res 29:694–695
https://doi.org/10.1038/s41422-019-0211-2
2 RR Adams, H Maiato, WC Earnshaw, M Carmena (2001) Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 153:865–879
https://doi.org/10.1083/jcb.153.4.865
3 C Alarcon, B Wicksteed, M Prentki, BE Corkey, CJ Rhodes (2002) Succinate is a preferential metabolic stimulus-coupling signal for glucose-induced proinsulin biosynthesis translation. Diabetes 51:2496–2504
https://doi.org/10.2337/diabetes.51.8.2496
4 J Albrengues, MA Shields, D Ng, CG Park, A Ambrico, ME Poindexter, P Upadhyay, DL Uyeminami, A Pommier, V Kuttneret al. (2018) Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361:eaao4227
https://doi.org/10.1126/science.aao4227
5 M Alleyn, M Breitzig, R Lockey, N Kolliputi (2018) The dawn of succinylation: a posttranslational modification. Am J Physiol Cell Physiol 314:C228–C232
https://doi.org/10.1152/ajpcell.00148.2017
6 DF Allison, J Wamsley, M Kumar, D Li, LG Gray, GW Hart, DR Jones, MW Mayo (2012) Modification of RelA by O-linked N-acetylglucosamine links glucose metabolism to NF-kappa B acetylation and transcription. Proc Natl Acad Sci USA 109:16888–16893
https://doi.org/10.1073/pnas.1208468109
7 BJ Altman, ZE Stine, CV Dang (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16:619–634
https://doi.org/10.1038/nrc.2016.71
8 F Alvarez-Nunez, E Bussaglia, D Mauricio, J Ybarra, M Vilar, E Lerma, A de Leiva, X Matias-Guju , TNS Grp (2006) PTEN promoter methylation in sporadic thyroid carcinomas. Thyroid 16:17–23
https://doi.org/10.1089/thy.2006.16.17
9 RJ Amato (2007) Inhibition of DNA methylation by antisense oligonucleotide MG98 as cancer therapy. Clin Genitourinary Cancer 5:422–426
https://doi.org/10.3816/CGC.2007.n.029
10 R Anand, R Marmorstein (2007) Structure and mechanism of lysinespecific demethylase enzymes. J Biol Chem 282:35425–35429
https://doi.org/10.1074/jbc.R700027200
11 V Anest, JL Hanson, PC Cogswell, KA Steinbrecher, BD Strahl, AS Baldwin (2003) A nucleosomal function for IkappaB kinasealpha in NF-kappaB-dependent gene expression. Nature 423:659–663
https://doi.org/10.1038/nature01648
12 PS Ariyannur, JR Moffett, CN Madhavarao, P Arun, N Vishnu, DM Jacobowitz, WC Hallows , JM Denu, AMA Namboodiri (2010) Nuclear-cytoplasmic localization of acetyl coenzyme A synthetase-1 in the rat brain. J Comp Neurol 518:2952–2977
https://doi.org/10.1002/cne.22373
13 H Asaga, M Yamada, T Senshu (1998) Selective deimination of vimentin in calcium ionophore-induced apoptosis of mouse peritoneal macrophages. Biochem Biophys Res Commun 243:641–646
https://doi.org/10.1006/bbrc.1998.8148
14 D Astuti, F Latif, A Dallol, PLM Dahia, F Douglas, E George, F Skoldberg, ES Husebye, C Eng, ER Maher (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69:49–54
https://doi.org/10.1086/321282
15 JE Audia, RM Campbell (2016) Histone Modifications and Cancer. Cold Spring Harb Perspect Biol 8:
https://doi.org/10.1101/cshperspect.a019521
16 MA Badgley, DM Kremer, HC Maurer, KE DelGiorno, HJ Lee, V Purohit, IR Sagalovskiy, A Ma, J Kapilian, CEM Firlet al. (2020) Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368:85–89
https://doi.org/10.1126/science.aaw9872
17 CM Ballantyne, MH Davidson, DE Macdougall, HE Bays, LA Dicarlo, NL Rosenberg, J Margulies, RS Newton (2013) Efficacy and safety of a novel dual modulator of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase in patients with hypercholesterolemia: results of a multicenter, randomized, double-blind, placebo-controlled, parallel-group trial. J Am Coll Cardiol 62:1154–1162
https://doi.org/10.1016/j.jacc.2013.05.050
18 M Bambouskova, L Gorvel, V Lampropoulou, A Sergushichev, E Loginicheva, K Johnson, D Korenfeld, ME Mathyer, H Kim, LH Huanget al.(2018) Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 infiammatory axis. Nature 556:501–504
https://doi.org/10.1038/s41586-018-0052-z
19 HS Bandukwala, J Gagnon, S Togher, JA Greenbaum, ED Lamperti, NJ Parr, AM Molesworth, N Smithers, K Lee, J Witheringtonet al. (2012) Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors. Proc Natl Acad Sci USA 109:14532–14537
https://doi.org/10.1073/pnas.1212264109
20 AJ Bannister, T Kouzarides (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395
https://doi.org/10.1038/cr.2011.22
21 F Barlesi, G Giaccone, MI Gallegos-Ruiz , A Loundou, SW Span, P Lefesvre, FA Kruyt, JA Rodriguez (2007) Global histone modifications predict prognosis of resected non small-cell lung cancer. J Clin Oncol 25:4358–4364
https://doi.org/10.1200/JCO.2007.11.2599
22 WY Yu, EJ Chory, AK Wernimont, W Tempel, A Scopton, A Federation, JJ Marineau, J Qi, , D Barsyte-Lovejoy, JN Yiet al. (2012) Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat Commun 3
https://doi.org/10.1038/ncomms2304
23 J Basappa, M Citir, Q Zhang, HY Wang, X Liu, O Melnikov, H Yahya, F Stein, R Muller, A Traynor-Kaplanet al. (2020) ACLY is the novel signaling target of PIP2/PIP3 and Lyn in acute myeloid leukemia. Heliyon 6:
https://doi.org/10.1016/j.heliyon.2020.e03910
24 JP Bayley, HPM Kunst, A Cascon, ML Sampietro, J Gaal, E Korpershoek, A Hinojar-Gutierrez , HJLM Timmers, LH Hoefsloot, MA Hermsenet al. (2010) SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 11:366–372
https://doi.org/10.1016/S1470-2045(10)70007-3
25 BE Baysal, RE Ferrell, JE Willett-Brozick, EC Lawrence, D Myssiorek, A Bosch, A van der Mey, PEM Taschner, WS Rubinstein, EN Myerset al. (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851
https://doi.org/10.1126/science.287.5454.848
26 J Becker-Kettern, N Paczia, JF Conrotte, DP Kay, C Guignard, PP Jung, CL Linster (2016) Saccharomyces cerevisiae forms d-2-hydroxyglutarate and couples its degradation to d-lactate formation via a cytosolic transhydrogenase. J Biol Chem 291:6036–6058
https://doi.org/10.1074/jbc.M115.704494
27 S Bender, Y Tang, AM Lindroth, V Hovestadt, DT Jones, M Kool, M Zapatka, PA Northcott, D Sturm, W Wanget al. (2013) Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24:660–672
https://doi.org/10.1016/j.ccr.2013.10.006
28 S Berger-Achituv, V Brinkmann, U Abu Abed, LI Kuhn, J Ben-Ezra, R Elhasid, A Zychlinsky (2013) A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol 4
https://doi.org/10.3389/fimmu.2013.00048
29 Y Bergman, H Cedar (2013) DNA methylation dynamics in health and disease. Nat Struct Mol Biol 20:274–281
https://doi.org/10.1038/nsmb.2518
30 SS Bharathi, YX Zhang, AW Mohsen, R Uppala, M Balasubramani, E Schreiber, G Uechi, ME Beck, MJ Rardin, J Vockleyet al. (2013) Sirtuin 3 (SIRT3) protein regulates long-chain Acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J Biol Chem 288:33837–33847
https://doi.org/10.1074/jbc.M113.510354
31 Y Bian, W Li, DM Kremer, P Sajjakulnukit, S Li, J Crespo, ZC Nwosu, L Zhang, A Czerwonka, A Pawlowskaet al. (2020) Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature
https://doi.org/10.1038/s41586-020-2682-1
32 T Bianco-Miotto, K Chiam, G Buchanan, S Jindal, TK Day, M Thomas, MA Pickering, MA O’Loughlin, NK Ryan, WA Raymondet al. (2010) Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol Biomarkers Prev 19:2611–2622
https://doi.org/10.1158/1055-9965.EPI-10-0555
33 AF Branco, A Ferreira, RF Simoes, S Magalhaes-Novais, C Zehowski, E Cope, AM Silva, D Pereira, VA Sardao, T Cunha-Oliveira (2016) Ketogenic diets: from cancer to mitochondrial diseases and beyond. Eur J Clin Invest 46:285–298
https://doi.org/10.1111/eci.12591
34 F Breillout, F Hadida, P Echinard-Garin , V Lascaux, MF Poupon (1987) Decreased rat rhabdomyosarcoma pulmonary metastases in response to a low methionine diet. Anticancer Res 7:861–867
35 B Brueckner, RG Boy, P Siedlecki, T Musch, HC Kliem, P Zielenkiewicz, S Suhai, M Wiessler, F Lyko (2005) Epigenetic reactivation of tumor suppressor genes by a novel smallmolecule inhibitor of human DNA methyltransferases. Cancer Res 65:6305–6311
https://doi.org/10.1158/0008-5472.CAN-04-2957
36 V Bulusu, S Tumanov, E Michalopoulou, NJ van den Broek, G MacKay, C Nixon, S Dhayade, ZT Schug, JV Voorde, K Blythet al. (2017) Acetate recapturing by nuclear acetyl-CoA synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation. Cell Rep 18:647–658
https://doi.org/10.1016/j.celrep.2016.12.055
37 D Bungard, BJ Fuerth, PY Zeng, B Faubert, NL Maas, B Viollet, D Carling, CB Thompson, RG Jones, SL Berger (2010) Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329:1201–1205
https://doi.org/10.1126/science.1191241
38 F Caballero, A Fernandez, N Matias, L Martinez, R Fucho, M Elena, J Caballeria, A Morales, JC Fernandez-Checa, C Garcia-Ruiz (2010) Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-adenosyl-L-methionine and glutathione. J Biol Chem 285:18528–18536
https://doi.org/10.1074/jbc.M109.099333
39 L Cai, BM Sutter, B Li, BP Tu (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42:426–437
https://doi.org/10.1016/j.molcel.2011.05.004
40 RA Cairns, TW Mak (2013) Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov 3:730–741
https://doi.org/10.1158/2159-8290.CD-13-0083
41 RA Cairns, TW Mak (2017) S-2HG is an immunometabolite that shapes the T-cell response. Cell Death Differ 24:195–196
https://doi.org/10.1038/cdd.2016.149
42 EP Candido, R Reeves, JR Davie (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14:105–113
https://doi.org/10.1016/0092-8674(78)90305-7
43 R Cao, L Wang, H Wang, L Xia, H Erdjument-Bromage, P Tempst, RS Jones, Y Zhang (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043
https://doi.org/10.1126/science.1076997
44 AV Caprariello, JA Rogers, ML Morgan, V Hoghooghi, JR Plemel, A Koebel, S Tsutsui, JF Dunn, LP Kotra, SS Ousmanet al. (2018) Biochemically altered myelin triggers autoimmune demyelination. Proc Natl Acad Sci USA 115:5528–5533
https://doi.org/10.1073/pnas.1721115115
45 BW Carey, LWS Finley, JR Cross, CD Allis, CB Thompson (2015) Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413–416
https://doi.org/10.1038/nature13981
46 A Carrer, S Trefely, S Zhao, SL Campbell, RJ Norgard, KC Schultz, S Sidoli, JLD Parris, HC Affronti, S Sivanandet al. (2019) Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov 9:416–435
https://doi.org/10.1158/2159-8290.CD-18-0567
47 C Carrico, JG Meyer, W He, BW Gibson, E Verdin (2018) The mitochondrial acylome emerges: proteomics, regulation by sirtuins, and metabolic and disease implications. Cell Metab 27:497–512
https://doi.org/10.1016/j.cmet.2018.01.016
48 A Carrillo-Vico, MD Leech, SM Anderton (2010) Contribution of myelin autoantigen citrullination to T cell autoaggression in the central nervous system. J Immunol 184:2839–2846
https://doi.org/10.4049/jimmunol.0903639
49 E Ceccacci, S Minucci (2016) Inhibition of histone deacetylases in cancer therapy: lessons from leukaemia. Br J Cancer 114:605–611
https://doi.org/10.1038/bjc.2016.36
50 KM Chan, D Fang, H Gan, R Hashizume, C Yu, M Schroeder, N Gupta, S Mueller, CD James, R Jenkinset al. (2013) The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 27:985–990
https://doi.org/10.1101/gad.217778.113
51 XT Chang, JX Han, L Pang, Y Zhao, Y Yang, ZL Shen (2009) Increased PADI4 expression in blood and tissues of patients with malignant tumors. BMC Cancer 9
https://doi.org/10.1186/1471-2407-9-40
52 XT Chang, XL Hou, JH Pan, KH Fang, L Wang, JX Han (2011) Investigating the pathogenic role of PADI4 in oesophageal cancer. Int J Biol Sci 7:769–781
https://doi.org/10.7150/ijbs.7.769
53 LL Chen, Y Xiong (2020) Tumour metabolites hinder DNA repair. Nature 582:492–494
https://doi.org/10.1038/d41586-020-01569-1
54 L Chen, AJ Deshpande, D Banka, KM Bernt, S Dias, C Buske, EJ Olhava, SR Daigle, VM Richon, RM Pollocket al. (2013a) Abrogation of MLL-AF10 and CALM-AF10-mediated transformation through genetic inactivation or pharmacological inhibition of the H3K79 methyltransferase Dot1l. Leukemia 27:813–822
https://doi.org/10.1038/leu.2012.327
55 Q Chen, Y Chen, C Bian, R Fujiki, X Yu (2013b) TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493:561–564
https://doi.org/10.1038/nature11742
56 L Chen, ZG Miao, XS Xu (2017) beta-hydroxybutyrate alleviates depressive behaviors in mice possibly by increasing the histone3-lysine9-beta-hydroxybutyrylation. Biochem Biophys Res Commun 490:117–122
https://doi.org/10.1016/j.bbrc.2017.05.184
57 J Chen, I Guccini, D Di Mitri, D Brina, A Revandkar, M Sarti, E Pasquini, A Alajati, S Pinton, M Losaet al. (2018a) Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer. Nat Genet 50:219–228
https://doi.org/10.1038/s41588-017-0026-3
58 XF Chen, MX Tian, RQ Sun, ML Zhang, LS Zhou, L Jin, LL Chen, WJ Zhou, KL Duan, YJ Chenet al. (2018b) SIRT5 inhibits peroxisomal ACOX1 to prevent oxidative damage and is downregulated in liver cancer. Embo Rep 19.
https://doi.org/10.15252/embr.201745124
59 Y Cheng, C He, MN Wang, XL Ma, F Mo, SY Yang, JH Han, XW Wei (2019) Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduction Targeted Ther 4
https://doi.org/10.1038/s41392-019-0095-0
60 YP Cheon, XP Xu, MK Bagchi, IC Bagchi (2003) Immune-responsive gene 1 is a novel target of progesterone receptor and plays a critical role during implantation in the mouse. Endocrinology 144:5623–5630
https://doi.org/10.1210/en.2003-0585
61 DA Chisolm, AS Weinmann (2018) Connections between metabolism and epigenetics in programming cellular differentiation. Annu Rev Immunol 36(36):221–246
https://doi.org/10.1146/annurev-immunol-042617-053127
62 HS Choi, BY Choi, YY Cho, H Mizuno, BS Kang, AM Bode, ZG Dong (2005) Phosphorylation of histone H3 at serine 10 is indispensable for neoplastic cell transformation. Cancer Res 65:5818–5827
https://doi.org/10.1158/0008-5472.CAN-05-0197
63 C Choudhary, C Kumar, F Gnad, ML Nielsen, M Rehman, TC Walther, JV Olsen, M Mann (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840
https://doi.org/10.1126/science.1175371
64 C Choudhary, BT Weinert, Y Nishida, E Verdin, M Mann (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15:536–550
https://doi.org/10.1038/nrm3841
65 R Chowdhury, KK Yeoh, YM Tian, L Hillringhaus, EA Bagg, NR Rose, IKH Leung, XS Li, ECY Woon, M Yanget al. (2011) The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12:463–469
https://doi.org/10.1038/embor.2011.43
66 JK Christman (2002) 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495
https://doi.org/10.1038/sj.onc.1205699
67 MA Christophorou, G Castelo-Branco, RP Halley-Stott, CS Oliveira, R Loos, A Radzisheuskaya, KA Mowen, P Bertone, JCR Silva, M Zernicka-Goetzet al. (2014) Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 507:104–108
https://doi.org/10.1038/nature12942
68 CS Chu, PW Lo, YH Yeh, PH Hsu, SH Peng, YC Teng, ML Kang, CH Wong, LJ Juan (2014) O-GlcNAcylation regulates EZH2 protein stability and function. Proc Natl Acad Sci USA 111:1355–1360
https://doi.org/10.1073/pnas.1323226111
69 QS Chu, R Sangha, J Spratlin, LJ Vos, JR Mackey, AJ McEwan, P Venner, ED Michelakis (2015) A phase I open-labeled, singlearm, dose-escalation, study of dichloroacetate (DCA) in patients with advanced solid tumors. Invest New Drugs 33:603–610
https://doi.org/10.1007/s10637-015-0221-y
70 JC Chuang, CB Yoo, JM Kwan, TWH Li, GN Liang, AS Yang, PA Jones (2005) Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2 ‘-deoxycytidine. Mol Cancer Ther 4:1515–1520
https://doi.org/10.1158/1535-7163.MCT-05-0172
71 JC Chuang, SL Warner, D Vollmer, H Vankayalapati, S Redkar, DJ Bearss, XN Qiu, CB Yoo, PA Jones (2010) S110, a 5-Aza-2’- deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther 9:1443–1450
https://doi.org/10.1158/1535-7163.MCT-09-1048
72 C Chung, SR Sweha, D Pratt, B Tamrazi, P Panwalkar, A Banda, J Bayliss, D Hawes, F Yang, HJ Leeet al. (2020) Integrated metabolic and epigenomic reprograming by H3K27M mutations in diffuse intrinsic pontine gliomas. Cancer Cell 38(334–349):
https://doi.org/10.1016/j.ccell.2020.07.008
73 M Chypre, N Zaidi, K Smans(2012) ATP-citrate lyase: a mini-review. Biochem Biophys Res Commun 422:1–4
https://doi.org/10.1016/j.bbrc.2012.04.144
74 I Cohen, E Poreba, K Kamieniarz, R Schneider (2011) Histone modifiers in cancer: friends or foes? Genes Cancer 2:631–647
https://doi.org/10.1177/1947601911417176
75 SA Comerford, Z Huang, X Du, Y Wang, L Cai, AK Witkiewicz, H Walters, MN Tantawy, A Fu, HC Manninget al. (2014) Acetate dependence of tumors. Cell 159:1591–1602
https://doi.org/10.1016/j.cell.2014.11.020
76 PJ Cook, BG Ju, F Telese, X Wang, CK Glass, MG Rosenfeld (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458:591–596
https://doi.org/10.1038/nature07849
77 T Cordes, M Wallace, A Michelucci, AS Divakaruni, SC Sapcariu, C Sousa, H Koseki, P Cabrales, AN Murphy, K Hilleret al.(2016) Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J Biol Chem 291:14274–14284
https://doi.org/10.1074/jbc.M115.685792
78 AJ Covarrubias, HI Aksoylar, JJ Yu, NW Snyder, AJ Worth, SS Iyer, JW Wang, I Ben-Sahra, V Byles, T Polynne-Stapornkulet al. (2016) Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. Elife 5
https://doi.org/10.7554/eLife.11612
79 ML Cravo, AG Pinto, P Chaves, JA Cruz, P Lage, C Nobre Leitao, F Costa Mira (1998) Effect of folate supplementation on DNA methylation of rectal mucosa in patients with colonic adenomas: correlation with nutrient intake. Clin Nutr 17:45–49
https://doi.org/10.1016/S0261-5614(98)80304-X
80 KS Crider, TP Yang, RJ Berry, LB Bailey (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr 3:21–38
https://doi.org/10.3945/an.111.000992
81 ZW Dai, SJ Mentch, X Gao, SN Nichenametla, JW Locasale (2018) Methionine metabolism infiuences genomic architecture and gene expression through H3K4me3 peak width. Nat Commun 9
https://doi.org/10.1038/s41467-018-04426-y
82 ZW Dai, V Ramesh, JW Locasale (2020) The evolving metabolic landscape of chromatin biology and epigenetics. Nat Rev Genet 21:737–753
https://doi.org/10.1038/s41576-020-0270-8
83 SR Daigle, EJ Olhava, CA Therkelsen, CR Majer, CJ Sneeringer, J Song, LD Johnston, MP Scott, JJ Smith, YH Xiaoet al. (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20:53–65
https://doi.org/10.1016/j.ccr.2011.06.009
84 SR Daigle, EJ Olhava, CA Therkelsen, A Basavapathruni, L Jin, PA Boriack-Sjodin , CJ Allain, CR Klaus, A Raimondi, MP Scottet al. (2013) Potent inhibition of DOT1L as treatment of MLLfusion leukemia. Blood 122:1017–1025
https://doi.org/10.1182/blood-2013-04-497644
85 CV Dang (2012) MYC on the path to cancer. Cell 149:22–35
https://doi.org/10.1016/j.cell.2012.03.003
86 L Dang, DW White, S Gross, BD Bennett, MA Bittinger, EM Driggers, VR Fantin, HG Jang, S Jin, MC Keenanet al. (2009) Cancerassociated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–U752
https://doi.org/10.1038/nature08617
87 BP Daniels, SB Kofman, JR Smith, GT Norris, AG Snyder, JP Kolb, X Gao, JW Locasale, J Martinez, M Galeet al. (2019) The nucleotide sensor ZBP1 and kinase RIPK3 induce the enzyme IRG1 to promote an antiviral metabolic state in neurons. Immunity 50:64–76
https://doi.org/10.1016/j.immuni.2018.11.017
88 E Darrah, F Andrade (2018) Rheumatoid arthritis and citrullination. Curr Opin Rheumatol 30:72–78
https://doi.org/10.1097/BOR.0000000000000452
89 J Datta, K Ghoshal, WA Denny, SA Gamage, DG Brooke, P Phiasivongsa, S Redkar, ST Jacob (2009) A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res 69:4277–4285
https://doi.org/10.1158/0008-5472.CAN-08-3669
90 CC Daw, K Ramachandran, BT Enslow, S Maity, B Bursic, MJ Novello, CS Rubannelsonkumar, AH Mashal, J Ravichandran, TM Bakewellet al. (2020) Lactate elicits ER-mitochondrial Mg(2+) dynamics to integrate cellular metabolism. Cell.
https://doi.org/10.1016/j.cell.2020.08.049
91 MA Dawson, AJ Bannister, B Gottgens, SD Foster, T Bartke, AR Green, T Kouzarides (2009) JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461:819–822
https://doi.org/10.1038/nature08448
92 MA Dawson, RK Prinjha, A Dittmann, G Giotopoulos, M Bantscheff, WI Chan, SC Robson, CW Chung, C Hopf, MM Savitskiet al. (2011) Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478:529–533
https://doi.org/10.1038/nature10509
93 VC de Boer, SM Houten (2014) A mitochondrial expatriate: nuclear pyruvate dehydrogenase. Cell 158:9–10
https://doi.org/10.1016/j.cell.2014.06.018
94 AJM De Ruijter, AH Van Gennip, HN Caron, S Kemp, ABP Van Kuilenburg (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749
https://doi.org/10.1042/bj20021321
95 C De Virgilio, N Burckert, G Barth, JM Neuhaus, T Boller, A Wiemken (1992) Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae. Yeast 8:1043–1051
https://doi.org/10.1002/yea.320081207
96 RJ DeBerardinis, NS Chandel (2016) Fundamentals of cancer metabolism. Sci Adv 2
https://doi.org/10.1126/sciadv.1600200
97 RJ DeBerardinis, CB Thompson (2012) Cellular Metabolism and Disease: What Do Metabolic Outliers Teach Us? Cell 148:1132–1144
https://doi.org/10.1016/j.cell.2012.02.032
98 RJ DeBerardinis, JJ Lum, G Hatzivassiliou, CB Thompson (2008a) The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20
https://doi.org/10.1016/j.cmet.2007.10.002
99 RJ DeBerardinis, N Sayed, D Ditsworth, CB Thompson (2008b) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18:54–61
https://doi.org/10.1016/j.gde.2008.02.003
100 V Dehennaut, D Leprince, T Lefebvre (2014) O-GlcNAcylation, an epigenetic mark. Focus on the histone code, TET family proteins, and polycomb group proteins. Front Endocrinol (Lausanne) 5:155
https://doi.org/10.3389/fendo.2014.00155
101 JE Delmore, GC Issa, ME Lemieux, PB Rahl, JW Shi, HM Jacobs, E Kastritis, T Gilpatrick, RM Paranal, J Qiet al. (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146:903–916
https://doi.org/10.1016/j.cell.2011.08.017
102 M. Demers, , S.L. Wong, , K. Martinod, , M. Gallant, , J.E. Cabral,, Y.M. Wang, , and D.D. Wagner, (2016). Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology 5.
https://doi.org/10.1080/2162402X.2015.1134073
103 WA Denny, GJ Atwell, BC Baguley, BF Cain (1979) Potential antitumor agents. 29. Quantitative structure-activity relationships for the antileukemic bisquaternary ammonium heterocycles. J Med Chem 22:134–150
https://doi.org/10.1021/jm00188a005
104 R Dentin, S Hedrick, JX Xie, J Yates, M Montminy (2008) Hepatic glucose sensing via the CREB coactivator CRTC2. Science 319:1402–1405
https://doi.org/10.1126/science.1151363
105 R Deplus, B Delatte, MK Schwinn, M Defrance, J Mendez, N Murphy, MA Dawson, M Volkmar, P Putmans, E Calonneet al. (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J 32:645–655
https://doi.org/10.1038/emboj.2012.357
106 A Di Lorenzo, MT Bedford (2011) Histone arginine methylation. FEBS Lett 585:2024–2031
https://doi.org/10.1016/j.febslet.2010.11.010
107 E Dimitrova, AH Turberfield, RJ Klose (2015) Histone demethylases in chromatin biology and beyond. EMBO Rep 16:1620–1639
https://doi.org/10.15252/embr.201541113
108 W Ding, LJ Smulan, NS Hou, S Taubert, JL Watts, AK Walker (2015) s-Adenosylmethionine levels govern innate immunity through distinct methylation-dependent pathways. Cell Metab 22:633–645
https://doi.org/10.1016/j.cmet.2015.07.013
109 J Dominguez-Andres, B Novakovic, Y Li, BP Scicluna, MS Gresnigt, RJW Arts, M Oosting, SJCFM Moorlag, LA Groh, J Zwaaget al. (2019) The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metab 29:211–220
https://doi.org/10.1016/j.cmet.2018.09.003
110 DR Donohoe, LB Collins, A Wali, R Bigler, W Sun, SJ Bultman (2012) The Warburg effect dictates the mechanism of butyratemediated histone acetylation and cell proliferation. Mol Cell 48:612–626
https://doi.org/10.1016/j.molcel.2012.08.033
111 JT Du, YY Zhou, XY Su, JJ Yu, S Khan, H Jiang, J Kim, J Woo, JH Kim, BH Choiet al.(2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806–809
https://doi.org/10.1126/science.1207861
112 EM Dunbar, BS Coats, AL Shroads, T Langaee, A Lew, JR Forder, JJ Shuster, DA Wagner, PW Stacpoole (2014) Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors. Invest New Drugs 32:452–464
https://doi.org/10.1007/s10637-013-0047-4
113 T. Eckschlager, , J. Plch,, M. Stiborova, , and J. Hrabeta, (2017). Histone Deacetylase Inhibitors as Anticancer Drugs. International Journal of Molecular Sciences 18.
https://doi.org/10.3390/ijms18071414
114 A Eden, F Gaudet, A Waghmare, R Jaenisch (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455
https://doi.org/10.1126/science.1083557
115 LR Edmunds, L Sharma, A Kang, J Lu, J, Vockley S Basu, R Uppala, ES Goetzman, ME Beck, D Scottet al. (2014) c-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate. J Biol Chem 289:25382–25392
https://doi.org/10.1074/jbc.M114.580662
116 T Eisenberg, S Schroeder, A Andryushkova, T Pendl, V Kuttner, A Bhukel, G Marino, F Pietrocola, A Harger, A Zimmermannet al. (2014) Nucleocytosolic depletion of the energy metabolite acetylcoenzyme a stimulates autophagy and prolongs lifespan. Cell Metab 19:431–444
https://doi.org/10.1016/j.cmet.2014.02.010
117 J Ellinger, P Kahl, C Mertens, S Rogenhofer, S Hauser, W Hartmann, PJ Bastian, R Buttner, SC Muller, A von Ruecker (2010) Prognostic relevance of global histone H3 lysine 4 (H3K4) methylation in renal cell carcinoma. Int J Cancer 127:2360–2366
https://doi.org/10.1002/ijc.25250
118 SE Elsheikh, AR Green, EA Rakha, DG Powe, RA Ahmed, HM Collins, D Soria, JM Garibaldi, CE Paish, AA Ammaret al. (2009) Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res 69:3802–3809
https://doi.org/10.1158/0008-5472.CAN-08-3907
119 M Esteller, E Avizienyte, PG Corn, RA Lothe, SB Baylin, LA Aaltonen, JG Herman (2000) Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz-Jeghers syndrome. Oncogene 19:164–168
https://doi.org/10.1038/sj.onc.1203227
120 M Esteller, PG Corn, SB Baylin, JG Herman (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229
121 JP Etchegaray, R Mostoslavsky (2016) Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol Cell 62:695–711
https://doi.org/10.1016/j.molcel.2016.05.029
122 JS Evans, GD Mengel (1964) The reversal of cytosine arabinoside activity in vivo by deoxycytidine. Biochem Pharmacol 13:989–994
https://doi.org/10.1016/0006-2952(64)90095-4
123 F Faiola, X Liu, S Lo, S Pan, K Zhang, E Lymar, A Farina, E Martinez (2005) Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Mycinduced transcription. Mol Cell Biol 25:10220–10234
https://doi.org/10.1128/MCB.25.23.10220-10234.2005
124 KJ Falkenberg, RW Johnstone (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discovery 13:673–691
https://doi.org/10.1038/nrd4360
125 J Fan, X Teng, L Liu, KR Mattaini, RE Looper, MG Vander Heiden, JD Rabinowitz (2015) Human phosphoglycerate dehydrogenase produces the oncometabolite D-2-hydroxyglutarate. ACS Chem Biol 10:510–516
https://doi.org/10.1021/cb500683c
126 B Faubert, KY Li, L Cai, CT Hensley, J Kim, LG Zacharias, C Yang, QN Do, S Doucette, D Burgueteet al. (2017) Lactate metabolism in human lung tumors. Cell 171(358–371):
https://doi.org/10.1016/j.cell.2017.09.019
127 , B. Faubert, , A. Solmonson, and , R.J. DeBerardinis (2020). Metabolic reprogramming and cancer progression. Science 368. Feinberg AP, Tycko B (2004) Timeline- The history of cancer epigenetics. Nat Rev Cancer 4:143–153
https://doi.org/10.1126/science.aaw5473
128 AP Feinberg, B Vogelstein (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92
https://doi.org/10.1038/301089a0
129 JL Feldman, J Baeza, JM Denu (2013) Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 288:31350–31356
https://doi.org/10.1074/jbc.C113.511261
130 Q Feng, HB Wang, HH Ng, H Erdjument-Bromage, P Tempst, K Struhl, Y Zhang (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12:1052–1058
https://doi.org/10.1016/S0960-9822(02)00901-6
131 CM Ferrer, TP Lynch, VL Sodi, JN Falcone, LP Schwab, DL Peacock, DJ Vocadlo, TN Seagroves, MJ Reginato (2014) O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol Cell 54:820–831
https://doi.org/10.1016/j.molcel.2014.04.026
132 CM Ferrer, VL Sodi, MJ Reginato (2016) O-GlcNAcylation in cancer biology: linking metabolism and signaling. J Mol Biol 428:3282–3294
https://doi.org/10.1016/j.jmb.2016.05.028
133 ME Figueroa, O Abdel-Wahab, C Lu, PS Ward, J Patel, A Shih, YS Li, N Bhagwat, A Vasanthakumar, HF Fernandezet al. (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567
https://doi.org/10.1016/j.ccr.2010.11.015
134 P Filippakopoulos, J Qi, S Picaud, Y Shen, WB Smith, O Fedorov, EM Morse, T Keates, TT Hickman, I Felletaret al. (2010) Selective inhibition of BET bromodomains. Nature 468:1067–1073
https://doi.org/10.1038/nature09504
135 S Filippov, SL Pinkosky, RS Newton (2014) LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase. Curr Opin Lipidol 25:309–315
https://doi.org/10.1097/MOL.0000000000000091
136 SE Fleming, MD Fitch, S DeVries, ML Liu, C Kight (1991) Nutrient utilization by cells isolated from rat jejunum, cecum and colon. J Nutr 121:869–878
https://doi.org/10.1093/jn/121.6.869
137 MF Fraga, E Ballestar, A Villar-Garea, M Boix-Chornet, J Espada, G Schotta, T Bonaldi, C Haydon, S Ropero, K Petrieet al. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400
https://doi.org/10.1038/ng1531
138 J Fuhrmann, PR Thompson (2016) Protein arginine methylation and citrullination in epigenetic regulation. ACS Chem Biol 11:654–668
https://doi.org/10.1021/acschembio.5b00942
139 T Fujino, J Kondo, M Ishikawa, K Morikawa, TT Yamamoto (2001) Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J Biol Chem 276:11420–11426
https://doi.org/10.1074/jbc.M008782200
140 T Fujisawa, P Filippakopoulos (2017) Functions of bromodomaincontaining proteins and their roles in homeostasis and cancer. Nat Rev Mol Cell Biol 18:246–262
https://doi.org/10.1038/nrm.2016.143
141 F Galeotti, E Barile, P Curir, M Dolci, V Lanzotti (2008) Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem Lett 1:44–48
https://doi.org/10.1016/j.phytol.2007.10.001
142 MC Gambetta, K Oktaba, J Muller (2009) Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325:93–96
https://doi.org/10.1126/science.1169727
143 P. Gao, , I. Tchernyshyov, , T.C. Chang, , Y.S. Lee, , K. Kita, , T. Ochi, , K. Zeller, , A. De Marzo, , J. Van Eyk, , J. Mendell,, et al.. (2009). c-Myc suppression of miR-23 enhances mitochondrial glutaminase and glutamine metabolism. Cancer Research 69.
https://doi.org/10.1038/nature07823
144 X. Gao,, S.H. Lin,, F. Ren, , J.T. Li,, J.J. Chen, , C.B. Yao,, H.B. Yang, , S.X. Jiang, , G.Q. Yan, , D. Wang,, et al.. (2016). Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nature Communications 7.
https://doi.org/10.1038/ncomms11960
145 JM Garcia, J Silva, C Pena, V Garcia, R Rodriguez, MA Cruz, B Cantos, M Provencio, P Espana, F Bonilla (2004) Promoter methylation of the PTEN gene is a common molecular change in breast cancer. Genes Chromosom Cancer 41:117–124
https://doi.org/10.1002/gcc.20062
146 BA Garcia, Z Luka, LV Loukachevitch, NV Bhanu, C Wagner (2016) Folate deficiency affects histone methylation. Med Hypotheses 88:63–67
https://doi.org/10.1016/j.mehy.2015.12.027
147 LA Gates, JJ Shi, AD Rohira, Q Feng, BK Zhu, MT Bedford, CA Sagum, SY Jung, J Qin, MJ Tsaiet al. (2017) Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation. J Biol Chem 292:14456–14472
https://doi.org/10.1074/jbc.M117.802074
148 F Gaudet, JG Hodgson, A Eden, L Jackson-Grusby, J Dausman, JW Gray, H Leonhardt, R Jaenisch (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492
https://doi.org/10.1126/science.1083558
149 R Giet, DM Glover (2001) Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152:669–681
https://doi.org/10.1083/jcb.152.4.669
150 J Goffin, E Eisenhauer (2002) DNA methyltransferase inhibitors—state of the art. Ann Oncol 13:1699–1716
https://doi.org/10.1093/annonc/mdf314
151 A Golks, TT Tran, JF Goetschy, D Guerini (2007) Requirement for O-linked N-acetylglucosaminyltransferase in lymphocytes activation. EMBO J 26:4368–4379
https://doi.org/10.1038/sj.emboj.7601845
152 MD Goncalves, CY Lu, J Tutnauer, TE Hartman, SK Hwang, CJ Murphy, C Pauli, R Morris, S Taylor, K Boschet al. (2019) Highfructose corn syrup enhances intestinal tumor growth in mice. Science 363:1345–1349
https://doi.org/10.1126/science.aat8515
153 B. Gongol, , I. Sari, , T. Bryant,, G. Rosete, , and T. Marin, (2018). AMPK: An Epigenetic Landscape Modulator. International Journal of Molecular Sciences 19.
https://doi.org/10.3390/ijms19103238
154 A Goudarzi, D Zhang, H Huang, S Barral, OK Kwon, S Qi, Z Tang, T Buchou, AL Vitte, T Heet al. (2016) Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters. Mol Cell 62:169–180
https://doi.org/10.1016/j.molcel.2016.03.014
155 AD Gounaris, GE Perlmann (1967) Succinylation of pepsinogen. J Biol Chem 242:2739–2745
https://doi.org/10.1016/S0021-9258(18)99630-4
156 SP Gravel, L Hulea, N Toban, E Birman, MJ Blouin, M Zakikhani, YH Zhao, I Topisirovic, J St-Pierre, M Pollak (2014) Serine deprivation enhances antineoplastic activity of biguanides. Cancer Res 74:7521–7533
https://doi.org/10.1158/0008-5472.CAN-14-2643-T
157 MVC Greenberg, D Bourc’his (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607
https://doi.org/10.1038/s41580-019-0159-6
158 KS Greene, MJ Lukey, XY Wang, B Blank, JE Druso, MCJ Lin, CA Stalnecker, CL Zhang, YN Abril, JW Ericksonet al. (2019) SIRT5 stabilizes mitochondrial glutaminase and supports breast cancer tumorigenesis. Proc Natl Acad Sci USA 116:26625–26632
https://doi.org/10.1073/pnas.1911954116
159 EL Greer, Y Shi (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357
https://doi.org/10.1038/nrg3173
160 S Gross, RA Cairns, MD Minden, EM Driggers, MA Bittinger, HG Jang, M Sasaki, SF Jin, DP Schenkein, SSM Suet al. (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207:339–344
https://doi.org/10.1084/jem.20092506
161 YC Gu, WY Mi, YQ Ge, HY Liu, QO Fan, CF Han, J Yang, F Han, XZ Lu, WG Yu (2010) GlcNAcylation plays an essential role in breast cancer metastasis. Cancer Res 70:6344–6351
https://doi.org/10.1158/0008-5472.CAN-09-1887
162 E Guccione, S Richard (2019) The regulation, functions and clinical relevance of arginine methylation. Nat Rev Mol Cell Biol 20:642–657
https://doi.org/10.1038/s41580-019-0155-x
163 H Guo, Y Tan, T Kubota, AR Moossa, RM Hoffman (1996) Methionine depletion modulates the antitumor and antimetastatic efficacy of ethionine. Anticancer Res 16:2719–2723
164 RM Gutierrez, LS Hnilica (1967) Tissue specificity of histone phosphorylation. Science 157:1324–1325
https://doi.org/10.1126/science.157.3794.1324
165 MJ Gutierrez, NL Rosenberg, DE MacDougall, JC Hanselman, JR Margulies, P Strange, MA Milad, SJ McBride, RS Newton (2014) Efficacy and Safety of ETC-1002, a novel investigational low-density lipoprotein-cholesterol-lowering therapy for the treatment of patients with hypercholesterolemia and Type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 34:676–683
https://doi.org/10.1161/ATVBAHA.113.302677
166 HM Hamer, D Jonkers, K Venema, S Vanhoutvin, FJ Troost, RJ Brummer (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119
https://doi.org/10.1111/j.1365-2036.2007.03562.x
167 D Hanahan, RA Weinberg (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
https://doi.org/10.1016/j.cell.2011.02.013
168 SA Hannou, DE Haslam, NM McKeown, MA Herman (2018) Fructose metabolism and metabolic disease. J Clin Invest 128:545–555
https://doi.org/10.1172/JCI96702
169 HX Hao, O Khalimonchuk, M Schraders, N Dephoure, JP Bayley, H Kunst, P Devilee, CWRJ Cremers, JD Schiffman, BG Bentzet al. (2009) SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325:1139–1142
https://doi.org/10.1126/science.1175689
170 DG Hardie (2011) AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function. Genes Dev 25:1895–1908
https://doi.org/10.1101/gad.17420111
171 DG Hardie, BE Schaffer, A Brunet (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 26:190–201
https://doi.org/10.1016/j.tcb.2015.10.013
172 S Hardiville, GW Hart (2014) Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab 20:208–213
https://doi.org/10.1016/j.cmet.2014.07.014
173 RA Harris, M Joshi, NH Jeoung, M Obayashi (2005) Overview of the molecular and biochemical basis of branched-chain amino acid catabolism. J Nutr 135:1527s– 1530s
https://doi.org/10.1093/jn/135.6.1527S
174 GW Hart (2019) Nutrient regulation of signaling and transcription. J Biol Chem 294:2211–2231
https://doi.org/10.1074/jbc.AW119.003226
175 GW Hart, MP Housley, C Slawson (2007) Cycling of O-linked beta-Nacetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022
https://doi.org/10.1038/nature05815
176 GW Hart, C Slawson, G Ramirez-Correa, O Lagerlof (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80(80):825–858
https://doi.org/10.1146/annurev-biochem-060608-102511
177 AS Harutyunyan, B Krug, HF Chen, S Papillon-Cavanagh, M Zeinieh, N De Jay, S Deshmukh, CCL Chen, J Belle, LG Mikaelet al. (2019) H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat Commun 10
https://doi.org/10.1038/s41467-019-09140-x
178 G Hatzivassiliou, FP Zhao, DE Bauer, C Andreadis, AN Shaw, D Dhanak, SR Hingorani, DA Tuveson, CB Thompson (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8:311–321
https://doi.org/10.1016/j.ccr.2005.09.008
179 SA Haws, CM Leech, JM Denu (2020) Metabolism and the epigenome: a dynamic relationship. Trends Biochem Sci
https://doi.org/10.1016/j.tibs.2020.04.002
180 K Hayakawa, M Hirosawa, Y Tabei, D Arai, S Tanaka, N Murakami, S Yagi, K Shiota (2013) Epigenetic switching by the metabolismsensing factors in the generation of orexin neurons from mouse embryonic stem cells. J Biol Chem 288:17099–17110
https://doi.org/10.1074/jbc.M113.455899
181 MGV Heiden, LC Cantley, CB Thompson (2009) Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033
https://doi.org/10.1126/science.1160809
182 JG Herman, F Latif, Y Weng, MI Lerman, B Zbar, S Liu, D Samid, DS Duan, JR Gnarra, WM Linehanet al. (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91:9700–9704
https://doi.org/10.1073/pnas.91.21.9700
183 S Herzig, E Raemy, S Montessuit, JL Veuthey, N Zamboni, B Westermann, ER Kunji, JC Martinou (2012) Identification and functional expression of the mitochondrial pyruvate carrier. Science 337:93–96
https://doi.org/10.1126/science.1218530
184 MD Hirschey, YM Zhao (2015) Metabolic regulation by lysine malonylation, succinylation, and glutarylation. Mol Cell Proteomics 14:2308–2315
https://doi.org/10.1074/mcp.R114.046664
185 MD Hirschey, T Shimazu, E Goetzman, E Jing, B Schwer, DB Lombard, CA Grueter, C Harris, S Biddinger, OR Ilkayevaet al. (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464:121–U137
https://doi.org/10.1038/nature08778
186 MD Hirschey, RJ DeBerardinis, AME Diehl, JE Drew, C Frezza, MF Green, LW Jones, YH Ko, A Le, MA Leaet al. (2015) Dysregulated metabolism contributes to oncogenesis. Semin Cancer Biol 35:S129–S150
https://doi.org/10.1016/j.semcancer.2015.10.002
187 T Hitosugi, J Fan, TW Chung, K Lythgoe, X Wang, JX Xie, QY Ge, TL Gu, RD Polakiewicz, JL Roeselet al. (2011) Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell 44:864–877
https://doi.org/10.1016/j.molcel.2011.10.015
188 JL Holleran, RA Parise, E Joseph, JL Eiseman, JM Covey, ER Glaze, AV Lyubimov, YF Chen, DZ D’Argenio, MJ Egorin (2005) Plasma pharmacokinetics, oral bioavailability, and interspecies scaling of the DNA methyltransferase inhibitor, zebularine. Clin Cancer Res 11:3862–3868
https://doi.org/10.1158/1078-0432.CCR-04-2406
189 A Hooftman, S Angiari, S Hester, SE Corcoran, MC Runtsch, C Ling, MC Ruzek, PF Slivka, AF McGettrick, K Banahanet al. (2020) The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation. Cell Metab 32:468–478
https://doi.org/10.1016/j.cmet.2020.07.016
190 BD Hopkins, C Pauli, X Du, DG Wang, X Li, D Wu, SC Amadiume, MD Goncalves, C Hodakoski, MR Lundquistet al. (2018) Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560:499–503
https://doi.org/10.1038/s41586-018-0343-4
191 Y Hoshiya, T Kubota, T Inada, M Kitajima, RM Hoffman (1997) Methionine-depletion modulates the efficacy of 5-fiuorouracil in human gastric cancer in nude mice. Anticancer Res 17:4371–4375
192 MP Housley, JT Rodgers, ND Udeshi, TJ Kelly, J Shabanowitz, DF Hunt, P Puigserver, GW Hart (2008) O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem 283:16283–16292
https://doi.org/10.1074/jbc.M802240200
193 KT Howitz, KJ Bitterman, HY Cohen, DW Lamming, S Lavu, JG Wood, RE Zipkin, P Chung, A Kisielewski, LL Zhanget al. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196
https://doi.org/10.1038/nature01960
194 PC Hsu, YF Liao, CL Lin, WH Lin, GY Liu, HC Hung (2014) Vimentin is involved in peptidylarginine deiminase 2-induced apoptosis of activated jurkat cells. Mol Cells 37:426–434
https://doi.org/10.14348/molcells.2014.2359
195 BP Hubbard, AP Gomes, H Dai, J Li, AW Case, T Considine, TV Riera, JE Lee, ES Yen, DW Lamminget al. (2013) Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339:1216–1219
https://doi.org/10.1126/science.1231097
196 CC Hughey, E Trefts, DP Bracy, FD James, EP Donahue, DH Wasserman (2018) Glycine N-methyltransferase deletion in mice diverts carbon flux from gluconeogenesis to pathways that utilize excess methionine cycle intermediates. J Biol Chem 293:11944–11954
https://doi.org/10.1074/jbc.RA118.002568
197 S Hui, JM Ghergurovich, RJ Morscher, C Jang, X Teng, W Lu, LA Esparza, T Reya, Z Le, J Yanxiang Guoet al. (2017) Glucose feeds the TCA cycle via circulating lactate. Nature 551:115–118
https://doi.org/10.1038/nature24057
198 IY Hwang, S Kwak, S Lee, H Kim, SE Lee, JH Kim, YA Kim, YK Jeon, DH Chung, X Jinet al. (2016) Psat1-Dependent fluctuations in alpha-ketoglutarate affect the timing of ESC differentiation. Cell Metab 24:494–501
https://doi.org/10.1016/j.cmet.2016.06.014
199 K Hyun, J Jeon, K Park, J Kim (2017) Writing, erasing and reading histone lysine methylations. Exp Mol Med 49
https://doi.org/10.1038/emm.2017.11
200 P Icard, L Poulain, H Lincet (2012) Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta 1825:111–116
https://doi.org/10.1016/j.bbcan.2011.10.007
201 P Icard, ZR Wu, L Fournel, A Coquerel, H Lincet, M Alifano (2020) ATP citrate lyase: A central metabolic enzyme in cancer. Cancer Lett 471:125–134
https://doi.org/10.1016/j.canlet.2019.12.010
202 AM Intlekofer, RG Dematteo, S Venneti, LWS Finley, C Lu, AR Judkins, AS Rustenburg, PB Grinaway, JD Chodera, JR Crosset al. (2015) Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab 22:304–311
https://doi.org/10.1016/j.cmet.2015.06.023
203 MB Ishak Gabra, Y Yang, H Li, P Senapati, EA Hanse, XH Lowman, TQ Tran, L Zhang, LT Doan, X Xuet al. (2020) Dietary glutamine supplementation suppresses epigenetically-activated oncogenic pathways to inhibit melanoma tumour growth. Nat Commun 11:3326
https://doi.org/10.1038/s41467-020-17181-w
204 LB Ivashkiv (2013) Epigenetic regulation of macrophage polarization and function. Trends Immunol 34:216–223
https://doi.org/10.1016/j.it.2012.11.001
205 MK Jang, K Mochizuki, MS Zhou, HS Jeong, JN Brady, K Ozato (2005) The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase IIdependent transcription. Mol Cell 19:523–534
https://doi.org/10.1016/j.molcel.2005.06.027
206 R Janke, AE Dodson, J Rine (2015) Metabolism and epigenetics. Annu Rev Cell Dev Biol 31:473–496
https://doi.org/10.1146/annurev-cellbio-100814-125544
207 T Jensen, MF Abdelmalek, S Sullivan, KJ Nadeau, M Green, C Ronca, T Nakagawa, M Kuwabara, Y Sato, DH Kanget al. (2018) Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol 68:1063–1075
https://doi.org/10.1016/j.jhep.2018.01.019
208 H Jeon, JH Kim, E Lee, YJ Jang, JE Son, JY Kwon, TG Lim, S Kim, JH Park, JE Kimet al.(2016) Methionine deprivation suppresses triple-negative breast cancer metastasis in vitro and in vivo. Oncotarget 7:67223–67234
https://doi.org/10.18632/oncotarget.11615
209 AK Jha, SCC Huang, A Sergushichev, V Lampropoulou, Y Ivanova, E Loginicheva, K Chmielewski, KM Stewart, J Ashall, B Evertset al. (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42:419–430
https://doi.org/10.1016/j.immuni.2015.02.005
210 WQ Jiang, SW Wang, MT Xiao, Y Lin, LS Zhou, QY Lei, Y Xiong, KL Guan, SM Zhao (2011) Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell 43:33–44
https://doi.org/10.1016/j.molcel.2011.04.028
211 H Jing, HN Lin (2015) Sirtuins in epigenetic regulation. Chem Rev 115:2350–2375
https://doi.org/10.1021/cr500457h
212 PA Jones, SB Baylin (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428
https://doi.org/10.1038/nrg816
213 RG Jones, CB Thompson (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548
https://doi.org/10.1101/gad.1756509
214 Z Kaczmarska, E Ortega, A Goudarzi, H Huang, S Kim, JA Marquez, YM Zhao, S Khochbin, D Panne (2017) Structure of p300 in complex with acyl-CoA variants. Nat Chem Biol 13:21–29
https://doi.org/10.1038/nchembio.2217
215 WG Kaelin (2009) SDH5 Mutations and Familial Paraganglioma: Somewhere Warburg is Smiling. Cancer Cell 16:180–182
https://doi.org/10.1016/j.ccr.2009.08.013
216 WG Kaelin, SL McKnight (2013) Infiuence of Metabolism on Epigenetics and Disease. Cell 153:56–69
https://doi.org/10.1016/j.cell.2013.03.004
217 E Kaminskas, A Farrell, S Abraham, A Baird, LS Hsieh, SL Lee, JK Leighton, H Patel, A Rahman, R Sridharaet al. (2005a) Approval summary: Azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 11:3604–3608
https://doi.org/10.1158/1078-0432.CCR-04-2135
218 E Kaminskas, AT Farrell, YC Wang, R Sridhara, R Pazdur (2005b) FDA drug approval summary: Azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 10:176–182
https://doi.org/10.1634/theoncologist.10-3-176
219 YH Kang, HS Lee, WH Kim (2002) Promoter methylation and silencing of PTEN in gastric carcinoma. Lab Invest 82:285–291
https://doi.org/10.1038/labinvest.3780422
220 J Kaplon, L Zheng, K Meissl, B Chaneton, VA Selivanov, G Mackay, SH van der Burg, EM Verdegaal, M Cascante, T Shlomiet al. (2013) A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498:109–112
https://doi.org/10.1038/nature12154
221 M Karahoca, RL Momparler (2013) Pharmacokinetic and pharmacodynamic analysis of 5-aza-2’-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenetics 5:3
https://doi.org/10.1186/1868-7083-5-3
222 Y Katoh, T Ikura, Y Hoshikawa, S Tashiro, T Ito, M Ohta, Y Kera, T Noda, K Igarashi (2011) Methionine adenosyltransferase II serves as a transcriptional corepressor of maf oncoprotein. Mol Cell 41:554–566
https://doi.org/10.1016/j.molcel.2011.02.018
223 E Katsyuba, A Mottis, M Zietak, F De Franco, V van der Velpen, K Gariani, D Ryu, L Cialabrini, O Matilainen, P Liscioet al. (2018) De novo NAD(+) synthesis enhances mitochondrial function and improves health. Nature 563:354–359
https://doi.org/10.1038/s41586-018-0645-6
224 ST Keating, A El-Osta (2015) Epigenetics and metabolism. Circ Res 116:715–736
https://doi.org/10.1161/CIRCRESAHA.116.303936
225 B Kelly, EL Pearce (2020). Amino assets: how amino acids support immunity. Cell Metab
https://doi.org/10.1016/j.cmet.2020.06.010
226 WG Kelly, ME Dahmus, GW Hart (1993) RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J Biol Chem 268:10416–10424
https://doi.org/10.1016/S0021-9258(18)82216-5
227 Y Kera, Y Katoh, M Ohta, M Matsumoto, T Takano-Yamamoto, K Igarashi (2013) Methionine adenosyltransferase II-dependent histone H3K9 methylation at the COX-2 gene locus. J Biol Chem 288:13592–13601
https://doi.org/10.1074/jbc.M112.429738
228 SA Kidwai, AA Ansari, A Salahuddin (1976) Effect of succinylation (3-carboxypropionylation) on the conformation and immunological activity of ovalbumin. Biochem J 155:171–180
https://doi.org/10.1042/bj1550171
229 JW Kim, I Tchernyshyov, GL Semenza, CV Dang (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185
https://doi.org/10.1016/j.cmet.2006.02.002
230 SR Kim, KB Kim, YC Chae, JW Park, SB Seo (2016) H3S10 phosphorylation-mediated transcriptional regulation by Aurora kinase A. Biochem Biophys Res Commun 469:22–28
https://doi.org/10.1016/j.bbrc.2015.11.063
231 A Kinnaird, S Zhao, KE Wellen, ED Michelakis (2016) Metabolic control of epigenetics in cancer. Nat Rev Cancer 16:694–707
https://doi.org/10.1038/nrc.2016.82
232 LJ Kleinsmith, VG Allfrey, AE Mirsky (1966) Phosphoprotein metabolism in isolated lymphocyte nuclei. Proc Natl Acad Sci USA 55:1182–1189
https://doi.org/10.1073/pnas.55.5.1182
233 RJ Klement (2019) The emerging role of ketogenic diets in cancer treatment. Curr Opin Clin Nutr Metab Care 22:129–134
https://doi.org/10.1097/MCO.0000000000000540
234 JS Knight, V Subramanian, AA O’Dell, S Yalavarthi, WP Zhao, CK Smith, JB Hodgin, PR Thompson, MJ Kaplan (2015) Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann Rheum Dis 74:2199–2206
https://doi.org/10.1136/annrheumdis-2014-205365
235 SK Knutson, TJ Wigle, NM Warholic, CJ Sneeringer, CJ Allain, CR Klaus, JD Sacks, A Raimondi, CR Majer, J Songet al.(2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8:890–896
https://doi.org/10.1038/nchembio.1084
236 SK Knutson, S Kawano, Y Minoshima, NM Warholic, KC Huang, YH Xiao, T Kadowaki, M Uesugi, G Kuznetsov, N Kumaret al. (2014) Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-hodgkin lymphoma. Mol Cancer Ther 13:842–854
https://doi.org/10.1158/1535-7163.MCT-13-0773
237 DS Koenis, L Medzikovic, PB van Loenen, M van Weeghel, S Huveneers, M Vos, IJ Evers-van Gogh, J Van den Bossche, D Speijer, Y Kimet al.(2018) Nuclear receptor nur77 limits the macrophage infiammatory response through transcriptional reprogramming of mitochondrial metabolism. Cell Reports 24:2127–2140
https://doi.org/10.1016/j.celrep.2018.07.065
238 P Koivunen, S Lee, CG Duncan, G Lopez, G Lu, S Ramkissoon, JA Losman, P Joensuu, U Bergmann, S Grosset al. (2012) Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483:485
https://doi.org/10.1038/nature10898
239 MF Konig, L Abusleme, J Reinholdt, RJ Palmer, RP Teles, K Sampson, A Rosen, PA Nigrovic, J Sokolove, JT Gileset al. (2016) Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci Transl Med 8
https://doi.org/10.1126/scitranslmed.aaj1921
240 F Kottakis, BN Nicolay, A Roumane, R Karnik, HC Gu, JM Nagle, M Boukhali, MC Hayward, YY Li, T Chenet al. (2016) LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539:390–395
https://doi.org/10.1038/nature20132
241 GV Kryukov, FH Wilson, JR Ruth, J Paulk, A Tsherniak, SE Marlow, F Vazquez, BA Weir, ME Fitzgerald, M Tanakaet al.(2016) MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351:1214–1218
https://doi.org/10.1126/science.aad5214
242 R Kumari, RS Deshmukh, S Das (2019) Caspase-10 inhibits ATPcitrate lyase-mediated metabolic and epigenetic reprogramming to suppress tumorigenesis. Nat Commun 10
https://doi.org/10.1038/s41467-019-12194-6
243 K Kurmi, S Hitosugi, EK Wiese, F Boakye-Agyeman, WI Gonsalves, ZK Lou, LM Karnitz, MP Goetz, T Hitosugi (2018) Carnitine palmitoyltransferase 1A Has a lysine succinyltransferase activity. Cell Rep 22:1365–1373
https://doi.org/10.1016/j.celrep.2018.01.030
244 N Lacoste, RT Utley, JM Hunter, GG Poirier, J Cote (2002) Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem 277:30421–30424
https://doi.org/10.1074/jbc.C200366200
245 V Lampropoulou, A Sergushichev, M Bambouskova, S Nair, EE Vincent, E Loginicheva, L Cervantes-Barragan, XC Ma, SCC Huang, T Grisset al. (2016) Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of infiammation. Cell Metab 24:158–166
https://doi.org/10.1016/j.cmet.2016.06.004
246 TA Langan (1968) Histone phosphorylation: stimulation by adenosine 3’,5’-monophosphate. Science 162:579–580
https://doi.org/10.1126/science.162.3853.579
247 RN Laribee (2018) Transcriptional and epigenetic regulation by the mechanistic target of rapamycin complex 1 pathway. J Mol Biol 430:4874–4890
https://doi.org/10.1016/j.jmb.2018.10.008
248 T Latham, L Mackay, D Sproul, M Karim, J Culley, DJ Harrison, L Hayward, P Langridge-Smith, N Gilbert, BH Ramsahoye (2012) Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res 40:4794–4803
https://doi.org/10.1093/nar/gks066
249 MA Lauterbach, JE Hanke, M Serefidou, MSJ Mangan, CC Kolbe, T Hess, M Rothe, R Kaiser, F Hoss, J Gehlenet al. (2019) Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity 51 (997–1011):
https://doi.org/10.1016/j.immuni.2019.11.009
250 S Lavu, O Boss, PJ Elliott, PD Lambert (2008) Sirtuins – novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discovery 7:841–853
https://doi.org/10.1038/nrd2665
251 CG Lee, NA Jenkins, DJ Gilbert, NG Copeland, WE O’Brien (1995) Cloning and analysis of gene regulation of a novel LPS-inducible cDNA. Immunogenetics 41:263–270
https://doi.org/10.1007/BF00172150
252 JV Lee, A Carrer, S Shah, NW Snyder, SZ Wei, S Venneti, AJ Worth, ZF Yuan, HW Lim, SC Liuet al. (2014) Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab 20:306–319
https://doi.org/10.1016/j.cmet.2014.06.004
253 CF Lee, A Caudal, L Abell, GAN Gowda, R Tian (2019) Targeting NAD(+) metabolism as interventions for mitochondrial disease. Sci Rep 9
https://doi.org/10.1038/s41598-019-39419-4
254 MZ Lei, XX Li, Y Zhang, JT Li, F Zhang, YP Wang, M Yin, J Qu, QY Lei (2020) Acetylation promotes BCAT2 degradation to suppress BCAA catabolism and pancreatic cancer growth. Signal Transduct Target Ther 5:70
https://doi.org/10.1038/s41392-020-0168-0
255 SS Levine, IF King, RE Kingston (2004) Division of labor in polycomb group repression. Trends Biochem Sci 29:478–485
https://doi.org/10.1016/j.tibs.2004.07.007
256 BA Lewis, JA Hanover (2014) O-GlcNAc and the epigenetic regulation of gene expression. J Biol Chem 289:34440–34448
https://doi.org/10.1074/jbc.R114.595439
257 PW Lewis, MM Muller, MS Koletsky, F Cordero, S Lin, LA Banaszynski, BA Garcia, TW Muir, OJ Becher, CD Allis (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:857–861
https://doi.org/10.1126/science.1232245
258 JJ Li, HX Wang, JA Tino, JA Robl, TF Herpin, RM Lawrence, S Biller, H Jamil, R Ponticiello, LP Chenet al. (2007) 2-Hydroxy-Narylbenzenesulfonamides as ATP-citrate lyase inhibitors. Bioorg Med Chem Lett 17:3208–3211
https://doi.org/10.1016/j.bmcl.2007.03.017
259 PX Li, HJ Yao, ZQ Zhang, M Li, Y Luo, PR Thompson, DS Gilmour, YM Wang (2008) Regulation of p53 target gene expression by peptidylarginine deiminase 4. Mol Cell Biol 28:4745–4758
https://doi.org/10.1128/MCB.01747-07
260 PX Li, M Li, MR Lindberg, MJ Kennett, N Xiong, YM Wang (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207:1853–1862
https://doi.org/10.1084/jem.20100239
261 MD Li, HB Ruan, ME Hughes, JS Lee, JP Singh, SP Jones, MN Nitabach, XY Yang (2013) O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 17:303–310
https://doi.org/10.1016/j.cmet.2012.12.015
262 TT Li, MX Liu, X Feng, Z Wang, I Das, YP Xu, X Zhou, YP Sun, KL Guan, Y Xionget al. (2014) Glyceraldehyde-3-phosphate dehydrogenase is activated by lysine 254 acetylation in response to glucose signal. J Biol Chem 289:3775–3785
https://doi.org/10.1074/jbc.M113.531640
263 F Li, XD He, DW Ye, Y Lin, HX Yu, CF Yao, L Huang, JN Zhang, F Wang, S Xuet al.(2015a) NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance. Mol Cell 60:661–675
https://doi.org/10.1016/j.molcel.2015.10.017
264 SS Li, SK Swanson, M Gogol, L Florens, MP Washburn, JL Workman, T Suganuma (2015b) Serine and SAM responsive complex sesame regulates histone modification crosstalk by sensing cellular metabolism. Mol Cell 60:408–421
https://doi.org/10.1016/j.molcel.2015.09.024
265 L Li, L Shi, SD Yang, RR Yan, D Zhang, JG Yang, L He, WJ Li, X Yi, LY Sunet al. (2016) SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun 7
https://doi.org/10.1038/ncomms12235
266 XJ Li, X Qian, ZM Lu (2017a) Local histone acetylation by ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Autophagy 13:1790–1791
https://doi.org/10.1080/15548627.2017.1349581
267 XJ Li, WL Yu, X Qian, Y Xia, YH Zheng, JH Lee, W Li, JX Lyu, G Rao, XC Zhanget al.(2017b) Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol Cell 66:684–697
https://doi.org/10.1016/j.molcel.2017.04.026
268 ST Li, Huang, S Shen, Y Cai, S Xing, G Wu, Z Jiang, Y Hao, M Yuan, N Wang et al (2020) Myc-mediated SDHA acetylation triggers epigenetic regulation of gene expression and tumorigenesis. Nat Metab 2:256–269
https://doi.org/10.1038/s42255-020-0179-8
269 YJ Liao, SP Liu, CM Lee, CH Yen, PC Chuang, CY Chen, TF Tsai, SF Huang, YH Lee, YM Chen (2009) Characterization of a glycine N-methyltransferase gene knockout mouse model for hepatocellular carcinoma: implications of the gender disparity in liver cancer susceptibility. Int J Cancer 124:816–826
https://doi.org/10.1002/ijc.23979
270 JH Lim, YM Lee, YS Chun, J Chen, JE Kim, JW Park (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia- inducible factor 1 alpha. Mol Cell 38:864–878
https://doi.org/10.1016/j.molcel.2010.05.023
271 RT Lin, R Tao, X Gao, TT Li, X Zhou, KL Guan, Y Xiong, QY Lei (2013) Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell 51:506–518
https://doi.org/10.1016/j.molcel.2013.07.002
272 AP Lin, S Abbas, SW Kim, M Ortega, H Bouamar, Y Escobedo, P Varadarajan, Y Qin, J Sudderth, E Schulzet al. (2015) D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2. Nat Commun 6:7768
https://doi.org/10.1038/ncomms8768
273 SJ Linder, R Mostoslavsky (2017) Put your mark where your damage is: Acetyl-CoA production by ACLY promotes DNA repair. Mol Cell 67:165–167
https://doi.org/10.1016/j.molcel.2017.07.006
274 AD Liskiewicz, D Kasprowska, A Wojakowska, K Polanski, J Lewin-Kowalik, K Kotulska, H Jedrzejowska-Szypulka (2016) Longterm high fat ketogenic diet promotes renal tumor growth in a rat model of tuberous sclerosis. Sci Rep 6:21807
https://doi.org/10.1038/srep21807
275 ZF Liu, ZL Xie, W Jones, RE Pavlovicz, SJ Liu, JH Yu, PK Li, JY Lin, JR Fuchs, G Marcucciet al.(2009) Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett 19:706–709
https://doi.org/10.1016/j.bmcl.2008.12.041
276 Y Liu, K Liu, S Qin, C Xu, J Min (2014) Epigenetic targets and drug discovery: part 1: histone methylation. Pharmacol Ther 143:275–294
https://doi.org/10.1016/j.pharmthera.2014.03.007
277 K Liu, Y Liu, JL Lau, J Min (2015) Epigenetic targets and drug discovery Part 2: histone demethylation and DNA methylation. Pharmacol Ther 151:121–140
https://doi.org/10.1016/j.pharmthera.2015.04.001
278 PS Liu, HP Wang, XY Li, T Chao, TTS Christen, S Christen, G Di Conza, WC Cheng, CH Chou, M Vavakovaet al. (2017) Alphaketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 18:985–994
https://doi.org/10.1038/ni.3796
279 K Liu, FZ Li, QQ Sun, N Lin, HC Han, KQ You, F Tian, ZB Mao, TT Li, TJ Tonget al. (2019) p53 beta-hydroxybutyrylation attenuates p53 activity. Cell Death Dis 10
https://doi.org/10.1038/s41419-019-1463-y
280 WS Lo, L Duggan, NCT Emre, R Belotserkovskya, WS Lane, R Shiekhattar, SL Berger (2001) Snf1—a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293:1142–1146
https://doi.org/10.1126/science.1062322
281 JW Locasale (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13:572–583
https://doi.org/10.1038/nrc3557
282 JA Losman, WG Kaelin (2013) What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev 27:836–852
https://doi.org/10.1101/gad.217406.113
283 JA Losman, RE Looper, P Koivunen, S Lee, RK Schneider, C McMahon, GS Cowley, DE Root, BL Ebert, WG Kaelin (2013) (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339:1621–1625
https://doi.org/10.1126/science.1231677
284 OA Lozoya, I Martinez-Reyes, T Wang, D Grenet, P Bushel, J Li, N Chandel, RP Woychik, JH Santos (2018) Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA methylation. PLoS Biol 16:
https://doi.org/10.1371/journal.pbio.2005707
285 C Lu, PS Ward, GS Kapoor, D Rohle, S Turcan, O Abdel-Wahab, CR Edwards, R Khanin, ME Figueroa, A Melnicket al. (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474
https://doi.org/10.1038/nature10860
286 C Lu, S Venneti, A Akalin, F Fang, PS Ward, RG DeMatteo, AM Intlekofer, C Chen, JB Ye, M Hameedet al. (2013) Induction of sarcomas by mutant IDH2. Genes Dev 27:1986–1998
https://doi.org/10.1101/gad.226753.113
287 HH Luan, R Medzhitov (2016) Food fight: role of itaconate and other metabolites in antimicrobial defense. Cell Metab 24:379–387
https://doi.org/10.1016/j.cmet.2016.08.013
288 Z Luka, F Moss, LV Loukachevitch, DJ Bornhop, C Wagner (2011) Histone demethylase LSD1 Is a folate-binding protein. Biochemistry 50:4750–4756
https://doi.org/10.1021/bi200247b
289 Z Luka, S Pakhomova, LV Loukachevitch, MW Calcutt, ME Newcomer, C Wagner (2014) Crystal structure of the histone lysine specific demethylase LSD1 complexed with tetrahydrofolate. Protein Sci 23:993–998
https://doi.org/10.1002/pro.2469
290 A Luong, VC Hannah, MS Brown, JL Goldstein (2000) Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J Biol Chem 275:26458–26466
https://doi.org/10.1074/jbc.M004160200
291 L Lv, YP Xu, D Zhao, FL Li, W Wang, N Sasaki, Y Jiang, X Zhou, TT Li, KL Guanet al.(2013) Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell 52:340–352
https://doi.org/10.1016/j.molcel.2013.09.004
292 A Ly, L Hoyt, J Crowell, YI Kim (2012) Folate and DNA methylation. Antioxid Redox Signal 17:302–326
https://doi.org/10.1089/ars.2012.4554
293 CA Lyssiotis, LC Cantley (2014) Acetate fuels the cancer engine. Cell 159:1492–1494
https://doi.org/10.1016/j.cell.2014.12.009
294 RH Ma, TT Ji, HF Zhang, WQ Dong, XF Chen, PW Xu, DG Chen, XY Liang, XN Yin, YY Liuet al. (2018) A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8(+) T cells. Nat Cell Biol 20:21–27
https://doi.org/10.1038/s41556-017-0002-2
295 ODK Maddocks, CR Berkers, SM Mason, L Zheng, K Blyth, E Gottlieb, KH Vousden (2013) Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493:542–546
https://doi.org/10.1038/nature11743
296 ODK Maddocks, CF Labuschagne, PD Adams, KH Vousden (2016) Serine metabolism supports the Methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol Cell 61:210–221
https://doi.org/10.1016/j.molcel.2015.12.014
297 ODK Maddocks, D Athineos, EC Cheung, P Lee, T Zhang, NJF van den Broek, GM Mackay, CF Labuschagne, D Gay, F Kruiswijket al. (2017) Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544:372–376
https://doi.org/10.1038/nature22056
298 F Madeo, F Pietrocola, T Eisenberg, G Kroemer (2014) Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discovery 13:727–740
https://doi.org/10.1038/nrd4391
299 AS Madsen, C Andersen, M Daoud, KA Anderson, JS Laursen, S Chakladar, FK Huynh, AR Colaco, DS Backos, P Fristrupet al. (2016) Investigating the sensitivity of NAD+-dependent sirtuin deacylation activities to NADH. J Biol Chem 291:7128–7141
https://doi.org/10.1074/jbc.M115.668699
300 EA Maher, I Marin-Valencia, RM Bachoo, T Mashimo, J Raisanen, KJ Hatanpaa, A Jindal, FM Jeffrey, C Choi, C Maddenet al. (2012) Metabolism of [U-13 C]glucose in human brain tumors in vivo. NMR Biomed 25:1234–1244
https://doi.org/10.1002/nbm.2794
301 N Mahmood, SA Rabbani (2019) DNA methylation readers and cancer: mechanistic and therapeutic applications. Front Oncol 9
https://doi.org/10.3389/fonc.2019.00489
302 T Maile, S Kwoczynski, RJ Katzenberger, DA Wassarman, F Sauer (2004) TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science 304:1010–1014
https://doi.org/10.1126/science.1095001
303 BS Mann, JR Johnson, MH Cohen, R Justice, R Pazdur (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252
https://doi.org/10.1634/theoncologist.12-10-1247
304 A Manuyakorn, R Paulus, J Farrell, NA Dawson, S Tze, G Cheung-Lau, OJ Hines, H Reber, DB Seligson, S Horvathet al. (2010) Cellular histone modification patterns predict prognosis and treatment response in resectable pancreatic adenocarcinoma: results from RTOG 9704. J Clin Oncol 28:1358–1365
https://doi.org/10.1200/JCO.2009.24.5639
305 G Marcucci, L Silverman, M Eller, L Lintz, CL Beach (2005) Bioavailability of azacitidine subcutaneous versus intravenous in patients with the myelodysplastic syndromes. J Clin Pharmacol 45:597–602
https://doi.org/10.1177/0091270004271947
306 ER Mardis, L Ding, DJ Dooling, DE Larson, MD McLellan, K Chen, DC Koboldt, RS Fulton, KD Delehaunty, SD McGrathet al. (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066
https://doi.org/10.1056/NEJMoa0903840
307 K Marjon, MJ Cameron, P Quang, MF Clasquin, E Mandley, K Kunii, M Mcvay, S Choe, A Kernytsky, S Grosset al. (2016) MTAP deletions in cancer create vulnerability to targeting of the MAT2A/ PRMT5/RIOK1 axis. Cell Rep 15:574–587
https://doi.org/10.1016/j.celrep.2016.03.043
308 GD Markham, MA Pajares (2009) Structure-function relationships in methionine adenosyltransferases. Cell Mol Life Sci 66:636–648
https://doi.org/10.1007/s00018-008-8516-1
309 C Martinez Calejman, S Trefely, SW Entwisle, A Luciano, SM Jung, W Hsiao, A Torres, CM Hung, H Li, NW Snyderet al. (2020) mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nat Commun 11:575
https://doi.org/10.1038/s41467-020-14430-w
310 ML Martinez-Chantar, M Vazquez-Chantada, U Ariz, N Martinez, M Varela, Z Luka, A Capdevila, J Rodriguez, AM Aransay, R Matthiesenet al. (2008) Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology 47:1191–1199
https://doi.org/10.1002/hep.22159
311 T Mashimo, K Pichumani, V Vemireddy, KJ Hatanpaa, DK Singh, S Sirasanagandla, S Nannepaga, SG Piccirillo, Z Kovacs, C Foonget al. (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159:1603–1614
https://doi.org/10.1016/j.cell.2014.11.025
312 C Tanikawa, M Espinosa, A Suzuki, K Masuda, K Yamamoto, E Tsuchiya, K Ueda, Y Daigo, Y Nakamura, , K Matsuda (2012) Regulation of histone modification and chromatin structure by the p53-PADI4 pathway. Nat Commun 3
https://doi.org/10.1038/ncomms1676
313 S Matsuda, J Adachi, M Ihara, N Tanuma, H Shima, A Kakizuka, M Ikura, T Ikura, T Matsuda (2016) Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor. Nucleic Acids Res 44:636–647
https://doi.org/10.1093/nar/gkv967
314 MP Mattson, SL Chan (2003) Calcium orchestrates apoptosis. Nat Cell Biol 5:1041–1043
https://doi.org/10.1038/ncb1203-1041
315 LM Mauracher, F Posch, K Martinod, E Grilz, T Daullary, L Hell, C Brostjan, C Zielinski, C Ay, DD Wagneret al. (2018) Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J Thromb Haemost 16:508–518
https://doi.org/10.1111/jth.13951
316 KJ Mavrakis, ER McDonald, MR Schlabach, E Billy, GR Hoffman, A deWeck, DA Ruddy, K Venkatesan, JJ Yu, G McAllisteret al. (2016) Disordered methionine metabolism in MTAP/CDKN2Adeleted cancers leads to dependence on PRMT5. Science 351:1208–1213
https://doi.org/10.1126/science.aad5944
317 V Mayya, DH Lundgren, SI Hwang, K Rezaul, L Wu, JK Eng, V Rodionov, DK Han (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2:ra46
https://doi.org/10.1126/scisignal.2000007
318 MA McBrian, IS Behbahan, R Ferrari, T Su, TW Huang, K Li, CS Hong, HR Christofk, M Vogelauer, DB Seligsonet al. (2013) Histone acetylation regulates intracellular pH. Mol Cell 49:310–321
https://doi.org/10.1016/j.molcel.2012.10.025
319 MT McCabe, HM Ott, G Ganji, S Korenchuk, C Thompson, GS Van Aller, Y Liu, AP Graves, A Della Pietra , E Diazet al. (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492:108–112
https://doi.org/10.1038/nature11606
320 N McCarthy (2013) LEUKAEMIA knowing left from right. Nat Rev Cancer 13:220–220
https://doi.org/10.1038/nrc3487
321 OG McDonald, X Li, T Saunders, R Tryggvadottir, SJ Mentch, MO Warmoes, AE Word, A Carrer, TH Salz, S Natsumeet al.(2017) Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet 49:367–376
https://doi.org/10.1038/ng.3753
322 J McGrath, P Trojer (2015) Targeting histone lysine methylation in cancer. Pharmacol Ther 150:1–22
https://doi.org/10.1016/j.pharmthera.2015.01.002
323 SJ Mentch, M Mehrmohamadi, L Huang, XJ Liu, D Gupta, D Mattocks, PG Padilla, G Ables, MM Bamman, AE Thalacker-Mercer et al. (2015) Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab 22:861–873
https://doi.org/10.1016/j.cmet.2015.08.024
324 JA Mertz, AR Conery, BM Bryant, P Sandy, S Balasubramanian, DA Mele, L Bergeron, RJ Sims (2011) Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 108:16669–16674
https://doi.org/10.1073/pnas.1108190108
325 M Merza, H Hartman, M Rahman, R Hwaiz, EM Zhang, E Renstrom, LT Luo, M Morgelin, S Regner, H Thorlacius (2015) Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology 149:1920–1931
https://doi.org/10.1053/j.gastro.2015.08.026
326 CM Metallo, PA Gameiro, EL Bell, KR Mattaini, JJ Yang, K Hiller, CM Jewell, ZR Johnson, DJ Irvine, L Guarenteet al. (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380
https://doi.org/10.1038/nature10602
327 P Mews, G Donahue, AM Drake, V Luczak, T Abel, SL Berger (2017) Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546:381–386
https://doi.org/10.1038/nature22405
328 WY Mi, YC Gu, CF Han, HY Liu, QO Fan, XL Zhang, Q Cong, WG Yu (2011) O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim Biophys Acta 1812:514–519
https://doi.org/10.1016/j.bbadis.2011.01.009
329 ED Michelakis, G Sutendra, P Dromparis, L Webster, A Haromy, E Niven, C Maguire, TL Gammer, JR Mackey, D Fultonet al. (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:31ra34
https://doi.org/10.1126/scitranslmed.3000677
330 A Michelucci, T Cordes, J Ghelfi , A Pailot, N Reiling, O Goldmann, T Binz, A Wegner, A Tallam, A Rausellet al. (2013) Immuneresponsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci USA 110:7820–7825
https://doi.org/10.1073/pnas.1218599110
331 EL Mills, DG Ryan, HA Prag, D Dikovskaya, D Menon, Z Zaslona, MP Jedrychowski, ASH Costa, M Higgins, E Hamset al. (2018) Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556:113–117
https://doi.org/10.1038/nature25986
332 M Monti, V De Rosa, F Iommelli, MV Carriero, C Terlizzi, R Camerlingo, S Belli, R Fonti, G Di Minno, and S Del Vecchio (2018) Neutrophil extracellular traps as an adhesion substrate for different tumor cells expressing RGD-binding integrins. Int J Mol Sci 19
https://doi.org/10.3390/ijms19082350
333 F Morrish, J Noonan, C Perez-Olsen, PR Gafken, M Fitzgibbon, J Kelleher, M VanGilst, D Hockenbery (2010) Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J Biol Chem 285:36267–36274
https://doi.org/10.1074/jbc.M110.141606
334 MA Moscarello, FG Mastronardi, DD Wood (2007) The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem Res 32:251–256
https://doi.org/10.1007/s11064-006-9144-5
335 TJ Moss, LL Wallrath (2007) Connections between epigenetic gene silencing and human disease. Mutat Res 618:163–174
https://doi.org/10.1016/j.mrfmmm.2006.05.038
336 AR Mullen, WW Wheaton, ES Jin, PH Chen, LB Sullivan, T Cheng, YF Yang, WM Linehan, NS Chandel, RJ DeBerardinis (2012) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385
https://doi.org/10.1038/nature10642
337 MP Murphy, LAJ O’Neill (2018) Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell 174:780–784
https://doi.org/10.1016/j.cell.2018.07.030
338 CA Musselman, S Khorasanizadeh, TG Kutateladze (2014) Towards understanding methyllysine readout. Biochim Biophys Acta 1839:686–693
https://doi.org/10.1016/j.bbagrm.2014.04.001
339 T Muthusamy, T Cordes, MK Handzlik, L You, EW Lim, J Gengatharan, AFM Pinto, MG Badur, MJ Kolar, M Wallaceet al.(2020) Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature
https://doi.org/10.1038/s41586-020-2609-x
340 S Nair, JP Huynh, V Lampropoulou, E Loginicheva, E Esaulova, AP Gounder, ACM Boon, EA Schwarzkopf, TR Bradstreet, BT Edelsonet al. (2018) Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection. J Exp Med 215:1035–1045
https://doi.org/10.1084/jem.20180118
341 D Namgaladze, S Zukunft, F Schnutgen, N Kurrle, I Fleming, D Fuhrmann, B Brune (2018) Polarization of human macrophages by interleukin-4 does not require ATP-citrate lyase. Front Immunol 9
https://doi.org/10.3389/fimmu.2018.02858
342 J Nanduri, GL Semenza, NR Prabhakar (2017) Epigenetic changes by DNA methylation in chronic and intermittent hypoxia. Am J Physiol 313:L1096–L1100
https://doi.org/10.1152/ajplung.00325.2017
343 A Nencioni, I Caffa, S Cortellino, VD Longo (2018) Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer 18:707–719
https://doi.org/10.1038/s41568-018-0061-0
344 JC Newman, E Verdin (2014a) beta-Hydroxybutyrate: much more than a metabolite. Diabetes Res Clin Pract 106:173–181
https://doi.org/10.1016/j.diabres.2014.08.009
345 JC Newman, E Verdin (2014b) Ketone bodies as signaling metabolites. Trends Endocrinol Metab 25:42–52
https://doi.org/10.1016/j.tem.2013.09.002
346 JC Newman, E Verdin (2017) beta-Hydroxybutyrate: a signaling metabolite. Annu Rev Nutr 37(37):51–76
https://doi.org/10.1146/annurev-nutr-071816-064916
347 E Nicodeme, KL Jeffrey, U Schaefer, S Beinke, S Dewell, CW Chung, R Chandwani, I Marazzi, P Wilson, H Costeet al. (2010) Suppression of infiammation by a synthetic histone mimic. Nature 468:1119–1123
https://doi.org/10.1038/nature09589
348 E Nicolas, C Roumillac, D Trouche (2003) Balance between acetylation and methylation of histone H3 lysine 9 on the E2Fresponsive dihydrofolate reductase promoter. Mol Cell Biol 23:1614–1622
https://doi.org/10.1128/MCB.23.5.1614-1622.2003
349 Y Nonnenmacher, K Hiller (2018) Biochemistry of proinfiammatory macrophage activation. Cell Mol Life Sci 75:2093–2109
https://doi.org/10.1007/s00018-018-2784-1
350 SJ Nowak, VG Corces (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220
https://doi.org/10.1016/j.tig.2004.02.007
351 F Obata, E Kuranaga, K Tomioka, M Ming, A Takeishi, CH Chen, T Soga, M Miura (2014) Necrosis-driven systemic immune response alters SAM metabolism through the FOXO-GNMT axis. Cell Rep 7:821–833
https://doi.org/10.1016/j.celrep.2014.03.046
352 EK Oermann, J Wu, KL Guan, Y Xiong (2012) Alterations of metabolic genes and metabolites in cancer. Semin Cell Dev Biol 23:370–380
https://doi.org/10.1016/j.semcdb.2012.01.013
353 WM Oldham, CB Clish, Y Yang, J Loscalzo (2015) Hypoxiamediated Increases in L-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab 22 :291 –303
https://doi.org/10.1016/j.cmet.2015.06.021
354 LE Olson, J Tollkuhn, C Scafoglio, A Krones, J Zhang, KA Ohgi, W Wu, MM Taketo, R Kemler, R Grosschedlet al.(2006) Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell 125:593–605
https://doi.org/10.1016/j.cell.2006.02.046
355 I Onakpoya, SK Hung, R Perry, B Wider, E Ernst (2011) The use of garcinia extract (hydroxycitric acid) as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. J Obes 2011:
https://doi.org/10.1155/2011/509038
356 LAJ O’Neill, MN Artyomov (2019) Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat Rev Immunol 19:273–281
https://doi.org/10.1038/s41577-019-0128-5
357 LAJ O’Neill, EJ Pearce (2016) Immunometabolism governs dendritic cell and macrophage function. J Exp Med 213:15–23
https://doi.org/10.1084/jem.20151570
358 N Osinalde, J Mitxelena, V Sanchez-Quiles, V Akimov, K Aloria, JM Arizmendi, AM Zubiaga, B Blagoev, I Kratchmarova(2016) Nuclear phosphoproteomic screen uncovers ACLYas mediator of IL-2-induced proliferation of CD4(+) T lymphocytes. Mol Cell Proteomics 15:2076–2092
https://doi.org/10.1074/mcp.M115.057158
359 PW Pan, JL Feldman, MK Devries, A Dong, AM Edwards, JM Denu (2011) Structure and biochemical functions of SIRT6. J Biol Chem 286:14575–14587
https://doi.org/10.1074/jbc.M111.218990
360 J Pan, XY Zhao, CN Lin, HC Xu, ZL Yin, TZ Liu, SZ Zhang (2014) Immune responsive gene 1, a novel oncogene, increases the growth and tumorigenicity of glioma. Oncol Rep 32:1957–1966
https://doi.org/10.3892/or.2014.3474
361 M Pan, MA Reid, XH Lowman, RP Kulkarni, TQ Tran, XJ Liu, Y Yang, JE Hernandez-Davies , KK Rosales, HQ Liet al. (2016) Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat Cell Biol 18:1090–1101
https://doi.org/10.1038/ncb3410
362 I Papandreou, RA Cairns, L Fontana, AL Lim, NC Denko (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197
https://doi.org/10.1016/j.cmet.2006.01.012
363 AE Papathanassiu, JH Ko, M Imprialou, M Bagnati, PK Srivastava, HA Vu, D Cucchi, SP McAdoo, EA Ananieva, C Mauroet al. (2017) BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with infiammatory diseases. Nat Commun 8
https://doi.org/10.1038/ncomms16040
364 J Park, Y Chen, DX Tishkoff, C Peng, MJ Tan, LZ Dai, ZY Xie, Y Zhang, BMM Zwaans, ME Skinneret al. (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50:919–930
https://doi.org/10.1016/j.molcel.2013.06.001
365 SJ Parker, CM Metallo (2016) Chasing one-carbon units to understand the role of serine in epigenetics. Mol Cell 61:185–186
https://doi.org/10.1016/j.molcel.2016.01.006
366 CW Parker, M Kern, HN Eisen (1962) Polyfunctional dinitrophenyl haptens as reagents for elicitation of immediate type allergic skin responses. J Exp Med 115:789–801
https://doi.org/10.1084/jem.115.4.789
367 S Parsa, A Ortega-Molina, H-Y Ying, M Jiang, M Teater, J Wang, C Zhao, E Reznik, JP Pasion, D Kuoet al.(2020) The serine hydroxymethyltransferase-2 (SHMT2) initiates lymphoma development through epigenetic tumor suppressor silencing. Nature Cancer 1:653–664
https://doi.org/10.1038/s43018-020-0080-0
368 DW Parsons, S Jones, XS Zhang, JCH Lin, RJ Leary, P Angenendt, P Mankoo, H Carter, IM Siu, GL Galliaet al. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812
https://doi.org/10.1126/science.1164382
369 WA Pastor, L Aravind, A Rao (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14:341–356
https://doi.org/10.1038/nrm3589
370 MS Patel, NS Nemeria, W Furey, F Jordan (2014) The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem 289:16615–16623
https://doi.org/10.1074/jbc.R114.563148
371 NN Pavlova, CB Thompson (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47
https://doi.org/10.1016/j.cmet.2015.12.006
372 NJ Pearce, JW Yates, TA Berkhout, B Jackson, D Tew, H Boyd, P Camilleri, P Sweeney, AD Gribble, A Shawet al. (1998) The role of ATP citrate-lyase in the metabolic regulation of plasma lipids–hypolipidaemic effects of SB-204990, a lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076. Biochem J 334:113–119
https://doi.org/10.1042/bj3340113
373 EL Pearce, MC Walsh, PJ Cejas, GM Harms, H Shen, LS Wang, RG Jones, YW Choi (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460:103–U118
https://doi.org/10.1038/nature08097
374 G Perez-Chacon, AM Astudillo, D Balgoma, MA Balboa, J Balsinde (2009) Control of free arachidonic acid levels by phospholipases A2 and lysophospholipid acyltransferases. Biochim Biophys Acta 1791:1103–1113
https://doi.org/10.1016/j.bbalip.2009.08.007
375 F Pietrocola, L Galluzzi, JM Bravo-San Pedro, F Madeo, G Kroemer (2015) Acetyl Coenzyme A: a central metabolite and second messenger. Cell Metab 21:805–821
https://doi.org/10.1016/j.cmet.2015.05.014
376 M Pineiro, PJ Gonzalez, F Hernandez, E Palacian (1991) Interaction of RNA polymerase II with acetylated nucleosomal core particles. Biochem Biophys Res Commun 177:370–376
https://doi.org/10.1016/0006-291X(91)91993-M
377 M Pineiro, F Hernandez, E Palacian (1992) Succinylation of histone amino groups facilitates transcription of nucleosomal cores. Biochim Biophys Acta 1129:183–187
https://doi.org/10.1016/0167-4781(92)90485-I
378 L Poillet-Perez, XQ Xie, L Zhan, Y Yang, DW Sharp, ZS Hu, XY Su, A Maganti, C Jiang, WY Luet al. (2018) Autophagy maintains tumour growth through circulating arginine. Nature 563:569–573
https://doi.org/10.1038/s41586-018-0697-7
379 V Poli, L Fagnocchi, A Fasciani, A Cherubini, S Mazzoleni, S Ferrillo, A Miluzio, G Gaudioso, V Vaira, A Turdoet al.(2018) MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state (vol 9, 1024, 2018). Nat Commun 9
https://doi.org/10.1038/s41467-018-06480-y
380 L Polletta, E Vernucci, I Carnevale, T Arcangeli, D Rotili, S Palmerio, C Steegborn, T Nowak, M Schutkowski, L Pellegriniet al. (2015) SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy 11:253–270
https://doi.org/10.1080/15548627.2015.1009778
381 CJ Poole, J van Riggelen (2017) MYC-master regulator of the cancer epigenome and transcriptome. Genes (Basel) 8
https://doi.org/10.3390/genes8050142
382 P Prickaerts, ME Adriaens, T van den Beucken, E Koch, L Dubois, VEH Dahlmans, C Gits, CTA Evelo, M Chan-Seng-Yue, BG Wouterset al. (2016) Hypoxia increases genome-wide bivalent epigenetic marking by specific gain of H3K27me3. Epigenet Chromatin 9
https://doi.org/10.1186/s13072-016-0086-0
383 C Prigent, S Dimitrov (2003) Phosphorylation of serine 10 in histone H3, what for? J Cell Sci 116:3677–3685
https://doi.org/10.1242/jcs.00735
384 LB Pritzker, S Joshi, JJ Gowan, G Harauz, MA Moscarello (2000) Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D. Biochemistry 39:5374–5381
https://doi.org/10.1021/bi9925569
385 M Pufulete, R Al-Ghnaniem, A Khushal, P Appleby, N Harris, S Gout, PW Emery, TA Sanders (2005) Effect of folic acid supplementation on genomic DNA methylation in patients with colorectal adenoma. Gut 54:648–653
https://doi.org/10.1136/gut.2004.054718
386 H Qi, X Ning, C Yu, X Ji, Y Jin, MA McNutt, Y Yin (2019) Succinylation-dependent mitochondrial translocation of PKM2 promotes cell survival in response to nutritional stress. Cell Death Dis 10:170
https://doi.org/10.1038/s41419-018-1271-9
387 W Qin, K Qin, Y Zhang, W Jia, Y Chen, B Cheng, L Peng, N Chen, Y Liu, W Zhouet al.(2019) S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat Chem Biol 15:983–991
https://doi.org/10.1038/s41589-019-0323-5
388 W Qin, Y Zhang, H Tang, D Liu, Y Chen, Y Liu, C Wang (2020) Chemoproteomic profiling of itaconation by bioorthogonal probes in infiammatory macrophages. J Am Chem Soc 142:10894–10898
https://doi.org/10.1021/jacs.9b11962
389 MJ Rardin, WJ He, Y Nishida, JC Newman, C Carrico, SR Danielson, A Guo, P Gut, AK Sahu, B Liet al. (2013) SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab 18:920–933
https://doi.org/10.1016/j.cmet.2013.11.013
390 MA Reid, Z Dai, JW Locasale (2017) The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol 19:1298–1306
https://doi.org/10.1038/ncb3629
391 J Ren, BN Singh, Q Huang, ZF Li, Y Gao, P Mishra, YL Hwa, JP Li, SC Dowdy, SW Jiang (2011) DNA hypermethylation as a chemotherapy target. Cell Signal 23:1082–1093
https://doi.org/10.1016/j.cellsig.2011.02.003
392 E Reytor, J Perez-Miguelsanz, L Alvarez, D Perez-Sala, MA Pajares (2009) Conformational signals in the C-terminal domain of methionine adenosyltransferase I/III determine its nucleocytoplasmic distribution. FASEB J 23:3347–3360
https://doi.org/10.1096/fj.09-130187
393 CT Richie, A Golden (2005) Chromosome segregation: Aurora B gets tousled. Curr Biol 15:R379–R382
https://doi.org/10.1016/j.cub.2005.05.009
394 VM Richon, S Emiliani, E Verdin, Y Webb, R Breslow, RA Rifkind, PA Marks (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 95:3003–3007
https://doi.org/10.1073/pnas.95.6.3003
395 MG Riggs, RG Whittaker, JR Neumann, VM Ingram (1977) n-Butyrate causes histone modification in HeLa and friend erythroleukaemia cells. Nature 268:462–464
https://doi.org/10.1038/268462a0
396 WE Roediger (1982) Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83:424–429
https://doi.org/10.1016/S0016-5085(82)80339-9
397 D Rohle, J Popovici-Muller, N Palaskas, S Turcan, C Grommes, C Campos, J Tsoi, O Clark, B Oldrini, E Komisopoulouet al. (2013) An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340:626–630
https://doi.org/10.1126/science.1236062
398 KA Romano, A Martinez-Del Campo, K Kasahara, CL Chittim, El Vivas, D Amador-Noguez, EP Balskus, FE Rey (2017) Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption. Cell Host Microbe 22(279–290):
https://doi.org/10.1016/j.chom.2017.07.021
399 HB Ruan, XM Han, MD Li, JP Singh, K Qian, S Azarhoush, L Zhao, AM Bennett, VT Samuel, J Wuet al. (2012) O-GlcNAc transferase/ host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1 alpha stability. Cell Metab 16:226–237
https://doi.org/10.1016/j.cmet.2012.07.006
400 HB Ruan, YZ Nie, XY Yang (2013) Regulation of protein degradation by O-GlcNAcylation: crosstalk with ubiquitination. Mol Cell Proteomics 12:3489–3497
https://doi.org/10.1074/mcp.R113.029751
401 NB Ruderman, XJ Xu, L Nelson, JM Cacicedo, AK Saha, F Lan, Y Ido (2010) AMPK and SIRT1: a long-standing partnership? Am J Physiol-Endocrinol Metab 298:E751–E760
https://doi.org/10.1152/ajpendo.00745.2009
402 M Ruetz, GC Campanello, M Purchal, HY Shen, L McDevitt, H Gouda, S Wakabayashi, JH Zhu, EJ Rubin, K Warnckeet al. (2019) Itaconyl-CoA forms a stable biradical in methylmalonyl-CoA mutase and derails its activity and repair. Science 366:589–593
https://doi.org/10.1126/science.aay0934
403 AC Rufer, R Thoma, M Hennig (2009) Structural insight into function and regulation of carnitine palmitoyltransferase. Cell Mol Life Sci 66:2489–2501
https://doi.org/10.1007/s00018-009-0035-1
404 R Rzem, MF Vincent, E Schaftingen, M Veiga-da-Cunha (2007) L-2-Hydroxyglutaric aciduria, a defect of metabolite repair. J Inherit Metab Dis 30:681–689
https://doi.org/10.1007/s10545-007-0487-0
405 BR Sabari, D Zhang, CD Allis, YM Zhao (2017) Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 18:90–101
https://doi.org/10.1038/nrm.2016.140
406 A Sadakierska-Chudy, M Filip (2015) A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox Res 27:172–197
https://doi.org/10.1007/s12640-014-9508-6
407 K Sakabe, Z Wang, GW Hart (2010) Beta-N-acetylglucosamine (OGlcNAc) is part of the histone code. Proc Natl Acad Sci USA 107:19915–19920
https://doi.org/10.1073/pnas.1009023107
408 SF Sakata, LL Shelly, S Ruppert, G Schutz, JY Chou (1993) Cloning and expression of murine S-adenosylmethionine synthetase. J Biol Chem 268:13978–13986
https://doi.org/10.1016/S0021-9258(19)85198-0
409 R Saldana-Meyer, F Recillas-Targa (2011) Transcriptional and epigenetic regulation of the p53 tumor suppressor gene. Epigenetics 6:1068–1077
https://doi.org/10.4161/epi.6.9.16683
410 HB Salvesen, N MacDonald, A Ryan, IJ Jacobs, ED Lynch, LA Akslen, S Das (2001) PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer 91:22–26
https://doi.org/10.1002/1097-0215(20010101)91:1<22::AID-IJC1002>3.0.CO;2-S
411 P Sassone-Corsi , CA Mizzen, P Cheung, C Crosio, L Monaco, S Jacquot, A Hanauer, CD Allis (1999) Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285:886–891
https://doi.org/10.1126/science.285.5429.886
412 W Scheppach, F Weiler (2004) The butyrate story: old wine in new bottles? Curr Opin Clin Nutr Metab Care 7:563–567
https://doi.org/10.1097/00075197-200409000-00009
413 AM Schmitt, S Schmid, T Rudolph, M Anlauf, C Prinz, G Kloppel, H Moch, PU Heitz, P Komminoth, A Perren (2009) VHL inactivation is an important pathway for the development of malignant sporadic pancreatic endocrine tumors. Endocr Relat Cancer 16:1219–1227
https://doi.org/10.1677/ERC-08-0297
414 ZT Schug, B Peck, DT Jones, QF Zhang, S Grosskurth, IS Alam, LM Goodwin, E Smethurst, S Mason, K Blythet al. (2015) Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27:57–71
https://doi.org/10.1016/j.ccell.2014.12.002
415 M Sciacovelli, E Goncalves, TI Johnson, VR Zecchini, ASH da Costa , E Gaude, AV Drubbel, SJ Theobald, SR Abbo, MGB Tranet al. (2016) Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition (vol 537, pg 544, 2016). Nature 540
https://doi.org/10.1038/nature19353
416 DB Seligson, S Horvath, T Shi, H Yu, S Tze, M Grunstein, SK Kurdistani (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266
https://doi.org/10.1038/nature03672
417 DB Seligson, S Horvath, MA McBrian, V Mah, H Yu, S Tze, Q Wang, D Chia, L Goodglick, SK Kurdistani (2009) Global levels of histone modifications predict prognosis in different cancers. Am J Pathol 174:1619–1628
https://doi.org/10.2353/ajpath.2009.080874
418 M Serefidou, AV Venkatasubramani, A Imhof (2019) The impact of one carbon metabolism on histone methylation. Front Genet 10
https://doi.org/10.3389/fgene.2019.00764
419 CL Shan, S Elf, QJ Ji, HB Kang, L Zhou, T Hitosugi, LT Jin, RT Lin, L Zhang, JH Seoet al. (2014) Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth. Mol Cell 55:552–565
https://doi.org/10.1016/j.molcel.2014.06.020
420 H Shen, GC Campanello, D Flicker, Z Grabarek, J Hu, C Luo, R Banerjee, VK Mootha (2017) The human knockout gene CLYBL connects itaconate to vitamin B12. Cell 171(771–782):
https://doi.org/10.1016/j.cell.2017.09.051
421 Y Shi, F Lan, C Matson, P Mulligan, JR Whetstine, PA Cole, RA Casero, Y Shi (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953
https://doi.org/10.1016/j.cell.2004.12.012
422 Y Shi, J Tomic, F Wen, S Shaha, A Bahlo, R Harrison, JW Dennis, R Williams, BJ Gross, S Walkeret al. (2010) Aberrant O-GlcNAcylation characterizes chronic lymphocytic leukemia. Leukemia 24:1588–1598
https://doi.org/10.1038/leu.2010.152
423 FT Shi, H Kim, W Lu, Q He, D Liu, MA Goodell, M Wan, Z Songyang (2013) Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells. J Biol Chem 288:20776–20784
https://doi.org/10.1074/jbc.M113.460386
424 J Shi, JH Gu, CL Dai, J Gu, X Jin, J Sun, K Iqbal, F Liu, CX Gong (2015) O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling. Sci Rep 5:14500
https://doi.org/10.1038/srep14500
425 WY Shi, X Yang, B Huang, WH Shen, L Liu (2017) NOK mediates glycolysis and nuclear PDC associated histone acetylation. Front Biosci 22:1792–1804
https://doi.org/10.2741/4572
426 EH Shim, CB Livi, D Rakheja, J Tan, D Benson, V Parekh, EY Kho, AP Ghosh, R Kirkman, S Veluet al. (2014) L-2-hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov 4:1290–1298
https://doi.org/10.1158/2159-8290.CD-13-0696
427 T Shimazu, MD Hirschey, J Newman, W He, K Shirakawa, N Le Moan, CA Grueter, H Lim, LR Saunders, RD Stevenset al. (2013) Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214
https://doi.org/10.1126/science.1227166
428 JH Shin, JY Yang, BY Jeon, YJ Yoon, SN Cho, YH Kang, DH Ryu, GS Hwang (2011) (1)H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. J Proteome Res 10:2238–2247
https://doi.org/10.1021/pr101054m
429 LM Shu, TO Khor, JH Lee, SSS Boyanapalli, Y Huang, TY Wu, CLL Saw, KL Cheung, ANT Kong (2011) Epigenetic CpG demethylation of the promoter and reactivation of the expression of neurog1 by curcumin in prostate LNCaP cells. Aaps J 13:606–614
https://doi.org/10.1208/s12248-011-9300-y
430 N Shyh-Chang, JW Locasale, CA Lyssiotis, YX Zheng, RY Teo, S Ratanasirintrawoot, J Zhang, T Onder, JJ Unternaehrer, H Zhuet al. (2013) Infiuence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339:222–226
https://doi.org/10.1126/science.1226603
431 P Siedlecki, RG Boy, S Comagic, R Schirrmacher, M Wiessler, P Zielenkiewicz, S Suhai, F Lyko (2003) Establishment and functional validation of a structural homology model for human DNA methyltransferase 1. Biochem Biophys Res Commun 306:558–563
https://doi.org/10.1016/S0006-291X(03)01000-3
432 MS Singer, A Kahana, AJ Wolf, LL Meisinger, SE Peterson, C Goggin, M Mahowald, DE Gottschling (1998) Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150:613–632
https://doi.org/10.1093/genetics/150.2.613
433 N Singh, A Duenas-Gonzalez, F Lyko, JL Medina-Franco (2009a) Molecular modeling and molecular dynamics studies of hydralazine with human DNA methyltransferase 1. ChemMedChem 4:792–799
https://doi.org/10.1002/cmdc.200900017
434 RK Singh, MH Kabbaj, J Paik, A Gunjan (2009b) Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis. Nat Cell Biol 11:925–933
https://doi.org/10.1038/ncb1903
435 BN Singh, S Shankar, RK Srivastava (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82:1807–1821
https://doi.org/10.1016/j.bcp.2011.07.093
436 JP Singh, K Zhang, J Wu, X Yang (2015) O-GlcNAc signaling in cancer metabolism and epigenetics. Cancer Lett 356:244–250
https://doi.org/10.1016/j.canlet.2014.04.014
437 S Sivanand, S Rhoades, Q Jiang, JV Lee, J Benci, J Zhang, S Yuan, I Viney, S Zhao, A Carreret al. (2017) Nuclear acetyl-CoA production by ACLY promotes homologous recombination. Mol Cell 67(252–265):
https://doi.org/10.1016/j.molcel.2017.06.008
438 C Slawson, GW Hart (2011) O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer 11:678–684
https://doi.org/10.1038/nrc3114
439 C Slawson, J Pidala, R Potter (2001) Increased N-acetyl-betaglucosaminidase activity in primary breast carcinomas corresponds to a decrease in N-acetylglucosamine containing proteins. Biochim Biophys Acta 1537:147–157
https://doi.org/10.1016/S0925-4439(01)00067-9
440 J Smestad, L Erber, Y Chen, LJ Maher (2018) Chromatin succinylation correlates with active gene expression and is perturbed by defective TCA cycle metabolism. Iscience 2:63–75
https://doi.org/10.1016/j.isci.2018.03.012
441 YA Soesanto, B Luo, D Jones, R Taylor, JS Gabrielsen, G Parker, DA McClain (2008) Regulation of Akt signaling by O-GlcNAc in euglycemia. Am J Physiol Endocrinol Metab 295:E974–980
https://doi.org/10.1152/ajpendo.90366.2008
442 A Soloaga, S Thomson, GR Wiggin, N Rampersaud, MH Dyson, CA Hazzalin, LC Mahadevan, JS Arthur (2003) MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J 22:2788–2797
https://doi.org/10.1093/emboj/cdg273
443 H Song, J Ma, ZX Bian, SH Chen, JB Zhu, J Wang, N Huang, MZ Yin, FY Sun, M Xuet al. (2019) Global profiling of O-GlcNAcylated and/or phosphorylated proteins in hepatoblastoma. Signal Transduct Target Ther 4
https://doi.org/10.1038/s41392-019-0067-4
444 JC Soria, HY Lee, JI Lee, L Wang, JP Issa, BL Kemp, DD Liu, JM Kurie, L Mao, FR Khuri (2002) Lack of PTEN expression in nonsmall cell lung cancer could be related to promoter methylation. Clin Cancer Res 8:1178–1184
445 F Sorm, A Piskala, A Cihak, J Vesely(1964) 5-Azacytidine, a new, highly effective cancerostatic. Experientia 20:202–203
https://doi.org/10.1007/BF02135399
446 A Sreedhar, EK Wiese, T Hitosugi (2020) Enzymatic and metabolic regulation of lysine succinylation. Genes Dis 7:166–171
https://doi.org/10.1016/j.gendis.2019.09.011
447 JM Stafford, CH Lee, P Voigt, N Descostes, R Saldana-Meyer, JR Yu, G Leroy, O Oksuz, JR Chapman, F Suarezet al. (2018) Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. Sci Adv 4
https://doi.org/10.1101/432781
448 GR Steinberg, D Carling (2019) AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 18:527–551
https://doi.org/10.1038/s41573-019-0019-2
449 ZE Stine, ZE Walton, BJ Altman, AL Hsieh, CV Dang (2015) MYC, metabolism, and cancer. Cancer Discov 5:1024–1039
https://doi.org/10.1158/2159-8290.CD-15-0507
450 AR Stram, RM Payne (2016) Post-translational modifications in mitochondria: protein signaling in the powerhouse. Cell Mol Life Sci 73:4063–4073
https://doi.org/10.1007/s00018-016-2280-4
451 CL Strelko, WY Lu, FJ Dufort, TN Seyfried, TC Chiles, JD Rabinowitz, MF Roberts (2011) Itaconic acid is a mammalian metabolite induced during macrophage activation. J Am Chem Soc 133:16386–16389
https://doi.org/10.1021/ja2070889
452 CH Su, YJ Shann, MT Hsu (2009) p53 chromatin epigenetic domain organization and p53 transcription. Mol Cell Biol 29:93–103
https://doi.org/10.1128/MCB.00704-08
453 M Sugimoto, H Sakagami, Y Yokote, H Onuma, M Kaneko, M Mori, Y Sakaguchi, T Soga, M Tomita (2011) Non-targeted metabolite profiling in activated macrophage secretion. Metabolomics 8:624–633
https://doi.org/10.1007/s11306-011-0353-9
454 T Sugimura, SM Birnbaum, M Winitz, JP Greenstein (1959) Quantitative nutritional studies with water-soluble, chemically defined diets. VII. Nitrogen balance in normal and tumor-bearing rats following forced feeding. Arch Biochem Biophys 81:439–447
https://doi.org/10.1016/0003-9861(59)90224-3
455 PL Sulkowski, CD Corso, ND Robinson, SE Scanlon, KR Purshouse, H Bai, Y Liu, RK Sundaram, DC Hegan, NR Fonset al. (2017) 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med 9
https://doi.org/10.1126/scitranslmed.aal2463
456 PL Sulkowski, RK Sundaram, S Oeck, CD Corso, Y Liu, S Noorbakhsh, M Niger, M Boeke, D Ueno, AN Kalathilet al. (2018) Krebscycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat Genet 50:1086–1092
https://doi.org/10.1038/s41588-018-0170-4
457 PL Sulkowski, S Oeck, J Dow, NG Economos, L Mirfakhraie, Y Liu, K Noronha, X Bao, J Li, BM Shuchet al. (2020) Oncometabolites suppress DNA repair by disrupting local chromatin signalling. Nature 582:586–591
https://doi.org/10.1038/s41586-020-2363-0
458 LC Sun, P Gao (2017) Reproducibility in cancer biology: small molecules remain on target for c-Myc. Elife 6
https://doi.org/10.7554/eLife.22915
459 LC Sun, LB Song, QF Wan, GW Wu, XH Li, YH Wang, J Wang, ZJ Liu, XY Zhong, XP Heet al. (2015) cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell Res 25:429–444
https://doi.org/10.1038/cr.2015.33
460 LC Sun, CX Suo, ST Li, HF Zhang, P Gao (2018) Metabolic reprogramming for cancer cells and their microenvironment: beyond the Warburg effect. Biochim Biophys Acta 1870:51–66
https://doi.org/10.1016/j.bbcan.2018.06.005
461 G Sutendra, A Kinnaird, P Dromparis, R Paulin, TH Stenson, A Haromy, K Hashimoto, N Zhang, E Flaim, ED Michelakis (2014) A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158:84–97
https://doi.org/10.1016/j.cell.2014.04.046
462 H Takahashi, JM McCaffery, RA Irizarry, JD Boeke (2006) Nucleocytosolic acetyl-coenzyme A synthetase is required for histone acetylation and global transcription. Mol Cell 23:207–217
https://doi.org/10.1016/j.molcel.2006.05.040
463 M Takawa, K Masuda, M Kunizaki, Y Daigo, K Takagi, Y Iwai, HS Cho, G Toyokawa, Y Yamane, K Maejimaet al. (2011) Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker. Cancer Sci 102:1298–1305
https://doi.org/10.1111/j.1349-7006.2011.01958.x
464 F Takusagawa, S Kamitori, GD Markham (1996) Structure and function of S-adenosylmethionine synthetase: crystal structures of S-adenosylmethionine synthetase with ADP, BrADP, and PPi at 28 angstroms resolution. Biochemistry 35:2586–2596
https://doi.org/10.1021/bi952604z
465 A Tallam, TM Perumal, PM Antony, C Jager, JV Fritz, L Vallar, R Balling, A del Sol, A Michelucci (2016) Gene regulatory network inference of immunoresponsive gene 1 (IRG1) identifies interferon regulatory factor 1 (IRF1) as its transcriptional regulator in mammalian macrophages. PLoS ONE 11
https://doi.org/10.1371/journal.pone.0149050
466 GM Tannahill, AM Curtis, J Adamik, EM Palsson-McDermott, AF McGettrick, G Goel, C Frezza, NJ Bernard, B Kelly, NH Foleyet al.(2013) Succinate is an inflammatory signal that induces IL-1 beta through HIF-1 alpha. Nature 496:238–242
https://doi.org/10.1038/nature11986
467 ME Taplin, A Hussain, ND Shore, B Bradley, P Trojer, C Lebedinsky, AM Senderowicz, ES Antonarakis (2018) A phase 1b/2 study of CPI-1205, a small molecule inhibitor of EZH2, combined with enzalutamide (E) or abiraterone/prednisone (A/P) in patients with metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol 36
https://doi.org/10.1200/JCO.2018.36.6_suppl.TPS398
468 C Thalin, S Lundstrom, C Seignez, M Daleskog, A Lundstrom, P Henriksson, T Helleday, M Phillipson, H Wallen, M Demers (2018). Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS ONE 13
https://doi.org/10.1371/journal.pone.0191231
469 CB Thompson (2019) Cancer cell metabolism: reexamining the regulation of anabolic growth in health and disease. Faseb J 33
https://doi.org/10.1096/fasebj.2019.33.1_supplement.226.1
470 S Tohme, HO Yazdani, AB Al-Khafaji, AP Chidi, P Loughran, K Mowen, YM Wang, RL Simmons, H Huang, A Tsung (2016) Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res 76:1367–1380
https://doi.org/10.1158/0008-5472.CAN-15-1591
471 MJ Topper, M Vaz, KB Chiappinelli, CE DeStefano Shields, N Niknafs, RC Yen, A Wenzel, J Hicks, M Ballew, M Stoneet al. (2017) Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 171(1284–1300):
https://doi.org/10.1016/j.cell.2017.10.022
472 J Trojan, A Brieger, J Raedle, M Esteller, S Zeuzem (2000) 5 ‘-CpG island methylation of the LKB1/STK11 promoter and allelic loss at chromosome 19p13.3 in sporadic colorectal cancer. Gut 47:272–276
https://doi.org/10.1136/gut.47.2.272
473 PA Tyrakis, A Palazon, D Macias, KL Lee, AT Phan, P Velica, J You, GS Chia, J Sim, A Doedenset al. (2016) S-2-hydroxyglutarate regulates CD8(+) T-lymphocyte fate. Nature 540:236–241
https://doi.org/10.1038/nature20165
474 MJ Uddin, Y Joe, SK Kim, SO Jeong, SW Ryter, HO Pae, HT Chung (2016) IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-infiammatory cytokine production. Cell Mol Immunol 13:170–179
https://doi.org/10.1038/cmi.2015.02
475 P Ulivi, L Mercatali, GL Casoni, E Scarpi, L Bucchi, R Silvestrini, S Sanna, M Monteverde, D Amadori, V Polettiet al. (2013) Multiple marker detection in peripheral blood for NSCLC diagnosis. PLoS ONE 8
https://doi.org/10.1371/journal.pone.0057401
476 MA van den Berg , P de Jong-Gubbels, CJ Kortland, JP van Dijken, JT Pronk, HY Steensma (1996) The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 271:28953–28959
https://doi.org/10.1074/jbc.271.46.28953
477 E Van Quickelberghe, A Martens, LJE Goeminne, L Clement, G van Loo, K Gevaert (2018) Identification of immune-responsive gene 1 (IRG1) as a target of A20. J Proteome Res 17:2182–2191
https://doi.org/10.1021/acs.jproteome.8b00139
478 S Vanharanta, W Shu, F Brenet, AA Hakimi, A Heguy, A Viale, VE Reuter, JJ Hsieh, JM Scandura, J Massague (2013) Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nat Med 19:50–56
https://doi.org/10.1038/nm.3029
479 S Varambally, SM Dhanasekaran, M Zhou, TR Barrette, C Kumar-Sinha, MG Sanda, D Ghosh, KJ Pienta, RGAB Sewalt, AP Otteet al. (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629
https://doi.org/10.1038/nature01075
480 S Varambally, Q Cao, RS Mani, S Shankar, XS Wang, B Ateeq, B Laxman, XH Cao, XJ Jing, K Ramnarayananet al. (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in Cancer. Science 322:1695–1699
https://doi.org/10.1126/science.1165395
481 P Vella, A Scelfo, S Jammula, F Chiacchiera, K Williams, A Cuomo, A Roberto, J Christensen, T Bonaldi, K Helinet al. (2013) Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol Cell 49:645–656
https://doi.org/10.1016/j.molcel.2012.12.019
482 M Ventura, F Mateo, J Serratosa, I Salaet, S Carujo, O Bachs, MJ Pujol (2010) Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation. Int J Biochem Cell Biol 42:1672–1680
https://doi.org/10.1016/j.biocel.2010.06.014
483 E Verdin (2015) NAD(+) in aging, metabolism, and neurodegeneration. Science 350:1208–1213
https://doi.org/10.1126/science.aac4854
484 KHG Verschueren, C Blanchet, J Felix, A Dansercoer, D De Vos, Y Bloch, J Van Beeumen, D Svergun, I Gutsche, SN Savvideset al. (2019) Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature 568:571–575
https://doi.org/10.1038/s41586-019-1095-5
485 G Vidali, LC Boffa, EM Bradbury, VG Allfrey (1978) Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. Proc Natl Acad Sci USA 75:2239–2243
https://doi.org/10.1073/pnas.75.5.2239
486 P Volkel, B Dupret, X Le Bourhis, PO Angrand (2015) Diverse involvement of EZH2 in cancer epigenetics. Am J Transl Res 7:175–193
487 L Vrba, DJ Junk, P Novak, BW Futscher (2008) p53 induces distinct epigenetic states at its direct target promoters. Bmc Genomics 9
https://doi.org/10.1186/1471-2164-9-486
488 N Wagener, S Macher-Goeppinger, M Pritsch, J Husing, K Hoppe-Seyler, P Schirmacher, J Pfitzenmaier, A Haferkamp, F Hoppe-Seyler, M Hohenfellner (2010) Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma. Bmc Cancer 10
https://doi.org/10.1186/1471-2407-10-524
489 YP Wang, QY Lei (2018) Metabolic recoding of epigenetics in cancer. Cancer Commun (Lond) 38:25
https://doi.org/10.1186/s40880-018-0302-3
490 Y Wang, J Wysocka, J Sayegh, YH Lee, JR Perlin, L Leonelli, LS Sonbuchner, CH McDonald, RG Cook, Y Douet al. (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283
https://doi.org/10.1126/science.1101400
491 J Wang, P Alexander, L Wu, R Hammer, O Cleaver, SL McKnight (2009) Dependence of mouse embryonic stem cells on threonine catabolism. Science 325:435–439
https://doi.org/10.1126/science.1173288
492 YJ Wang, PX Li, S Wang, J Hu, XA Chen, JH Wu, M Fisher, K Oshaben, N Zhao, Y Guet al. (2012) Anticancer peptidylarginine deiminase (PAD) inhibitors regulate the autophagyfiux and the mammalian target of rapamycin complex 1 activity. J Biol Chem 287:25941–25953
https://doi.org/10.1074/jbc.M112.375725
493 F Wang, J Travins, B DeLaBarre, V Penard-Lacronique, S Schalm, E Hansen, K Straley, A Kernytsky, W Liu, C Gliseret al. (2013) Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340:622–626
https://doi.org/10.1126/science.1234769
494 F Wang, K Wang, W Xu, SM Zhao, D Ye, Y Wang, Y Xu, LS Zhou, YW Chu, CP Zhanget al. (2017a) SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1 beta production and to prevent DSS-induced colitis in mice. Cell Rep 19:2331–2344
https://doi.org/10.1016/j.celrep.2017.05.065
495 Y Wang, YR Guo, K Liu, Z Yin, R Liu, Y Xia, L Tan, P Yang, JH Lee, XJ Liet al. (2017b) KAT2A coupled with the alpha-KGDH complex acts as a histone H3 succinyltransferase. Nature 552:273–277
https://doi.org/10.1038/nature25003
496 Y Wang, J Jin, MWH Chung, L Feng, HY Sun, Q Hao (2018a) Identification of the YEATS domain of GAS41 as a pH-dependent reader of histone succinylation. Proc Natl Acad Sci USA 115:2365–2370
https://doi.org/10.1073/pnas.1717664115
497 YG Wang, YR Guo, DM Xing, YJ Tao, ZM Lu (2018b) Supramolecular assembly of KAT2A with succinyl-CoA for histone succinylation. Cell Discov 4
https://doi.org/10.1038/s41421-018-0048-8
498 C Wang, C Zhang, X Li, J Shen, Y Xu, H Shi, X Mu, J Pan, T Zhao, M Liet al. (2019a) CPT1A-mediated succinylation of S100A10 increases human gastric cancer invasion. J Cell Mol Med 23:293–305
https://doi.org/10.1111/jcmm.13920
499 GX Wang, JG Meyer, WK Cai, S Softic, ME Li, E Verdin, C Newgard, B Schilling, CR Kahn (2019b) Regulation of UCP1 and mitochondrial metabolism in brown adipose tissue by reversible succinylation. Mol Cell 74:844–857
https://doi.org/10.1016/j.molcel.2019.03.021
500 PS Ward, J Patel, DR Wise, O Abdel-Wahab, BD Bennett, HA Coller, JR Cross, VR Fantin, CV Hedvat, AE Perlet al. (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234
https://doi.org/10.1016/j.ccr.2010.01.020
501 JA Watson, CJ Watson, A McCann, J Baugh (2010) Epigenetics, the epicenter of the hypoxic response. Epigenetics 5:293–296
https://doi.org/10.4161/epi.5.4.11684
502 BT Weinert, C Scholz, SA Wagner, V Iesmantavicius, D Su, JA Daniel, C Choudhary (2013) Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 4:842–851
https://doi.org/10.1016/j.celrep.2013.07.024
503 JM Weiss, LC Davies, M Karwan, L Ileva, MK Ozaki, RYS Cheng, LA Ridnour, CM Annunziata, DA Wink, DW McVicar (2018) Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J Clin Investig 128:3794–3805
https://doi.org/10.1172/JCI99169
504 KE Wellen, G Hatzivassiliou, UM Sachdeva, TV Bui, JR Cross, CB Thompson (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080
https://doi.org/10.1126/science.1164097
505 NC Williams, LAJ O’Neill (2018) A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation. Front Immunol 9:141
https://doi.org/10.3389/fimmu.2018.00141
506 NC Williams, LA O’Neill (2020) ACLY-matizing macrophages to histone modification during immunometabolic reprogramming. Trends Immunol 41:93–94
https://doi.org/10.1016/j.it.2019.12.009
507 SC Williams, MA Karajannis, L Chiriboga, JG Golfinos, A von Deimling, D Zagzag (2011) R132H-mutation of isocitrate dehydrogenase-1 is not sufficient for HIF-1 alpha upregulation in adult glioma. Acta Neuropathol 121:279–281
https://doi.org/10.1007/s00401-010-0790-y
508 DR Wise, PS Ward, JES Shay, JR Cross, JJ Gruber, UM Sachdeva, JM Platt, RG DeMatteo, MC Simon, CB Thompson (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 108:19611–19616
https://doi.org/10.1073/pnas.1117773108
509 EE Witalison, PR Thompson, LJ Hofseth (2015) Protein arginine deiminases and associated citrullination: physiological functions and diseases associated with dysregulation. Curr Drug Targets 16:700–710
https://doi.org/10.2174/1389450116666150202160954
510 CC Wong, Y Qian, J Yu(2017) Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 36:3359–3374
https://doi.org/10.1038/onc.2016.485
511 JG Wood, B Rogina, S Lavu, K Howitz, SL Helfand, M Tatar, D Sinclair (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689
https://doi.org/10.1038/nature02789
512 GW Wu, MQ Yuan, SQ Shen, XY Ma, JW Fang, LB Zhu, LC Sun, ZJ Liu, XP He, D Huanget al. (2017) Menin enhances c-Mycmediated transcription to promote cancer progression. Nat Commun 8
https://doi.org/10.1038/ncomms15278
513 S Xia, R Lin, L Jin, L Zhao, HB Kang, Y Pan, S Liu, G Qian, Z Qian, E Konstantakouet al.(2017) Prevention of dietary-fat-fueled ketogenesis attenuates BRAF V600E tumor growth. Cell Metab 25:358–373
https://doi.org/10.1016/j.cmet.2016.12.010
514 Y Xiangyun, N Xiaomin, G Linping, X Yunhua, L Ziming, Y Yongfeng, C Zhiwei, L Shun (2017) Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget 8:6984–6993
https://doi.org/10.18632/oncotarget.14346
515 HB Xiao, WX Cao, HR Yin, YZ Lin, SH Ye (2001) Infiuence of L-methionine-deprived total parenteral nutrition with 5-fiuorouracil on gastric cancer and host metabolism. World J Gastroenterol 7:698–701
https://doi.org/10.3748/wjg.v7.i5.698
516 A Xiao, H Li, D Shechter, SH Ahn, LA Fabrizio, H Erdjument-Bromage, S Ishibe-Murakami, B Wang, P Tempst, K Hofmannet al. (2009) WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457:57–62
https://doi.org/10.1038/nature07668
517 M Xiao, H Yang, W Xu, S Ma, H Lin, H Zhu, L Liu, Y Liu, C Yang, Y Xuet al. (2012) Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26:1326–1338
https://doi.org/10.1101/gad.191056.112
518 Z Xie, J Dai, L Dai, M Tan, Z Cheng, Y Wu, JD Boeke, Y Zhao (2012) Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics 11:100–107
https://doi.org/10.1074/mcp.M111.015875
519 ZY Xie, D Zhang, DJ Chung, ZY Tang, H Huang, LZ Dai, SK Qi, JY Li, G Colak, Y Chenet al. (2016) Metabolic regulation of gene expression by histone lysine beta-hydroxybutyrylation. Mol Cell 62:194–206
https://doi.org/10.1016/j.molcel.2016.03.036
520 Q Xu, Y Li, X Gao, K Kang, JG Williams, L Tong, J Liu, M Ji, LJ Deterding, X Tonget al.(2020) HNF4alpha regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer. Nat Commun 11:3978
https://doi.org/10.1038/s41467-020-17818-w
521 D Xu, F Shao, X Bian, Y Meng, T Liang, Z Lu (2021) The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metab 33:33–50
https://doi.org/10.1016/j.cmet.2020.12.015
522 T Yadav, JP Quivy, G Almouzni (2018) Chromatin plasticity: a versatile landscape that underlies cell fate and identity. Science 361:1332–1336
https://doi.org/10.1126/science.aat8950
523 H Yan, DW Parsons, GL Jin, R McLendon, BA Rasheed, WS Yuan, I Kos, I Batinic-Haberle, S Jones, GJ Rigginset al. (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773
https://doi.org/10.1056/NEJMoa0808710
524 J Yang (2019) Sweetly profiling the cysteinome. Nat Chem Biol 15:935–936
https://doi.org/10.1038/s41589-019-0348-9
525 X Yang, K Qian (2017) Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol 18:452–465
https://doi.org/10.1038/nrm.2017.22
526 Y Yang, AA Sauve (2016) NAD(+) metabolism: bioenergetics, signaling and manipulation for therapy. Biochim Biophys Acta 1864:1787–1800
https://doi.org/10.1016/j.bbapap.2016.06.014
527 M Yang, KH Vousden (2016) Serine and one-carbon metabolism in cancer. Nat Rev Cancer 16:650–662
https://doi.org/10.1038/nrc.2016.81
528 XY Yang, FX Zhang, JE Kudlow (2002) Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110:69–80
https://doi.org/10.1016/S0092-8674(02)00810-3
529 HY Yang, T Yang, JA Baur, E Perez, T Matsui, JJ Carmona, DW Lamming, NC Souza-Pinto, VA Bohr, A Rosenzweiget al. (2007) Nutrient-sensitive mitochondrial NAD(+) levels dictate cell survival. Cell 130:1095–1107
https://doi.org/10.1016/j.cell.2007.07.035
530 CS Yang, X Wang, G Lu, SC Picinich (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9:429–439
https://doi.org/10.1038/nrc2641
531 CF Yang, WY Sun, W Cui, XK Li, J Yao, XY Jia, CJ Li, HJ Wu, ZY Hu, XM Zou (2015) Procoagulant role of neutrophil extracellular traps in patients with gastric cancer. Int J Clin Exp Pathol 8:14075–14086
532 HJ Yao, PX Li, BJ Venters, S Zheng, PR Thompson, BF Pugh, YM Wang (2008) Histone Arg modifications and p53 regulate the expression of OKL38, a mediator of apoptosis. J Biol Chem 283:20060–20068
https://doi.org/10.1074/jbc.M802940200
533 D Ye, SH Ma, Y Xiong, KL Guan (2013) R-2-hydroxyglutarate as the key effector of IDH mutations promoting oncogenesis. Cancer Cell 23:274–276
https://doi.org/10.1016/j.ccr.2013.03.005
534 D Ye, KL Guan, Y Xiong (2018) Metabolism, activity, and targeting of D- and L-2-hydroxyglutarates. Trends Cancer 4:151–165
https://doi.org/10.1016/j.trecan.2017.12.005
535 K Yen, J Travins, F Wang, MD David, E Artin, K Straley, A Padyana, S Gross, B DeLaBarre, E Tobinet al. (2017) AG-221, a first-inclass therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov 7:478–493
https://doi.org/10.1158/2159-8290.CD-16-1034
536 CH Yi, H Pan, J Seebacher, IH Jang, SG Hyberts, GJ Heffron, MG Vander Heiden, R Yang, F Li, JW Locasaleet al. (2011) Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell 146:607–620
https://doi.org/10.1016/j.cell.2011.06.050
537 J Yoo, JL Medina-Franco (2011) Homology modeling, docking and structure-based pharmacophore of inhibitors of DNA methyltransferase. J Comput Aided Mol Des 25:555–567
https://doi.org/10.1007/s10822-011-9441-1
538 CB Yoo, S Jeong, G Egger, GN Liang, P Phiasivongsa, CL Tang, S Redkar, PA Jones (2007) Delivery of 5-aza-2 ‘-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res 67:6400–6408
https://doi.org/10.1158/0008-5472.CAN-07-0251
539 J Yu, J Yu, DR Rhodes, SA Tomlins, X Cao, G Chen, R Mehra, X Wang, D Ghosh, RB Shahet al. (2007) A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67:10657–10663
https://doi.org/10.1158/0008-5472.CAN-07-2498
540 XH Yu, DW Zhang, XL Zheng, CK Tang (2019) Itaconate: an emerging determinant of inflammation in activated macrophages. Immunol Cell Biol 97:134–141
541 H Yuan, Y Han, X Wang, N Li, Q Liu, Y Yin, H Wang, L Pan, L Li, K Songet al. (2020) SETD2 Restricts Prostate Cancer Metastasis by Integrating EZH2 and AMPK Signaling Pathways. Cancer Cell.
https://doi.org/10.1016/j.ccell.2020.05.022
542 MY Yun, J Wu, JL Workman, B Li (2011) Readers of histone modifications. Cell Res 21:564–578
https://doi.org/10.1038/cr.2011.42
543 AE Yuzhalin (2019) Citrullination in cancer. Cancer Res 79:1274–1284
https://doi.org/10.1158/0008-5472.CAN-18-2797
544 AE Yuzhalin, AN Gordon-Weeks, ML Tognoli, K Jones, B Markelc, R Konietzny, R Fischer, A Muth, E O’Neill, PR Thompsonet al. (2018) Colorectal cancer liver metastatic growth depends on PAD4-driven citrullination of the extracellular matrix. Nat Commun 9
https://doi.org/10.1038/s41467-018-07306-7
545 N Zaidi, JV Swinnen, K Smans (2012) ATP-citrate lyase: a key player in cancer metabolism. Cancer Res 72:3709–3714
https://doi.org/10.1158/0008-5472.CAN-11-4112
546 MM Zamierowski, C Wagner (1977) Identification of folate binding proteins in rat liver. J Biol Chem 252:933–938
https://doi.org/10.1016/S0021-9258(19)75187-4
547 JD Zeng, WKK Wu, HY Wang, XX Li (2019) Serine and one-carbon metabolism, a bridge that links mTOR signaling and DNA methylation in cancer. Pharmacol Res 149
https://doi.org/10.1016/j.phrs.2019.104352
548 ZH Zhang, MJ Tan, ZY Xie, LZ Dai, Y Chen, YM Zhao (2011) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7:58–63
https://doi.org/10.1038/nchembio.495
549 Q Zhang, X Liu, W Gao, P Li, J Hou, J Li, J Wong(2014) Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked beta-N-acetylglucosamine transferase (OGT). J Biol Chem 289:5986–5996
https://doi.org/10.1074/jbc.M113.524140
550 W Zhang, SL Zhang, X Hu, KY Tam (2015) Targeting tumor metabolism for cancer treatment: is pyruvate dehydrogenase kinases (PDKs) a viable anticancer target? Int J Biol Sci 11:1390–1400
https://doi.org/10.7150/ijbs.13325
551 D Zhang, ZY Tang, H Huang, GL Zhou, C Cui, YJ Weng, WC Liu, S Kim, S Lee, M Perez-Neutet al. (2019a) Metabolic regulation of gene expression by histone lactylation. Nature 574:575–580
https://doi.org/10.1038/s41586-019-1678-1
552 XR Zhang, RL Cao, JR Niu, SM Yang, HD Ma, S Zhao, HT Li (2019b) Molecular basis for hierarchical histone de-beta-hydroxybutmlation by SIRT3. Cell Discov 5
https://doi.org/10.1038/s41421-019-0103-0
553 HF Zhang, K Tang, JW Ma, L Zhou, JC Liu, LP Zeng, LY Zhu, PW Xu, J Chen, KK Weiet al. (2020) Ketogenesis-generated betahydroxybutyrate is an epigenetic regulator of CD8(+) T-cell memory development. Nat Cell Biol 22:18–25
https://doi.org/10.1038/s41556-019-0440-0
554 K Zhao, H Miao (2020) Targeting metabolic/epigenetic pathways: a potential strategy for cancer therapy in diffuse intrinsic pontine gliomas. Signal Transduct Target Ther 5:226
https://doi.org/10.1038/s41392-020-00344-y
555 G Zhao, ME Winkler (1996) A novel alpha-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J Bacteriol 178:232–239
https://doi.org/10.1128/jb.178.1.232-239.1996
556 S Zhao, Y Lin, W Xu, W Jiang, Z Zha, P Wang, W Yu, Z Li, L Gong, Y Penget al. (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324:261–265
https://doi.org/10.1126/science.1170944
557 S Zhao, W Xu, W Jiang , W Yu, Y Lin, T Zhang, J Yao, L Zhou, Y Zeng, H Liet al. (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004
https://doi.org/10.1126/science.1179689
558 S Zhao, A Torres, RA Henry, S Trefely, M Wallace, JV Lee, A Carrer, A Sengupta, SL Campbell, YM Kuoet al. (2016) ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell Rep 17:1037–1052
https://doi.org/10.1016/j.celrep.2016.09.069
559 D Zhao, YY Li, XZ Xiong, ZL Chen, HT Li (2017) YEATS domain-A histone acylation reader in health and disease. J Mol Biol 429:1994–2002
https://doi.org/10.1016/j.jmb.2017.03.010
560 S Zhao, X Zhang, H Li (2018) Beyond histone acetylation-writing and erasing histone acylations. Curr Opin Struct Biol 53:169–177
https://doi.org/10.1016/j.sbi.2018.10.001
561 S Zhao, C Jang, J Liu, K Uehara, M Gilbert, L Izzo, XF Zeng, S Trefely, S Fernandez, A Carreret al. (2020) Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 579:586–591
https://doi.org/10.1038/s41586-020-2101-7
562 QF Zheng, I Maksimovic, A Upad, Y David (2020) Non-enzymatic covalent modifications: a new link between metabolism and epigenetics. Protein Cell 11:401–416
https://doi.org/10.1007/s13238-020-00722-w
563 LS Zhou, F Wang, RQ Sun, XF Chen, ML Zhang, Q Xu, Y Wang, SW Wang, Y Xiong, KL Guanet al. (2016) SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Rep 17:811–822
https://doi.org/10.15252/embr.201541643
564 A Zippo, A De Robertis, R Serafini, S Oliviero (2007) PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 9:932
https://doi.org/10.1038/ncb1618
565 J Zuber, JW Shi, E Wang, AR Rappaport, H Herrmann, EA Sison, D Magoon, J Qi, K Blatt, M Wunderlichet al. (2011) RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478:524
https://doi.org/10.1038/nature10334
[1] PAC-0877-21025-GP_suppl_1 Download
[2] PAC-0877-21025-GP_suppl_2 Download
[1] Pranavi Koppula, Li Zhuang, Boyi Gan. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620.
[2] Yu-Kun Xia, Yi-Rong Zeng, Meng-Li Zhang, Peng Liu, Fang Liu, Hao Zhang, Chen-Xi He, Yi-Ping Sun, Jin-Ye Zhang, Cheng Zhang, Lei Song, Chen Ding, Yu-Jie Tang, Zhen Yang, Chen Yang, Pu Wang, Kun-Liang Guan, Yue Xiong, Dan Ye. Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network[J]. Protein Cell, 2021, 12(7): 557-577.
[3] Yuliang Feng, Xingguo Liu, Siim Pauklin. 3D chromatin architecture and epigenetic regulation in cancer stem cells[J]. Protein Cell, 2021, 12(6): 440-454.
[4] Mona Teng, Stanley Zhou, Changmeng Cai, Mathieu Lupien, Housheng Hansen He. Pioneer of prostate cancer: past, present and the future of FOXA1[J]. Protein Cell, 2021, 12(1): 29-38.
[5] Qingfei Zheng, Igor Maksimovic, Akhil Upad, Yael David. Non-enzymatic covalent modifications: a new link between metabolism and epigenetics[J]. Protein Cell, 2020, 11(6): 401-416.
[6] Lin-Yong Zhao, Jinghui Song, Yibin Liu, Chun-Xiao Song, Chengqi Yi. Mapping the epigenetic modifications of DNA and RNA[J]. Protein Cell, 2020, 11(11): 792-808.
[7] Lili Yu, Kai-yuan Ji, Jian Zhang, Yanxia Xu, Yue Ying, Taoyi Mai, Shuxiang Xu, Qian-bing Zhang, Kai-tai Yao, Yang Xu. Core pluripotency factors promote glycolysis of human embryonic stem cells by activating GLUT1 enhancer[J]. Protein Cell, 2019, 10(9): 668-680.
[8] Youqin Xu, Kaiyuan Ji, Meng Wu, Bingtao Hao, Kai-tai Yao, Yang Xu. A miRNA-HERC4 pathway promotes breast tumorigenesis by inactivating tumor suppressor LATS1[J]. Protein Cell, 2019, 10(8): 595-605.
[9] Xiangxian Zhang, Li Liu, Xia Yuan, Yuquan Wei, Xiawei Wei. JMJD3 in the regulation of human diseases[J]. Protein Cell, 2019, 10(12): 864-882.
[10] Donglu Wu, Yong Cai, Jingji Jin. Potential coordination role between O-GlcNAcylation and epigenetics[J]. Protein Cell, 2017, 8(10): 713-723.
[11] Haley Vaseghi, Jiandong Liu, Li Qian. Molecular barriers to direct cardiac reprogramming[J]. Protein Cell, 2017, 8(10): 724-734.
[12] Kegan Zhu,Lei Liu,Junliang Zhang,Yanbo Wang,Hongwei Liang,Gentao Fan,Zhenhuan Jiang,Chen-Yu Zhang,Xi Chen,Guangxin Zhou. MiR-29b suppresses the proliferation and migration of osteosarcoma cells by targeting CDK6[J]. Protein Cell, 2016, 7(6): 434-444.
[13] Haiyang Zhang,Jingjing Duan,Yanjun Qu,Ting Deng,Rui Liu,Le Zhang,Ming Bai,Jialu Li,Tao Ning,Shaohua Ge,Xia Wang,Zhenzhen Wang,Qian Fan,Hongli Li,Guoguang Ying,Dingzhi Huang,Yi Ba. Onco-miR-24 regulates cell growth and apoptosis by targeting BCL2L11 in gastric cancer[J]. Protein Cell, 2016, 7(2): 141-151.
[14] Caiguo Zhang,Fan Zhang. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities[J]. Protein Cell, 2015, 6(2): 88-100.
[15] Juan Ma,Huamin Han,Li Ma,Changzhen Liu,Xin Xue,Pan Ma,Xiaomei Li,Hua Tao. The immunostimulatory effects of retinoblastoma cell supernatant on dendritic cells[J]. Protein Cell, 2014, 5(4): 307-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed