|
|
|
Metabolic reprogramming and epigenetic modifications on the path to cancer |
Linchong Sun1( ), Huafeng Zhang2,3( ), Ping Gao1,4,5( ) |
1. Guangzhou First People’s Hospital, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou 510006, China 2. The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230027, China 3. CAS Centre for Excellence in Cell and Molecular Biology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China 4. School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China 5. Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China |
|
|
|
|
Abstract Metabolic rewiring and epigenetic remodeling, which are closely linked and reciprocally regulate each other, are among the well-known cancer hallmarks. Recent evidence suggests that many metabolites serve as substrates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regionalization of enzymes or metabolites. Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts, playing important roles in tumor progression. In this review, we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations, in particular the acetylation and methylation of histone proteins and DNA. We also discuss other eminent metabolic modifications such as, succinylation, hydroxybutyrylation, and lactylation, and update the current advances in metabolismand epigenetic modification-based therapeutic prospects in cancer.
|
| Keywords
metabolic reprogramming
epigenetics
tumorigenesis
tumor immunity
cancer therapy
|
|
Corresponding Author(s):
Linchong Sun,Huafeng Zhang,Ping Gao
|
|
Online First Date: 30 July 2021
Issue Date: 22 December 2022
|
|
| 1 |
SM Abmayr, JL Workman (2019) Histone lysine de-beta-hydroxybutyrylation by SIRT3. Cell Res 29:694–695
https://doi.org/10.1038/s41422-019-0211-2
|
| 2 |
RR Adams, H Maiato, WC Earnshaw, M Carmena (2001) Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 153:865–879
https://doi.org/10.1083/jcb.153.4.865
|
| 3 |
C Alarcon, B Wicksteed, M Prentki, BE Corkey, CJ Rhodes (2002) Succinate is a preferential metabolic stimulus-coupling signal for glucose-induced proinsulin biosynthesis translation. Diabetes 51:2496–2504
https://doi.org/10.2337/diabetes.51.8.2496
|
| 4 |
J Albrengues, MA Shields, D Ng, CG Park, A Ambrico, ME Poindexter, P Upadhyay, DL Uyeminami, A Pommier, V Kuttneret al. (2018) Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361:eaao4227
https://doi.org/10.1126/science.aao4227
|
| 5 |
M Alleyn, M Breitzig, R Lockey, N Kolliputi (2018) The dawn of succinylation: a posttranslational modification. Am J Physiol Cell Physiol 314:C228–C232
https://doi.org/10.1152/ajpcell.00148.2017
|
| 6 |
DF Allison, J Wamsley, M Kumar, D Li, LG Gray, GW Hart, DR Jones, MW Mayo (2012) Modification of RelA by O-linked N-acetylglucosamine links glucose metabolism to NF-kappa B acetylation and transcription. Proc Natl Acad Sci USA 109:16888–16893
https://doi.org/10.1073/pnas.1208468109
|
| 7 |
BJ Altman, ZE Stine, CV Dang (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16:619–634
https://doi.org/10.1038/nrc.2016.71
|
| 8 |
F Alvarez-Nunez, E Bussaglia, D Mauricio, J Ybarra, M Vilar, E Lerma, A de Leiva, X Matias-Guju , TNS Grp (2006) PTEN promoter methylation in sporadic thyroid carcinomas. Thyroid 16:17–23
https://doi.org/10.1089/thy.2006.16.17
|
| 9 |
RJ Amato (2007) Inhibition of DNA methylation by antisense oligonucleotide MG98 as cancer therapy. Clin Genitourinary Cancer 5:422–426
https://doi.org/10.3816/CGC.2007.n.029
|
| 10 |
R Anand, R Marmorstein (2007) Structure and mechanism of lysinespecific demethylase enzymes. J Biol Chem 282:35425–35429
https://doi.org/10.1074/jbc.R700027200
|
| 11 |
V Anest, JL Hanson, PC Cogswell, KA Steinbrecher, BD Strahl, AS Baldwin (2003) A nucleosomal function for IkappaB kinasealpha in NF-kappaB-dependent gene expression. Nature 423:659–663
https://doi.org/10.1038/nature01648
|
| 12 |
PS Ariyannur, JR Moffett, CN Madhavarao, P Arun, N Vishnu, DM Jacobowitz, WC Hallows , JM Denu, AMA Namboodiri (2010) Nuclear-cytoplasmic localization of acetyl coenzyme A synthetase-1 in the rat brain. J Comp Neurol 518:2952–2977
https://doi.org/10.1002/cne.22373
|
| 13 |
H Asaga, M Yamada, T Senshu (1998) Selective deimination of vimentin in calcium ionophore-induced apoptosis of mouse peritoneal macrophages. Biochem Biophys Res Commun 243:641–646
https://doi.org/10.1006/bbrc.1998.8148
|
| 14 |
D Astuti, F Latif, A Dallol, PLM Dahia, F Douglas, E George, F Skoldberg, ES Husebye, C Eng, ER Maher (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69:49–54
https://doi.org/10.1086/321282
|
| 15 |
JE Audia, RM Campbell (2016) Histone Modifications and Cancer. Cold Spring Harb Perspect Biol 8:
https://doi.org/10.1101/cshperspect.a019521
|
| 16 |
MA Badgley, DM Kremer, HC Maurer, KE DelGiorno, HJ Lee, V Purohit, IR Sagalovskiy, A Ma, J Kapilian, CEM Firlet al. (2020) Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368:85–89
https://doi.org/10.1126/science.aaw9872
|
| 17 |
CM Ballantyne, MH Davidson, DE Macdougall, HE Bays, LA Dicarlo, NL Rosenberg, J Margulies, RS Newton (2013) Efficacy and safety of a novel dual modulator of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase in patients with hypercholesterolemia: results of a multicenter, randomized, double-blind, placebo-controlled, parallel-group trial. J Am Coll Cardiol 62:1154–1162
https://doi.org/10.1016/j.jacc.2013.05.050
|
| 18 |
M Bambouskova, L Gorvel, V Lampropoulou, A Sergushichev, E Loginicheva, K Johnson, D Korenfeld, ME Mathyer, H Kim, LH Huanget al.(2018) Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 infiammatory axis. Nature 556:501–504
https://doi.org/10.1038/s41586-018-0052-z
|
| 19 |
HS Bandukwala, J Gagnon, S Togher, JA Greenbaum, ED Lamperti, NJ Parr, AM Molesworth, N Smithers, K Lee, J Witheringtonet al. (2012) Selective inhibition of CD4+ T-cell cytokine production and autoimmunity by BET protein and c-Myc inhibitors. Proc Natl Acad Sci USA 109:14532–14537
https://doi.org/10.1073/pnas.1212264109
|
| 20 |
AJ Bannister, T Kouzarides (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395
https://doi.org/10.1038/cr.2011.22
|
| 21 |
F Barlesi, G Giaccone, MI Gallegos-Ruiz , A Loundou, SW Span, P Lefesvre, FA Kruyt, JA Rodriguez (2007) Global histone modifications predict prognosis of resected non small-cell lung cancer. J Clin Oncol 25:4358–4364
https://doi.org/10.1200/JCO.2007.11.2599
|
| 22 |
WY Yu, EJ Chory, AK Wernimont, W Tempel, A Scopton, A Federation, JJ Marineau, J Qi, , D Barsyte-Lovejoy, JN Yiet al. (2012) Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat Commun 3
https://doi.org/10.1038/ncomms2304
|
| 23 |
J Basappa, M Citir, Q Zhang, HY Wang, X Liu, O Melnikov, H Yahya, F Stein, R Muller, A Traynor-Kaplanet al. (2020) ACLY is the novel signaling target of PIP2/PIP3 and Lyn in acute myeloid leukemia. Heliyon 6:
https://doi.org/10.1016/j.heliyon.2020.e03910
|
| 24 |
JP Bayley, HPM Kunst, A Cascon, ML Sampietro, J Gaal, E Korpershoek, A Hinojar-Gutierrez , HJLM Timmers, LH Hoefsloot, MA Hermsenet al. (2010) SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 11:366–372
https://doi.org/10.1016/S1470-2045(10)70007-3
|
| 25 |
BE Baysal, RE Ferrell, JE Willett-Brozick, EC Lawrence, D Myssiorek, A Bosch, A van der Mey, PEM Taschner, WS Rubinstein, EN Myerset al. (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851
https://doi.org/10.1126/science.287.5454.848
|
| 26 |
J Becker-Kettern, N Paczia, JF Conrotte, DP Kay, C Guignard, PP Jung, CL Linster (2016) Saccharomyces cerevisiae forms d-2-hydroxyglutarate and couples its degradation to d-lactate formation via a cytosolic transhydrogenase. J Biol Chem 291:6036–6058
https://doi.org/10.1074/jbc.M115.704494
|
| 27 |
S Bender, Y Tang, AM Lindroth, V Hovestadt, DT Jones, M Kool, M Zapatka, PA Northcott, D Sturm, W Wanget al. (2013) Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 24:660–672
https://doi.org/10.1016/j.ccr.2013.10.006
|
| 28 |
S Berger-Achituv, V Brinkmann, U Abu Abed, LI Kuhn, J Ben-Ezra, R Elhasid, A Zychlinsky (2013) A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol 4
https://doi.org/10.3389/fimmu.2013.00048
|
| 29 |
Y Bergman, H Cedar (2013) DNA methylation dynamics in health and disease. Nat Struct Mol Biol 20:274–281
https://doi.org/10.1038/nsmb.2518
|
| 30 |
SS Bharathi, YX Zhang, AW Mohsen, R Uppala, M Balasubramani, E Schreiber, G Uechi, ME Beck, MJ Rardin, J Vockleyet al. (2013) Sirtuin 3 (SIRT3) protein regulates long-chain Acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. J Biol Chem 288:33837–33847
https://doi.org/10.1074/jbc.M113.510354
|
| 31 |
Y Bian, W Li, DM Kremer, P Sajjakulnukit, S Li, J Crespo, ZC Nwosu, L Zhang, A Czerwonka, A Pawlowskaet al. (2020) Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature
https://doi.org/10.1038/s41586-020-2682-1
|
| 32 |
T Bianco-Miotto, K Chiam, G Buchanan, S Jindal, TK Day, M Thomas, MA Pickering, MA O’Loughlin, NK Ryan, WA Raymondet al. (2010) Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol Biomarkers Prev 19:2611–2622
https://doi.org/10.1158/1055-9965.EPI-10-0555
|
| 33 |
AF Branco, A Ferreira, RF Simoes, S Magalhaes-Novais, C Zehowski, E Cope, AM Silva, D Pereira, VA Sardao, T Cunha-Oliveira (2016) Ketogenic diets: from cancer to mitochondrial diseases and beyond. Eur J Clin Invest 46:285–298
https://doi.org/10.1111/eci.12591
|
| 34 |
F Breillout, F Hadida, P Echinard-Garin , V Lascaux, MF Poupon (1987) Decreased rat rhabdomyosarcoma pulmonary metastases in response to a low methionine diet. Anticancer Res 7:861–867
|
| 35 |
B Brueckner, RG Boy, P Siedlecki, T Musch, HC Kliem, P Zielenkiewicz, S Suhai, M Wiessler, F Lyko (2005) Epigenetic reactivation of tumor suppressor genes by a novel smallmolecule inhibitor of human DNA methyltransferases. Cancer Res 65:6305–6311
https://doi.org/10.1158/0008-5472.CAN-04-2957
|
| 36 |
V Bulusu, S Tumanov, E Michalopoulou, NJ van den Broek, G MacKay, C Nixon, S Dhayade, ZT Schug, JV Voorde, K Blythet al. (2017) Acetate recapturing by nuclear acetyl-CoA synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation. Cell Rep 18:647–658
https://doi.org/10.1016/j.celrep.2016.12.055
|
| 37 |
D Bungard, BJ Fuerth, PY Zeng, B Faubert, NL Maas, B Viollet, D Carling, CB Thompson, RG Jones, SL Berger (2010) Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329:1201–1205
https://doi.org/10.1126/science.1191241
|
| 38 |
F Caballero, A Fernandez, N Matias, L Martinez, R Fucho, M Elena, J Caballeria, A Morales, JC Fernandez-Checa, C Garcia-Ruiz (2010) Specific contribution of methionine and choline in nutritional nonalcoholic steatohepatitis: impact on mitochondrial S-adenosyl-L-methionine and glutathione. J Biol Chem 285:18528–18536
https://doi.org/10.1074/jbc.M109.099333
|
| 39 |
L Cai, BM Sutter, B Li, BP Tu (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42:426–437
https://doi.org/10.1016/j.molcel.2011.05.004
|
| 40 |
RA Cairns, TW Mak (2013) Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities. Cancer Discov 3:730–741
https://doi.org/10.1158/2159-8290.CD-13-0083
|
| 41 |
RA Cairns, TW Mak (2017) S-2HG is an immunometabolite that shapes the T-cell response. Cell Death Differ 24:195–196
https://doi.org/10.1038/cdd.2016.149
|
| 42 |
EP Candido, R Reeves, JR Davie (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14:105–113
https://doi.org/10.1016/0092-8674(78)90305-7
|
| 43 |
R Cao, L Wang, H Wang, L Xia, H Erdjument-Bromage, P Tempst, RS Jones, Y Zhang (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298:1039–1043
https://doi.org/10.1126/science.1076997
|
| 44 |
AV Caprariello, JA Rogers, ML Morgan, V Hoghooghi, JR Plemel, A Koebel, S Tsutsui, JF Dunn, LP Kotra, SS Ousmanet al. (2018) Biochemically altered myelin triggers autoimmune demyelination. Proc Natl Acad Sci USA 115:5528–5533
https://doi.org/10.1073/pnas.1721115115
|
| 45 |
BW Carey, LWS Finley, JR Cross, CD Allis, CB Thompson (2015) Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518:413–416
https://doi.org/10.1038/nature13981
|
| 46 |
A Carrer, S Trefely, S Zhao, SL Campbell, RJ Norgard, KC Schultz, S Sidoli, JLD Parris, HC Affronti, S Sivanandet al. (2019) Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov 9:416–435
https://doi.org/10.1158/2159-8290.CD-18-0567
|
| 47 |
C Carrico, JG Meyer, W He, BW Gibson, E Verdin (2018) The mitochondrial acylome emerges: proteomics, regulation by sirtuins, and metabolic and disease implications. Cell Metab 27:497–512
https://doi.org/10.1016/j.cmet.2018.01.016
|
| 48 |
A Carrillo-Vico, MD Leech, SM Anderton (2010) Contribution of myelin autoantigen citrullination to T cell autoaggression in the central nervous system. J Immunol 184:2839–2846
https://doi.org/10.4049/jimmunol.0903639
|
| 49 |
E Ceccacci, S Minucci (2016) Inhibition of histone deacetylases in cancer therapy: lessons from leukaemia. Br J Cancer 114:605–611
https://doi.org/10.1038/bjc.2016.36
|
| 50 |
KM Chan, D Fang, H Gan, R Hashizume, C Yu, M Schroeder, N Gupta, S Mueller, CD James, R Jenkinset al. (2013) The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. Genes Dev 27:985–990
https://doi.org/10.1101/gad.217778.113
|
| 51 |
XT Chang, JX Han, L Pang, Y Zhao, Y Yang, ZL Shen (2009) Increased PADI4 expression in blood and tissues of patients with malignant tumors. BMC Cancer 9
https://doi.org/10.1186/1471-2407-9-40
|
| 52 |
XT Chang, XL Hou, JH Pan, KH Fang, L Wang, JX Han (2011) Investigating the pathogenic role of PADI4 in oesophageal cancer. Int J Biol Sci 7:769–781
https://doi.org/10.7150/ijbs.7.769
|
| 53 |
LL Chen, Y Xiong (2020) Tumour metabolites hinder DNA repair. Nature 582:492–494
https://doi.org/10.1038/d41586-020-01569-1
|
| 54 |
L Chen, AJ Deshpande, D Banka, KM Bernt, S Dias, C Buske, EJ Olhava, SR Daigle, VM Richon, RM Pollocket al. (2013a) Abrogation of MLL-AF10 and CALM-AF10-mediated transformation through genetic inactivation or pharmacological inhibition of the H3K79 methyltransferase Dot1l. Leukemia 27:813–822
https://doi.org/10.1038/leu.2012.327
|
| 55 |
Q Chen, Y Chen, C Bian, R Fujiki, X Yu (2013b) TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493:561–564
https://doi.org/10.1038/nature11742
|
| 56 |
L Chen, ZG Miao, XS Xu (2017) beta-hydroxybutyrate alleviates depressive behaviors in mice possibly by increasing the histone3-lysine9-beta-hydroxybutyrylation. Biochem Biophys Res Commun 490:117–122
https://doi.org/10.1016/j.bbrc.2017.05.184
|
| 57 |
J Chen, I Guccini, D Di Mitri, D Brina, A Revandkar, M Sarti, E Pasquini, A Alajati, S Pinton, M Losaet al. (2018a) Compartmentalized activities of the pyruvate dehydrogenase complex sustain lipogenesis in prostate cancer. Nat Genet 50:219–228
https://doi.org/10.1038/s41588-017-0026-3
|
| 58 |
XF Chen, MX Tian, RQ Sun, ML Zhang, LS Zhou, L Jin, LL Chen, WJ Zhou, KL Duan, YJ Chenet al. (2018b) SIRT5 inhibits peroxisomal ACOX1 to prevent oxidative damage and is downregulated in liver cancer. Embo Rep 19.
https://doi.org/10.15252/embr.201745124
|
| 59 |
Y Cheng, C He, MN Wang, XL Ma, F Mo, SY Yang, JH Han, XW Wei (2019) Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduction Targeted Ther 4
https://doi.org/10.1038/s41392-019-0095-0
|
| 60 |
YP Cheon, XP Xu, MK Bagchi, IC Bagchi (2003) Immune-responsive gene 1 is a novel target of progesterone receptor and plays a critical role during implantation in the mouse. Endocrinology 144:5623–5630
https://doi.org/10.1210/en.2003-0585
|
| 61 |
DA Chisolm, AS Weinmann (2018) Connections between metabolism and epigenetics in programming cellular differentiation. Annu Rev Immunol 36(36):221–246
https://doi.org/10.1146/annurev-immunol-042617-053127
|
| 62 |
HS Choi, BY Choi, YY Cho, H Mizuno, BS Kang, AM Bode, ZG Dong (2005) Phosphorylation of histone H3 at serine 10 is indispensable for neoplastic cell transformation. Cancer Res 65:5818–5827
https://doi.org/10.1158/0008-5472.CAN-05-0197
|
| 63 |
C Choudhary, C Kumar, F Gnad, ML Nielsen, M Rehman, TC Walther, JV Olsen, M Mann (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840
https://doi.org/10.1126/science.1175371
|
| 64 |
C Choudhary, BT Weinert, Y Nishida, E Verdin, M Mann (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15:536–550
https://doi.org/10.1038/nrm3841
|
| 65 |
R Chowdhury, KK Yeoh, YM Tian, L Hillringhaus, EA Bagg, NR Rose, IKH Leung, XS Li, ECY Woon, M Yanget al. (2011) The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12:463–469
https://doi.org/10.1038/embor.2011.43
|
| 66 |
JK Christman (2002) 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495
https://doi.org/10.1038/sj.onc.1205699
|
| 67 |
MA Christophorou, G Castelo-Branco, RP Halley-Stott, CS Oliveira, R Loos, A Radzisheuskaya, KA Mowen, P Bertone, JCR Silva, M Zernicka-Goetzet al. (2014) Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 507:104–108
https://doi.org/10.1038/nature12942
|
| 68 |
CS Chu, PW Lo, YH Yeh, PH Hsu, SH Peng, YC Teng, ML Kang, CH Wong, LJ Juan (2014) O-GlcNAcylation regulates EZH2 protein stability and function. Proc Natl Acad Sci USA 111:1355–1360
https://doi.org/10.1073/pnas.1323226111
|
| 69 |
QS Chu, R Sangha, J Spratlin, LJ Vos, JR Mackey, AJ McEwan, P Venner, ED Michelakis (2015) A phase I open-labeled, singlearm, dose-escalation, study of dichloroacetate (DCA) in patients with advanced solid tumors. Invest New Drugs 33:603–610
https://doi.org/10.1007/s10637-015-0221-y
|
| 70 |
JC Chuang, CB Yoo, JM Kwan, TWH Li, GN Liang, AS Yang, PA Jones (2005) Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2 ‘-deoxycytidine. Mol Cancer Ther 4:1515–1520
https://doi.org/10.1158/1535-7163.MCT-05-0172
|
| 71 |
JC Chuang, SL Warner, D Vollmer, H Vankayalapati, S Redkar, DJ Bearss, XN Qiu, CB Yoo, PA Jones (2010) S110, a 5-Aza-2’- deoxycytidine-containing dinucleotide, is an effective DNA methylation inhibitor in vivo and can reduce tumor growth. Mol Cancer Ther 9:1443–1450
https://doi.org/10.1158/1535-7163.MCT-09-1048
|
| 72 |
C Chung, SR Sweha, D Pratt, B Tamrazi, P Panwalkar, A Banda, J Bayliss, D Hawes, F Yang, HJ Leeet al. (2020) Integrated metabolic and epigenomic reprograming by H3K27M mutations in diffuse intrinsic pontine gliomas. Cancer Cell 38(334–349):
https://doi.org/10.1016/j.ccell.2020.07.008
|
| 73 |
M Chypre, N Zaidi, K Smans(2012) ATP-citrate lyase: a mini-review. Biochem Biophys Res Commun 422:1–4
https://doi.org/10.1016/j.bbrc.2012.04.144
|
| 74 |
I Cohen, E Poreba, K Kamieniarz, R Schneider (2011) Histone modifiers in cancer: friends or foes? Genes Cancer 2:631–647
https://doi.org/10.1177/1947601911417176
|
| 75 |
SA Comerford, Z Huang, X Du, Y Wang, L Cai, AK Witkiewicz, H Walters, MN Tantawy, A Fu, HC Manninget al. (2014) Acetate dependence of tumors. Cell 159:1591–1602
https://doi.org/10.1016/j.cell.2014.11.020
|
| 76 |
PJ Cook, BG Ju, F Telese, X Wang, CK Glass, MG Rosenfeld (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458:591–596
https://doi.org/10.1038/nature07849
|
| 77 |
T Cordes, M Wallace, A Michelucci, AS Divakaruni, SC Sapcariu, C Sousa, H Koseki, P Cabrales, AN Murphy, K Hilleret al.(2016) Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J Biol Chem 291:14274–14284
https://doi.org/10.1074/jbc.M115.685792
|
| 78 |
AJ Covarrubias, HI Aksoylar, JJ Yu, NW Snyder, AJ Worth, SS Iyer, JW Wang, I Ben-Sahra, V Byles, T Polynne-Stapornkulet al. (2016) Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. Elife 5
https://doi.org/10.7554/eLife.11612
|
| 79 |
ML Cravo, AG Pinto, P Chaves, JA Cruz, P Lage, C Nobre Leitao, F Costa Mira (1998) Effect of folate supplementation on DNA methylation of rectal mucosa in patients with colonic adenomas: correlation with nutrient intake. Clin Nutr 17:45–49
https://doi.org/10.1016/S0261-5614(98)80304-X
|
| 80 |
KS Crider, TP Yang, RJ Berry, LB Bailey (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr 3:21–38
https://doi.org/10.3945/an.111.000992
|
| 81 |
ZW Dai, SJ Mentch, X Gao, SN Nichenametla, JW Locasale (2018) Methionine metabolism infiuences genomic architecture and gene expression through H3K4me3 peak width. Nat Commun 9
https://doi.org/10.1038/s41467-018-04426-y
|
| 82 |
ZW Dai, V Ramesh, JW Locasale (2020) The evolving metabolic landscape of chromatin biology and epigenetics. Nat Rev Genet 21:737–753
https://doi.org/10.1038/s41576-020-0270-8
|
| 83 |
SR Daigle, EJ Olhava, CA Therkelsen, CR Majer, CJ Sneeringer, J Song, LD Johnston, MP Scott, JJ Smith, YH Xiaoet al. (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20:53–65
https://doi.org/10.1016/j.ccr.2011.06.009
|
| 84 |
SR Daigle, EJ Olhava, CA Therkelsen, A Basavapathruni, L Jin, PA Boriack-Sjodin , CJ Allain, CR Klaus, A Raimondi, MP Scottet al. (2013) Potent inhibition of DOT1L as treatment of MLLfusion leukemia. Blood 122:1017–1025
https://doi.org/10.1182/blood-2013-04-497644
|
| 85 |
CV Dang (2012) MYC on the path to cancer. Cell 149:22–35
https://doi.org/10.1016/j.cell.2012.03.003
|
| 86 |
L Dang, DW White, S Gross, BD Bennett, MA Bittinger, EM Driggers, VR Fantin, HG Jang, S Jin, MC Keenanet al. (2009) Cancerassociated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–U752
https://doi.org/10.1038/nature08617
|
| 87 |
BP Daniels, SB Kofman, JR Smith, GT Norris, AG Snyder, JP Kolb, X Gao, JW Locasale, J Martinez, M Galeet al. (2019) The nucleotide sensor ZBP1 and kinase RIPK3 induce the enzyme IRG1 to promote an antiviral metabolic state in neurons. Immunity 50:64–76
https://doi.org/10.1016/j.immuni.2018.11.017
|
| 88 |
E Darrah, F Andrade (2018) Rheumatoid arthritis and citrullination. Curr Opin Rheumatol 30:72–78
https://doi.org/10.1097/BOR.0000000000000452
|
| 89 |
J Datta, K Ghoshal, WA Denny, SA Gamage, DG Brooke, P Phiasivongsa, S Redkar, ST Jacob (2009) A new class of quinoline-based DNA hypomethylating agents reactivates tumor suppressor genes by blocking DNA methyltransferase 1 activity and inducing its degradation. Cancer Res 69:4277–4285
https://doi.org/10.1158/0008-5472.CAN-08-3669
|
| 90 |
CC Daw, K Ramachandran, BT Enslow, S Maity, B Bursic, MJ Novello, CS Rubannelsonkumar, AH Mashal, J Ravichandran, TM Bakewellet al. (2020) Lactate elicits ER-mitochondrial Mg(2+) dynamics to integrate cellular metabolism. Cell.
https://doi.org/10.1016/j.cell.2020.08.049
|
| 91 |
MA Dawson, AJ Bannister, B Gottgens, SD Foster, T Bartke, AR Green, T Kouzarides (2009) JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461:819–822
https://doi.org/10.1038/nature08448
|
| 92 |
MA Dawson, RK Prinjha, A Dittmann, G Giotopoulos, M Bantscheff, WI Chan, SC Robson, CW Chung, C Hopf, MM Savitskiet al. (2011) Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478:529–533
https://doi.org/10.1038/nature10509
|
| 93 |
VC de Boer, SM Houten (2014) A mitochondrial expatriate: nuclear pyruvate dehydrogenase. Cell 158:9–10
https://doi.org/10.1016/j.cell.2014.06.018
|
| 94 |
AJM De Ruijter, AH Van Gennip, HN Caron, S Kemp, ABP Van Kuilenburg (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749
https://doi.org/10.1042/bj20021321
|
| 95 |
C De Virgilio, N Burckert, G Barth, JM Neuhaus, T Boller, A Wiemken (1992) Cloning and disruption of a gene required for growth on acetate but not on ethanol: the acetyl-coenzyme A synthetase gene of Saccharomyces cerevisiae. Yeast 8:1043–1051
https://doi.org/10.1002/yea.320081207
|
| 96 |
RJ DeBerardinis, NS Chandel (2016) Fundamentals of cancer metabolism. Sci Adv 2
https://doi.org/10.1126/sciadv.1600200
|
| 97 |
RJ DeBerardinis, CB Thompson (2012) Cellular Metabolism and Disease: What Do Metabolic Outliers Teach Us? Cell 148:1132–1144
https://doi.org/10.1016/j.cell.2012.02.032
|
| 98 |
RJ DeBerardinis, JJ Lum, G Hatzivassiliou, CB Thompson (2008a) The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20
https://doi.org/10.1016/j.cmet.2007.10.002
|
| 99 |
RJ DeBerardinis, N Sayed, D Ditsworth, CB Thompson (2008b) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18:54–61
https://doi.org/10.1016/j.gde.2008.02.003
|
| 100 |
V Dehennaut, D Leprince, T Lefebvre (2014) O-GlcNAcylation, an epigenetic mark. Focus on the histone code, TET family proteins, and polycomb group proteins. Front Endocrinol (Lausanne) 5:155
https://doi.org/10.3389/fendo.2014.00155
|
| 101 |
JE Delmore, GC Issa, ME Lemieux, PB Rahl, JW Shi, HM Jacobs, E Kastritis, T Gilpatrick, RM Paranal, J Qiet al. (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146:903–916
https://doi.org/10.1016/j.cell.2011.08.017
|
| 102 |
M. Demers, , S.L. Wong, , K. Martinod, , M. Gallant, , J.E. Cabral,, Y.M. Wang, , and D.D. Wagner, (2016). Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology 5.
https://doi.org/10.1080/2162402X.2015.1134073
|
| 103 |
WA Denny, GJ Atwell, BC Baguley, BF Cain (1979) Potential antitumor agents. 29. Quantitative structure-activity relationships for the antileukemic bisquaternary ammonium heterocycles. J Med Chem 22:134–150
https://doi.org/10.1021/jm00188a005
|
| 104 |
R Dentin, S Hedrick, JX Xie, J Yates, M Montminy (2008) Hepatic glucose sensing via the CREB coactivator CRTC2. Science 319:1402–1405
https://doi.org/10.1126/science.1151363
|
| 105 |
R Deplus, B Delatte, MK Schwinn, M Defrance, J Mendez, N Murphy, MA Dawson, M Volkmar, P Putmans, E Calonneet al. (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J 32:645–655
https://doi.org/10.1038/emboj.2012.357
|
| 106 |
A Di Lorenzo, MT Bedford (2011) Histone arginine methylation. FEBS Lett 585:2024–2031
https://doi.org/10.1016/j.febslet.2010.11.010
|
| 107 |
E Dimitrova, AH Turberfield, RJ Klose (2015) Histone demethylases in chromatin biology and beyond. EMBO Rep 16:1620–1639
https://doi.org/10.15252/embr.201541113
|
| 108 |
W Ding, LJ Smulan, NS Hou, S Taubert, JL Watts, AK Walker (2015) s-Adenosylmethionine levels govern innate immunity through distinct methylation-dependent pathways. Cell Metab 22:633–645
https://doi.org/10.1016/j.cmet.2015.07.013
|
| 109 |
J Dominguez-Andres, B Novakovic, Y Li, BP Scicluna, MS Gresnigt, RJW Arts, M Oosting, SJCFM Moorlag, LA Groh, J Zwaaget al. (2019) The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metab 29:211–220
https://doi.org/10.1016/j.cmet.2018.09.003
|
| 110 |
DR Donohoe, LB Collins, A Wali, R Bigler, W Sun, SJ Bultman (2012) The Warburg effect dictates the mechanism of butyratemediated histone acetylation and cell proliferation. Mol Cell 48:612–626
https://doi.org/10.1016/j.molcel.2012.08.033
|
| 111 |
JT Du, YY Zhou, XY Su, JJ Yu, S Khan, H Jiang, J Kim, J Woo, JH Kim, BH Choiet al.(2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334:806–809
https://doi.org/10.1126/science.1207861
|
| 112 |
EM Dunbar, BS Coats, AL Shroads, T Langaee, A Lew, JR Forder, JJ Shuster, DA Wagner, PW Stacpoole (2014) Phase 1 trial of dichloroacetate (DCA) in adults with recurrent malignant brain tumors. Invest New Drugs 32:452–464
https://doi.org/10.1007/s10637-013-0047-4
|
| 113 |
T. Eckschlager, , J. Plch,, M. Stiborova, , and J. Hrabeta, (2017). Histone Deacetylase Inhibitors as Anticancer Drugs. International Journal of Molecular Sciences 18.
https://doi.org/10.3390/ijms18071414
|
| 114 |
A Eden, F Gaudet, A Waghmare, R Jaenisch (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455
https://doi.org/10.1126/science.1083557
|
| 115 |
LR Edmunds, L Sharma, A Kang, J Lu, J, Vockley S Basu, R Uppala, ES Goetzman, ME Beck, D Scottet al. (2014) c-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate. J Biol Chem 289:25382–25392
https://doi.org/10.1074/jbc.M114.580662
|
| 116 |
T Eisenberg, S Schroeder, A Andryushkova, T Pendl, V Kuttner, A Bhukel, G Marino, F Pietrocola, A Harger, A Zimmermannet al. (2014) Nucleocytosolic depletion of the energy metabolite acetylcoenzyme a stimulates autophagy and prolongs lifespan. Cell Metab 19:431–444
https://doi.org/10.1016/j.cmet.2014.02.010
|
| 117 |
J Ellinger, P Kahl, C Mertens, S Rogenhofer, S Hauser, W Hartmann, PJ Bastian, R Buttner, SC Muller, A von Ruecker (2010) Prognostic relevance of global histone H3 lysine 4 (H3K4) methylation in renal cell carcinoma. Int J Cancer 127:2360–2366
https://doi.org/10.1002/ijc.25250
|
| 118 |
SE Elsheikh, AR Green, EA Rakha, DG Powe, RA Ahmed, HM Collins, D Soria, JM Garibaldi, CE Paish, AA Ammaret al. (2009) Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res 69:3802–3809
https://doi.org/10.1158/0008-5472.CAN-08-3907
|
| 119 |
M Esteller, E Avizienyte, PG Corn, RA Lothe, SB Baylin, LA Aaltonen, JG Herman (2000) Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz-Jeghers syndrome. Oncogene 19:164–168
https://doi.org/10.1038/sj.onc.1203227
|
| 120 |
M Esteller, PG Corn, SB Baylin, JG Herman (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229
|
| 121 |
JP Etchegaray, R Mostoslavsky (2016) Interplay between metabolism and epigenetics: a nuclear adaptation to environmental changes. Mol Cell 62:695–711
https://doi.org/10.1016/j.molcel.2016.05.029
|
| 122 |
JS Evans, GD Mengel (1964) The reversal of cytosine arabinoside activity in vivo by deoxycytidine. Biochem Pharmacol 13:989–994
https://doi.org/10.1016/0006-2952(64)90095-4
|
| 123 |
F Faiola, X Liu, S Lo, S Pan, K Zhang, E Lymar, A Farina, E Martinez (2005) Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Mycinduced transcription. Mol Cell Biol 25:10220–10234
https://doi.org/10.1128/MCB.25.23.10220-10234.2005
|
| 124 |
KJ Falkenberg, RW Johnstone (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discovery 13:673–691
https://doi.org/10.1038/nrd4360
|
| 125 |
J Fan, X Teng, L Liu, KR Mattaini, RE Looper, MG Vander Heiden, JD Rabinowitz (2015) Human phosphoglycerate dehydrogenase produces the oncometabolite D-2-hydroxyglutarate. ACS Chem Biol 10:510–516
https://doi.org/10.1021/cb500683c
|
| 126 |
B Faubert, KY Li, L Cai, CT Hensley, J Kim, LG Zacharias, C Yang, QN Do, S Doucette, D Burgueteet al. (2017) Lactate metabolism in human lung tumors. Cell 171(358–371):
https://doi.org/10.1016/j.cell.2017.09.019
|
| 127 |
, B. Faubert, , A. Solmonson, and , R.J. DeBerardinis (2020). Metabolic reprogramming and cancer progression. Science 368. Feinberg AP, Tycko B (2004) Timeline- The history of cancer epigenetics. Nat Rev Cancer 4:143–153
https://doi.org/10.1126/science.aaw5473
|
| 128 |
AP Feinberg, B Vogelstein (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92
https://doi.org/10.1038/301089a0
|
| 129 |
JL Feldman, J Baeza, JM Denu (2013) Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 288:31350–31356
https://doi.org/10.1074/jbc.C113.511261
|
| 130 |
Q Feng, HB Wang, HH Ng, H Erdjument-Bromage, P Tempst, K Struhl, Y Zhang (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12:1052–1058
https://doi.org/10.1016/S0960-9822(02)00901-6
|
| 131 |
CM Ferrer, TP Lynch, VL Sodi, JN Falcone, LP Schwab, DL Peacock, DJ Vocadlo, TN Seagroves, MJ Reginato (2014) O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol Cell 54:820–831
https://doi.org/10.1016/j.molcel.2014.04.026
|
| 132 |
CM Ferrer, VL Sodi, MJ Reginato (2016) O-GlcNAcylation in cancer biology: linking metabolism and signaling. J Mol Biol 428:3282–3294
https://doi.org/10.1016/j.jmb.2016.05.028
|
| 133 |
ME Figueroa, O Abdel-Wahab, C Lu, PS Ward, J Patel, A Shih, YS Li, N Bhagwat, A Vasanthakumar, HF Fernandezet al. (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567
https://doi.org/10.1016/j.ccr.2010.11.015
|
| 134 |
P Filippakopoulos, J Qi, S Picaud, Y Shen, WB Smith, O Fedorov, EM Morse, T Keates, TT Hickman, I Felletaret al. (2010) Selective inhibition of BET bromodomains. Nature 468:1067–1073
https://doi.org/10.1038/nature09504
|
| 135 |
S Filippov, SL Pinkosky, RS Newton (2014) LDL-cholesterol reduction in patients with hypercholesterolemia by modulation of adenosine triphosphate-citrate lyase and adenosine monophosphate-activated protein kinase. Curr Opin Lipidol 25:309–315
https://doi.org/10.1097/MOL.0000000000000091
|
| 136 |
SE Fleming, MD Fitch, S DeVries, ML Liu, C Kight (1991) Nutrient utilization by cells isolated from rat jejunum, cecum and colon. J Nutr 121:869–878
https://doi.org/10.1093/jn/121.6.869
|
| 137 |
MF Fraga, E Ballestar, A Villar-Garea, M Boix-Chornet, J Espada, G Schotta, T Bonaldi, C Haydon, S Ropero, K Petrieet al. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400
https://doi.org/10.1038/ng1531
|
| 138 |
J Fuhrmann, PR Thompson (2016) Protein arginine methylation and citrullination in epigenetic regulation. ACS Chem Biol 11:654–668
https://doi.org/10.1021/acschembio.5b00942
|
| 139 |
T Fujino, J Kondo, M Ishikawa, K Morikawa, TT Yamamoto (2001) Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J Biol Chem 276:11420–11426
https://doi.org/10.1074/jbc.M008782200
|
| 140 |
T Fujisawa, P Filippakopoulos (2017) Functions of bromodomaincontaining proteins and their roles in homeostasis and cancer. Nat Rev Mol Cell Biol 18:246–262
https://doi.org/10.1038/nrm.2016.143
|
| 141 |
F Galeotti, E Barile, P Curir, M Dolci, V Lanzotti (2008) Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem Lett 1:44–48
https://doi.org/10.1016/j.phytol.2007.10.001
|
| 142 |
MC Gambetta, K Oktaba, J Muller (2009) Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325:93–96
https://doi.org/10.1126/science.1169727
|
| 143 |
P. Gao, , I. Tchernyshyov, , T.C. Chang, , Y.S. Lee, , K. Kita, , T. Ochi, , K. Zeller, , A. De Marzo, , J. Van Eyk, , J. Mendell,, et al.. (2009). c-Myc suppression of miR-23 enhances mitochondrial glutaminase and glutamine metabolism. Cancer Research 69.
https://doi.org/10.1038/nature07823
|
| 144 |
X. Gao,, S.H. Lin,, F. Ren, , J.T. Li,, J.J. Chen, , C.B. Yao,, H.B. Yang, , S.X. Jiang, , G.Q. Yan, , D. Wang,, et al.. (2016). Acetate functions as an epigenetic metabolite to promote lipid synthesis under hypoxia. Nature Communications 7.
https://doi.org/10.1038/ncomms11960
|
| 145 |
JM Garcia, J Silva, C Pena, V Garcia, R Rodriguez, MA Cruz, B Cantos, M Provencio, P Espana, F Bonilla (2004) Promoter methylation of the PTEN gene is a common molecular change in breast cancer. Genes Chromosom Cancer 41:117–124
https://doi.org/10.1002/gcc.20062
|
| 146 |
BA Garcia, Z Luka, LV Loukachevitch, NV Bhanu, C Wagner (2016) Folate deficiency affects histone methylation. Med Hypotheses 88:63–67
https://doi.org/10.1016/j.mehy.2015.12.027
|
| 147 |
LA Gates, JJ Shi, AD Rohira, Q Feng, BK Zhu, MT Bedford, CA Sagum, SY Jung, J Qin, MJ Tsaiet al. (2017) Acetylation on histone H3 lysine 9 mediates a switch from transcription initiation to elongation. J Biol Chem 292:14456–14472
https://doi.org/10.1074/jbc.M117.802074
|
| 148 |
F Gaudet, JG Hodgson, A Eden, L Jackson-Grusby, J Dausman, JW Gray, H Leonhardt, R Jaenisch (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492
https://doi.org/10.1126/science.1083558
|
| 149 |
R Giet, DM Glover (2001) Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152:669–681
https://doi.org/10.1083/jcb.152.4.669
|
| 150 |
J Goffin, E Eisenhauer (2002) DNA methyltransferase inhibitors—state of the art. Ann Oncol 13:1699–1716
https://doi.org/10.1093/annonc/mdf314
|
| 151 |
A Golks, TT Tran, JF Goetschy, D Guerini (2007) Requirement for O-linked N-acetylglucosaminyltransferase in lymphocytes activation. EMBO J 26:4368–4379
https://doi.org/10.1038/sj.emboj.7601845
|
| 152 |
MD Goncalves, CY Lu, J Tutnauer, TE Hartman, SK Hwang, CJ Murphy, C Pauli, R Morris, S Taylor, K Boschet al. (2019) Highfructose corn syrup enhances intestinal tumor growth in mice. Science 363:1345–1349
https://doi.org/10.1126/science.aat8515
|
| 153 |
B. Gongol, , I. Sari, , T. Bryant,, G. Rosete, , and T. Marin, (2018). AMPK: An Epigenetic Landscape Modulator. International Journal of Molecular Sciences 19.
https://doi.org/10.3390/ijms19103238
|
| 154 |
A Goudarzi, D Zhang, H Huang, S Barral, OK Kwon, S Qi, Z Tang, T Buchou, AL Vitte, T Heet al. (2016) Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters. Mol Cell 62:169–180
https://doi.org/10.1016/j.molcel.2016.03.014
|
| 155 |
AD Gounaris, GE Perlmann (1967) Succinylation of pepsinogen. J Biol Chem 242:2739–2745
https://doi.org/10.1016/S0021-9258(18)99630-4
|
| 156 |
SP Gravel, L Hulea, N Toban, E Birman, MJ Blouin, M Zakikhani, YH Zhao, I Topisirovic, J St-Pierre, M Pollak (2014) Serine deprivation enhances antineoplastic activity of biguanides. Cancer Res 74:7521–7533
https://doi.org/10.1158/0008-5472.CAN-14-2643-T
|
| 157 |
MVC Greenberg, D Bourc’his (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607
https://doi.org/10.1038/s41580-019-0159-6
|
| 158 |
KS Greene, MJ Lukey, XY Wang, B Blank, JE Druso, MCJ Lin, CA Stalnecker, CL Zhang, YN Abril, JW Ericksonet al. (2019) SIRT5 stabilizes mitochondrial glutaminase and supports breast cancer tumorigenesis. Proc Natl Acad Sci USA 116:26625–26632
https://doi.org/10.1073/pnas.1911954116
|
| 159 |
EL Greer, Y Shi (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357
https://doi.org/10.1038/nrg3173
|
| 160 |
S Gross, RA Cairns, MD Minden, EM Driggers, MA Bittinger, HG Jang, M Sasaki, SF Jin, DP Schenkein, SSM Suet al. (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207:339–344
https://doi.org/10.1084/jem.20092506
|
| 161 |
YC Gu, WY Mi, YQ Ge, HY Liu, QO Fan, CF Han, J Yang, F Han, XZ Lu, WG Yu (2010) GlcNAcylation plays an essential role in breast cancer metastasis. Cancer Res 70:6344–6351
https://doi.org/10.1158/0008-5472.CAN-09-1887
|
| 162 |
E Guccione, S Richard (2019) The regulation, functions and clinical relevance of arginine methylation. Nat Rev Mol Cell Biol 20:642–657
https://doi.org/10.1038/s41580-019-0155-x
|
| 163 |
H Guo, Y Tan, T Kubota, AR Moossa, RM Hoffman (1996) Methionine depletion modulates the antitumor and antimetastatic efficacy of ethionine. Anticancer Res 16:2719–2723
|
| 164 |
RM Gutierrez, LS Hnilica (1967) Tissue specificity of histone phosphorylation. Science 157:1324–1325
https://doi.org/10.1126/science.157.3794.1324
|
| 165 |
MJ Gutierrez, NL Rosenberg, DE MacDougall, JC Hanselman, JR Margulies, P Strange, MA Milad, SJ McBride, RS Newton (2014) Efficacy and Safety of ETC-1002, a novel investigational low-density lipoprotein-cholesterol-lowering therapy for the treatment of patients with hypercholesterolemia and Type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 34:676–683
https://doi.org/10.1161/ATVBAHA.113.302677
|
| 166 |
HM Hamer, D Jonkers, K Venema, S Vanhoutvin, FJ Troost, RJ Brummer (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119
https://doi.org/10.1111/j.1365-2036.2007.03562.x
|
| 167 |
D Hanahan, RA Weinberg (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
https://doi.org/10.1016/j.cell.2011.02.013
|
| 168 |
SA Hannou, DE Haslam, NM McKeown, MA Herman (2018) Fructose metabolism and metabolic disease. J Clin Invest 128:545–555
https://doi.org/10.1172/JCI96702
|
| 169 |
HX Hao, O Khalimonchuk, M Schraders, N Dephoure, JP Bayley, H Kunst, P Devilee, CWRJ Cremers, JD Schiffman, BG Bentzet al. (2009) SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325:1139–1142
https://doi.org/10.1126/science.1175689
|
| 170 |
DG Hardie (2011) AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function. Genes Dev 25:1895–1908
https://doi.org/10.1101/gad.17420111
|
| 171 |
DG Hardie, BE Schaffer, A Brunet (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 26:190–201
https://doi.org/10.1016/j.tcb.2015.10.013
|
| 172 |
S Hardiville, GW Hart (2014) Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab 20:208–213
https://doi.org/10.1016/j.cmet.2014.07.014
|
| 173 |
RA Harris, M Joshi, NH Jeoung, M Obayashi (2005) Overview of the molecular and biochemical basis of branched-chain amino acid catabolism. J Nutr 135:1527s– 1530s
https://doi.org/10.1093/jn/135.6.1527S
|
| 174 |
GW Hart (2019) Nutrient regulation of signaling and transcription. J Biol Chem 294:2211–2231
https://doi.org/10.1074/jbc.AW119.003226
|
| 175 |
GW Hart, MP Housley, C Slawson (2007) Cycling of O-linked beta-Nacetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022
https://doi.org/10.1038/nature05815
|
| 176 |
GW Hart, C Slawson, G Ramirez-Correa, O Lagerlof (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80(80):825–858
https://doi.org/10.1146/annurev-biochem-060608-102511
|
| 177 |
AS Harutyunyan, B Krug, HF Chen, S Papillon-Cavanagh, M Zeinieh, N De Jay, S Deshmukh, CCL Chen, J Belle, LG Mikaelet al. (2019) H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/me3 and is essential for glioma tumorigenesis. Nat Commun 10
https://doi.org/10.1038/s41467-019-09140-x
|
| 178 |
G Hatzivassiliou, FP Zhao, DE Bauer, C Andreadis, AN Shaw, D Dhanak, SR Hingorani, DA Tuveson, CB Thompson (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8:311–321
https://doi.org/10.1016/j.ccr.2005.09.008
|
| 179 |
SA Haws, CM Leech, JM Denu (2020) Metabolism and the epigenome: a dynamic relationship. Trends Biochem Sci
https://doi.org/10.1016/j.tibs.2020.04.002
|
| 180 |
K Hayakawa, M Hirosawa, Y Tabei, D Arai, S Tanaka, N Murakami, S Yagi, K Shiota (2013) Epigenetic switching by the metabolismsensing factors in the generation of orexin neurons from mouse embryonic stem cells. J Biol Chem 288:17099–17110
https://doi.org/10.1074/jbc.M113.455899
|
| 181 |
MGV Heiden, LC Cantley, CB Thompson (2009) Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033
https://doi.org/10.1126/science.1160809
|
| 182 |
JG Herman, F Latif, Y Weng, MI Lerman, B Zbar, S Liu, D Samid, DS Duan, JR Gnarra, WM Linehanet al. (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91:9700–9704
https://doi.org/10.1073/pnas.91.21.9700
|
| 183 |
S Herzig, E Raemy, S Montessuit, JL Veuthey, N Zamboni, B Westermann, ER Kunji, JC Martinou (2012) Identification and functional expression of the mitochondrial pyruvate carrier. Science 337:93–96
https://doi.org/10.1126/science.1218530
|
| 184 |
MD Hirschey, YM Zhao (2015) Metabolic regulation by lysine malonylation, succinylation, and glutarylation. Mol Cell Proteomics 14:2308–2315
https://doi.org/10.1074/mcp.R114.046664
|
| 185 |
MD Hirschey, T Shimazu, E Goetzman, E Jing, B Schwer, DB Lombard, CA Grueter, C Harris, S Biddinger, OR Ilkayevaet al. (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464:121–U137
https://doi.org/10.1038/nature08778
|
| 186 |
MD Hirschey, RJ DeBerardinis, AME Diehl, JE Drew, C Frezza, MF Green, LW Jones, YH Ko, A Le, MA Leaet al. (2015) Dysregulated metabolism contributes to oncogenesis. Semin Cancer Biol 35:S129–S150
https://doi.org/10.1016/j.semcancer.2015.10.002
|
| 187 |
T Hitosugi, J Fan, TW Chung, K Lythgoe, X Wang, JX Xie, QY Ge, TL Gu, RD Polakiewicz, JL Roeselet al. (2011) Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell 44:864–877
https://doi.org/10.1016/j.molcel.2011.10.015
|
| 188 |
JL Holleran, RA Parise, E Joseph, JL Eiseman, JM Covey, ER Glaze, AV Lyubimov, YF Chen, DZ D’Argenio, MJ Egorin (2005) Plasma pharmacokinetics, oral bioavailability, and interspecies scaling of the DNA methyltransferase inhibitor, zebularine. Clin Cancer Res 11:3862–3868
https://doi.org/10.1158/1078-0432.CCR-04-2406
|
| 189 |
A Hooftman, S Angiari, S Hester, SE Corcoran, MC Runtsch, C Ling, MC Ruzek, PF Slivka, AF McGettrick, K Banahanet al. (2020) The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation. Cell Metab 32:468–478
https://doi.org/10.1016/j.cmet.2020.07.016
|
| 190 |
BD Hopkins, C Pauli, X Du, DG Wang, X Li, D Wu, SC Amadiume, MD Goncalves, C Hodakoski, MR Lundquistet al. (2018) Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560:499–503
https://doi.org/10.1038/s41586-018-0343-4
|
| 191 |
Y Hoshiya, T Kubota, T Inada, M Kitajima, RM Hoffman (1997) Methionine-depletion modulates the efficacy of 5-fiuorouracil in human gastric cancer in nude mice. Anticancer Res 17:4371–4375
|
| 192 |
MP Housley, JT Rodgers, ND Udeshi, TJ Kelly, J Shabanowitz, DF Hunt, P Puigserver, GW Hart (2008) O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem 283:16283–16292
https://doi.org/10.1074/jbc.M802240200
|
| 193 |
KT Howitz, KJ Bitterman, HY Cohen, DW Lamming, S Lavu, JG Wood, RE Zipkin, P Chung, A Kisielewski, LL Zhanget al. (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196
https://doi.org/10.1038/nature01960
|
| 194 |
PC Hsu, YF Liao, CL Lin, WH Lin, GY Liu, HC Hung (2014) Vimentin is involved in peptidylarginine deiminase 2-induced apoptosis of activated jurkat cells. Mol Cells 37:426–434
https://doi.org/10.14348/molcells.2014.2359
|
| 195 |
BP Hubbard, AP Gomes, H Dai, J Li, AW Case, T Considine, TV Riera, JE Lee, ES Yen, DW Lamminget al. (2013) Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339:1216–1219
https://doi.org/10.1126/science.1231097
|
| 196 |
CC Hughey, E Trefts, DP Bracy, FD James, EP Donahue, DH Wasserman (2018) Glycine N-methyltransferase deletion in mice diverts carbon flux from gluconeogenesis to pathways that utilize excess methionine cycle intermediates. J Biol Chem 293:11944–11954
https://doi.org/10.1074/jbc.RA118.002568
|
| 197 |
S Hui, JM Ghergurovich, RJ Morscher, C Jang, X Teng, W Lu, LA Esparza, T Reya, Z Le, J Yanxiang Guoet al. (2017) Glucose feeds the TCA cycle via circulating lactate. Nature 551:115–118
https://doi.org/10.1038/nature24057
|
| 198 |
IY Hwang, S Kwak, S Lee, H Kim, SE Lee, JH Kim, YA Kim, YK Jeon, DH Chung, X Jinet al. (2016) Psat1-Dependent fluctuations in alpha-ketoglutarate affect the timing of ESC differentiation. Cell Metab 24:494–501
https://doi.org/10.1016/j.cmet.2016.06.014
|
| 199 |
K Hyun, J Jeon, K Park, J Kim (2017) Writing, erasing and reading histone lysine methylations. Exp Mol Med 49
https://doi.org/10.1038/emm.2017.11
|
| 200 |
P Icard, L Poulain, H Lincet (2012) Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta 1825:111–116
https://doi.org/10.1016/j.bbcan.2011.10.007
|
| 201 |
P Icard, ZR Wu, L Fournel, A Coquerel, H Lincet, M Alifano (2020) ATP citrate lyase: A central metabolic enzyme in cancer. Cancer Lett 471:125–134
https://doi.org/10.1016/j.canlet.2019.12.010
|
| 202 |
AM Intlekofer, RG Dematteo, S Venneti, LWS Finley, C Lu, AR Judkins, AS Rustenburg, PB Grinaway, JD Chodera, JR Crosset al. (2015) Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab 22:304–311
https://doi.org/10.1016/j.cmet.2015.06.023
|
| 203 |
MB Ishak Gabra, Y Yang, H Li, P Senapati, EA Hanse, XH Lowman, TQ Tran, L Zhang, LT Doan, X Xuet al. (2020) Dietary glutamine supplementation suppresses epigenetically-activated oncogenic pathways to inhibit melanoma tumour growth. Nat Commun 11:3326
https://doi.org/10.1038/s41467-020-17181-w
|
| 204 |
LB Ivashkiv (2013) Epigenetic regulation of macrophage polarization and function. Trends Immunol 34:216–223
https://doi.org/10.1016/j.it.2012.11.001
|
| 205 |
MK Jang, K Mochizuki, MS Zhou, HS Jeong, JN Brady, K Ozato (2005) The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase IIdependent transcription. Mol Cell 19:523–534
https://doi.org/10.1016/j.molcel.2005.06.027
|
| 206 |
R Janke, AE Dodson, J Rine (2015) Metabolism and epigenetics. Annu Rev Cell Dev Biol 31:473–496
https://doi.org/10.1146/annurev-cellbio-100814-125544
|
| 207 |
T Jensen, MF Abdelmalek, S Sullivan, KJ Nadeau, M Green, C Ronca, T Nakagawa, M Kuwabara, Y Sato, DH Kanget al. (2018) Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol 68:1063–1075
https://doi.org/10.1016/j.jhep.2018.01.019
|
| 208 |
H Jeon, JH Kim, E Lee, YJ Jang, JE Son, JY Kwon, TG Lim, S Kim, JH Park, JE Kimet al.(2016) Methionine deprivation suppresses triple-negative breast cancer metastasis in vitro and in vivo. Oncotarget 7:67223–67234
https://doi.org/10.18632/oncotarget.11615
|
| 209 |
AK Jha, SCC Huang, A Sergushichev, V Lampropoulou, Y Ivanova, E Loginicheva, K Chmielewski, KM Stewart, J Ashall, B Evertset al. (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42:419–430
https://doi.org/10.1016/j.immuni.2015.02.005
|
| 210 |
WQ Jiang, SW Wang, MT Xiao, Y Lin, LS Zhou, QY Lei, Y Xiong, KL Guan, SM Zhao (2011) Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell 43:33–44
https://doi.org/10.1016/j.molcel.2011.04.028
|
| 211 |
H Jing, HN Lin (2015) Sirtuins in epigenetic regulation. Chem Rev 115:2350–2375
https://doi.org/10.1021/cr500457h
|
| 212 |
PA Jones, SB Baylin (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428
https://doi.org/10.1038/nrg816
|
| 213 |
RG Jones, CB Thompson (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548
https://doi.org/10.1101/gad.1756509
|
| 214 |
Z Kaczmarska, E Ortega, A Goudarzi, H Huang, S Kim, JA Marquez, YM Zhao, S Khochbin, D Panne (2017) Structure of p300 in complex with acyl-CoA variants. Nat Chem Biol 13:21–29
https://doi.org/10.1038/nchembio.2217
|
| 215 |
WG Kaelin (2009) SDH5 Mutations and Familial Paraganglioma: Somewhere Warburg is Smiling. Cancer Cell 16:180–182
https://doi.org/10.1016/j.ccr.2009.08.013
|
| 216 |
WG Kaelin, SL McKnight (2013) Infiuence of Metabolism on Epigenetics and Disease. Cell 153:56–69
https://doi.org/10.1016/j.cell.2013.03.004
|
| 217 |
E Kaminskas, A Farrell, S Abraham, A Baird, LS Hsieh, SL Lee, JK Leighton, H Patel, A Rahman, R Sridharaet al. (2005a) Approval summary: Azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 11:3604–3608
https://doi.org/10.1158/1078-0432.CCR-04-2135
|
| 218 |
E Kaminskas, AT Farrell, YC Wang, R Sridhara, R Pazdur (2005b) FDA drug approval summary: Azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 10:176–182
https://doi.org/10.1634/theoncologist.10-3-176
|
| 219 |
YH Kang, HS Lee, WH Kim (2002) Promoter methylation and silencing of PTEN in gastric carcinoma. Lab Invest 82:285–291
https://doi.org/10.1038/labinvest.3780422
|
| 220 |
J Kaplon, L Zheng, K Meissl, B Chaneton, VA Selivanov, G Mackay, SH van der Burg, EM Verdegaal, M Cascante, T Shlomiet al. (2013) A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498:109–112
https://doi.org/10.1038/nature12154
|
| 221 |
M Karahoca, RL Momparler (2013) Pharmacokinetic and pharmacodynamic analysis of 5-aza-2’-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenetics 5:3
https://doi.org/10.1186/1868-7083-5-3
|
| 222 |
Y Katoh, T Ikura, Y Hoshikawa, S Tashiro, T Ito, M Ohta, Y Kera, T Noda, K Igarashi (2011) Methionine adenosyltransferase II serves as a transcriptional corepressor of maf oncoprotein. Mol Cell 41:554–566
https://doi.org/10.1016/j.molcel.2011.02.018
|
| 223 |
E Katsyuba, A Mottis, M Zietak, F De Franco, V van der Velpen, K Gariani, D Ryu, L Cialabrini, O Matilainen, P Liscioet al. (2018) De novo NAD(+) synthesis enhances mitochondrial function and improves health. Nature 563:354–359
https://doi.org/10.1038/s41586-018-0645-6
|
| 224 |
ST Keating, A El-Osta (2015) Epigenetics and metabolism. Circ Res 116:715–736
https://doi.org/10.1161/CIRCRESAHA.116.303936
|
| 225 |
B Kelly, EL Pearce (2020). Amino assets: how amino acids support immunity. Cell Metab
https://doi.org/10.1016/j.cmet.2020.06.010
|
| 226 |
WG Kelly, ME Dahmus, GW Hart (1993) RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J Biol Chem 268:10416–10424
https://doi.org/10.1016/S0021-9258(18)82216-5
|
| 227 |
Y Kera, Y Katoh, M Ohta, M Matsumoto, T Takano-Yamamoto, K Igarashi (2013) Methionine adenosyltransferase II-dependent histone H3K9 methylation at the COX-2 gene locus. J Biol Chem 288:13592–13601
https://doi.org/10.1074/jbc.M112.429738
|
| 228 |
SA Kidwai, AA Ansari, A Salahuddin (1976) Effect of succinylation (3-carboxypropionylation) on the conformation and immunological activity of ovalbumin. Biochem J 155:171–180
https://doi.org/10.1042/bj1550171
|
| 229 |
JW Kim, I Tchernyshyov, GL Semenza, CV Dang (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185
https://doi.org/10.1016/j.cmet.2006.02.002
|
| 230 |
SR Kim, KB Kim, YC Chae, JW Park, SB Seo (2016) H3S10 phosphorylation-mediated transcriptional regulation by Aurora kinase A. Biochem Biophys Res Commun 469:22–28
https://doi.org/10.1016/j.bbrc.2015.11.063
|
| 231 |
A Kinnaird, S Zhao, KE Wellen, ED Michelakis (2016) Metabolic control of epigenetics in cancer. Nat Rev Cancer 16:694–707
https://doi.org/10.1038/nrc.2016.82
|
| 232 |
LJ Kleinsmith, VG Allfrey, AE Mirsky (1966) Phosphoprotein metabolism in isolated lymphocyte nuclei. Proc Natl Acad Sci USA 55:1182–1189
https://doi.org/10.1073/pnas.55.5.1182
|
| 233 |
RJ Klement (2019) The emerging role of ketogenic diets in cancer treatment. Curr Opin Clin Nutr Metab Care 22:129–134
https://doi.org/10.1097/MCO.0000000000000540
|
| 234 |
JS Knight, V Subramanian, AA O’Dell, S Yalavarthi, WP Zhao, CK Smith, JB Hodgin, PR Thompson, MJ Kaplan (2015) Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice. Ann Rheum Dis 74:2199–2206
https://doi.org/10.1136/annrheumdis-2014-205365
|
| 235 |
SK Knutson, TJ Wigle, NM Warholic, CJ Sneeringer, CJ Allain, CR Klaus, JD Sacks, A Raimondi, CR Majer, J Songet al.(2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8:890–896
https://doi.org/10.1038/nchembio.1084
|
| 236 |
SK Knutson, S Kawano, Y Minoshima, NM Warholic, KC Huang, YH Xiao, T Kadowaki, M Uesugi, G Kuznetsov, N Kumaret al. (2014) Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-hodgkin lymphoma. Mol Cancer Ther 13:842–854
https://doi.org/10.1158/1535-7163.MCT-13-0773
|
| 237 |
DS Koenis, L Medzikovic, PB van Loenen, M van Weeghel, S Huveneers, M Vos, IJ Evers-van Gogh, J Van den Bossche, D Speijer, Y Kimet al.(2018) Nuclear receptor nur77 limits the macrophage infiammatory response through transcriptional reprogramming of mitochondrial metabolism. Cell Reports 24:2127–2140
https://doi.org/10.1016/j.celrep.2018.07.065
|
| 238 |
P Koivunen, S Lee, CG Duncan, G Lopez, G Lu, S Ramkissoon, JA Losman, P Joensuu, U Bergmann, S Grosset al. (2012) Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483:485
https://doi.org/10.1038/nature10898
|
| 239 |
MF Konig, L Abusleme, J Reinholdt, RJ Palmer, RP Teles, K Sampson, A Rosen, PA Nigrovic, J Sokolove, JT Gileset al. (2016) Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci Transl Med 8
https://doi.org/10.1126/scitranslmed.aaj1921
|
| 240 |
F Kottakis, BN Nicolay, A Roumane, R Karnik, HC Gu, JM Nagle, M Boukhali, MC Hayward, YY Li, T Chenet al. (2016) LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539:390–395
https://doi.org/10.1038/nature20132
|
| 241 |
GV Kryukov, FH Wilson, JR Ruth, J Paulk, A Tsherniak, SE Marlow, F Vazquez, BA Weir, ME Fitzgerald, M Tanakaet al.(2016) MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351:1214–1218
https://doi.org/10.1126/science.aad5214
|
| 242 |
R Kumari, RS Deshmukh, S Das (2019) Caspase-10 inhibits ATPcitrate lyase-mediated metabolic and epigenetic reprogramming to suppress tumorigenesis. Nat Commun 10
https://doi.org/10.1038/s41467-019-12194-6
|
| 243 |
K Kurmi, S Hitosugi, EK Wiese, F Boakye-Agyeman, WI Gonsalves, ZK Lou, LM Karnitz, MP Goetz, T Hitosugi (2018) Carnitine palmitoyltransferase 1A Has a lysine succinyltransferase activity. Cell Rep 22:1365–1373
https://doi.org/10.1016/j.celrep.2018.01.030
|
| 244 |
N Lacoste, RT Utley, JM Hunter, GG Poirier, J Cote (2002) Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem 277:30421–30424
https://doi.org/10.1074/jbc.C200366200
|
| 245 |
V Lampropoulou, A Sergushichev, M Bambouskova, S Nair, EE Vincent, E Loginicheva, L Cervantes-Barragan, XC Ma, SCC Huang, T Grisset al. (2016) Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of infiammation. Cell Metab 24:158–166
https://doi.org/10.1016/j.cmet.2016.06.004
|
| 246 |
TA Langan (1968) Histone phosphorylation: stimulation by adenosine 3’,5’-monophosphate. Science 162:579–580
https://doi.org/10.1126/science.162.3853.579
|
| 247 |
RN Laribee (2018) Transcriptional and epigenetic regulation by the mechanistic target of rapamycin complex 1 pathway. J Mol Biol 430:4874–4890
https://doi.org/10.1016/j.jmb.2018.10.008
|
| 248 |
T Latham, L Mackay, D Sproul, M Karim, J Culley, DJ Harrison, L Hayward, P Langridge-Smith, N Gilbert, BH Ramsahoye (2012) Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res 40:4794–4803
https://doi.org/10.1093/nar/gks066
|
| 249 |
MA Lauterbach, JE Hanke, M Serefidou, MSJ Mangan, CC Kolbe, T Hess, M Rothe, R Kaiser, F Hoss, J Gehlenet al. (2019) Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity 51 (997–1011):
https://doi.org/10.1016/j.immuni.2019.11.009
|
| 250 |
S Lavu, O Boss, PJ Elliott, PD Lambert (2008) Sirtuins – novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discovery 7:841–853
https://doi.org/10.1038/nrd2665
|
| 251 |
CG Lee, NA Jenkins, DJ Gilbert, NG Copeland, WE O’Brien (1995) Cloning and analysis of gene regulation of a novel LPS-inducible cDNA. Immunogenetics 41:263–270
https://doi.org/10.1007/BF00172150
|
| 252 |
JV Lee, A Carrer, S Shah, NW Snyder, SZ Wei, S Venneti, AJ Worth, ZF Yuan, HW Lim, SC Liuet al. (2014) Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab 20:306–319
https://doi.org/10.1016/j.cmet.2014.06.004
|
| 253 |
CF Lee, A Caudal, L Abell, GAN Gowda, R Tian (2019) Targeting NAD(+) metabolism as interventions for mitochondrial disease. Sci Rep 9
https://doi.org/10.1038/s41598-019-39419-4
|
| 254 |
MZ Lei, XX Li, Y Zhang, JT Li, F Zhang, YP Wang, M Yin, J Qu, QY Lei (2020) Acetylation promotes BCAT2 degradation to suppress BCAA catabolism and pancreatic cancer growth. Signal Transduct Target Ther 5:70
https://doi.org/10.1038/s41392-020-0168-0
|
| 255 |
SS Levine, IF King, RE Kingston (2004) Division of labor in polycomb group repression. Trends Biochem Sci 29:478–485
https://doi.org/10.1016/j.tibs.2004.07.007
|
| 256 |
BA Lewis, JA Hanover (2014) O-GlcNAc and the epigenetic regulation of gene expression. J Biol Chem 289:34440–34448
https://doi.org/10.1074/jbc.R114.595439
|
| 257 |
PW Lewis, MM Muller, MS Koletsky, F Cordero, S Lin, LA Banaszynski, BA Garcia, TW Muir, OJ Becher, CD Allis (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:857–861
https://doi.org/10.1126/science.1232245
|
| 258 |
JJ Li, HX Wang, JA Tino, JA Robl, TF Herpin, RM Lawrence, S Biller, H Jamil, R Ponticiello, LP Chenet al. (2007) 2-Hydroxy-Narylbenzenesulfonamides as ATP-citrate lyase inhibitors. Bioorg Med Chem Lett 17:3208–3211
https://doi.org/10.1016/j.bmcl.2007.03.017
|
| 259 |
PX Li, HJ Yao, ZQ Zhang, M Li, Y Luo, PR Thompson, DS Gilmour, YM Wang (2008) Regulation of p53 target gene expression by peptidylarginine deiminase 4. Mol Cell Biol 28:4745–4758
https://doi.org/10.1128/MCB.01747-07
|
| 260 |
PX Li, M Li, MR Lindberg, MJ Kennett, N Xiong, YM Wang (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207:1853–1862
https://doi.org/10.1084/jem.20100239
|
| 261 |
MD Li, HB Ruan, ME Hughes, JS Lee, JP Singh, SP Jones, MN Nitabach, XY Yang (2013) O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 17:303–310
https://doi.org/10.1016/j.cmet.2012.12.015
|
| 262 |
TT Li, MX Liu, X Feng, Z Wang, I Das, YP Xu, X Zhou, YP Sun, KL Guan, Y Xionget al. (2014) Glyceraldehyde-3-phosphate dehydrogenase is activated by lysine 254 acetylation in response to glucose signal. J Biol Chem 289:3775–3785
https://doi.org/10.1074/jbc.M113.531640
|
| 263 |
F Li, XD He, DW Ye, Y Lin, HX Yu, CF Yao, L Huang, JN Zhang, F Wang, S Xuet al.(2015a) NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance. Mol Cell 60:661–675
https://doi.org/10.1016/j.molcel.2015.10.017
|
| 264 |
SS Li, SK Swanson, M Gogol, L Florens, MP Washburn, JL Workman, T Suganuma (2015b) Serine and SAM responsive complex sesame regulates histone modification crosstalk by sensing cellular metabolism. Mol Cell 60:408–421
https://doi.org/10.1016/j.molcel.2015.09.024
|
| 265 |
L Li, L Shi, SD Yang, RR Yan, D Zhang, JG Yang, L He, WJ Li, X Yi, LY Sunet al. (2016) SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun 7
https://doi.org/10.1038/ncomms12235
|
| 266 |
XJ Li, X Qian, ZM Lu (2017a) Local histone acetylation by ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Autophagy 13:1790–1791
https://doi.org/10.1080/15548627.2017.1349581
|
| 267 |
XJ Li, WL Yu, X Qian, Y Xia, YH Zheng, JH Lee, W Li, JX Lyu, G Rao, XC Zhanget al.(2017b) Nucleus-translocated ACSS2 promotes gene transcription for lysosomal biogenesis and autophagy. Mol Cell 66:684–697
https://doi.org/10.1016/j.molcel.2017.04.026
|
| 268 |
ST Li, Huang, S Shen, Y Cai, S Xing, G Wu, Z Jiang, Y Hao, M Yuan, N Wang et al (2020) Myc-mediated SDHA acetylation triggers epigenetic regulation of gene expression and tumorigenesis. Nat Metab 2:256–269
https://doi.org/10.1038/s42255-020-0179-8
|
| 269 |
YJ Liao, SP Liu, CM Lee, CH Yen, PC Chuang, CY Chen, TF Tsai, SF Huang, YH Lee, YM Chen (2009) Characterization of a glycine N-methyltransferase gene knockout mouse model for hepatocellular carcinoma: implications of the gender disparity in liver cancer susceptibility. Int J Cancer 124:816–826
https://doi.org/10.1002/ijc.23979
|
| 270 |
JH Lim, YM Lee, YS Chun, J Chen, JE Kim, JW Park (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia- inducible factor 1 alpha. Mol Cell 38:864–878
https://doi.org/10.1016/j.molcel.2010.05.023
|
| 271 |
RT Lin, R Tao, X Gao, TT Li, X Zhou, KL Guan, Y Xiong, QY Lei (2013) Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell 51:506–518
https://doi.org/10.1016/j.molcel.2013.07.002
|
| 272 |
AP Lin, S Abbas, SW Kim, M Ortega, H Bouamar, Y Escobedo, P Varadarajan, Y Qin, J Sudderth, E Schulzet al. (2015) D2HGDH regulates alpha-ketoglutarate levels and dioxygenase function by modulating IDH2. Nat Commun 6:7768
https://doi.org/10.1038/ncomms8768
|
| 273 |
SJ Linder, R Mostoslavsky (2017) Put your mark where your damage is: Acetyl-CoA production by ACLY promotes DNA repair. Mol Cell 67:165–167
https://doi.org/10.1016/j.molcel.2017.07.006
|
| 274 |
AD Liskiewicz, D Kasprowska, A Wojakowska, K Polanski, J Lewin-Kowalik, K Kotulska, H Jedrzejowska-Szypulka (2016) Longterm high fat ketogenic diet promotes renal tumor growth in a rat model of tuberous sclerosis. Sci Rep 6:21807
https://doi.org/10.1038/srep21807
|
| 275 |
ZF Liu, ZL Xie, W Jones, RE Pavlovicz, SJ Liu, JH Yu, PK Li, JY Lin, JR Fuchs, G Marcucciet al.(2009) Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett 19:706–709
https://doi.org/10.1016/j.bmcl.2008.12.041
|
| 276 |
Y Liu, K Liu, S Qin, C Xu, J Min (2014) Epigenetic targets and drug discovery: part 1: histone methylation. Pharmacol Ther 143:275–294
https://doi.org/10.1016/j.pharmthera.2014.03.007
|
| 277 |
K Liu, Y Liu, JL Lau, J Min (2015) Epigenetic targets and drug discovery Part 2: histone demethylation and DNA methylation. Pharmacol Ther 151:121–140
https://doi.org/10.1016/j.pharmthera.2015.04.001
|
| 278 |
PS Liu, HP Wang, XY Li, T Chao, TTS Christen, S Christen, G Di Conza, WC Cheng, CH Chou, M Vavakovaet al. (2017) Alphaketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol 18:985–994
https://doi.org/10.1038/ni.3796
|
| 279 |
K Liu, FZ Li, QQ Sun, N Lin, HC Han, KQ You, F Tian, ZB Mao, TT Li, TJ Tonget al. (2019) p53 beta-hydroxybutyrylation attenuates p53 activity. Cell Death Dis 10
https://doi.org/10.1038/s41419-019-1463-y
|
| 280 |
WS Lo, L Duggan, NCT Emre, R Belotserkovskya, WS Lane, R Shiekhattar, SL Berger (2001) Snf1—a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293:1142–1146
https://doi.org/10.1126/science.1062322
|
| 281 |
JW Locasale (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13:572–583
https://doi.org/10.1038/nrc3557
|
| 282 |
JA Losman, WG Kaelin (2013) What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev 27:836–852
https://doi.org/10.1101/gad.217406.113
|
| 283 |
JA Losman, RE Looper, P Koivunen, S Lee, RK Schneider, C McMahon, GS Cowley, DE Root, BL Ebert, WG Kaelin (2013) (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339:1621–1625
https://doi.org/10.1126/science.1231677
|
| 284 |
OA Lozoya, I Martinez-Reyes, T Wang, D Grenet, P Bushel, J Li, N Chandel, RP Woychik, JH Santos (2018) Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA methylation. PLoS Biol 16:
https://doi.org/10.1371/journal.pbio.2005707
|
| 285 |
C Lu, PS Ward, GS Kapoor, D Rohle, S Turcan, O Abdel-Wahab, CR Edwards, R Khanin, ME Figueroa, A Melnicket al. (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474
https://doi.org/10.1038/nature10860
|
| 286 |
C Lu, S Venneti, A Akalin, F Fang, PS Ward, RG DeMatteo, AM Intlekofer, C Chen, JB Ye, M Hameedet al. (2013) Induction of sarcomas by mutant IDH2. Genes Dev 27:1986–1998
https://doi.org/10.1101/gad.226753.113
|
| 287 |
HH Luan, R Medzhitov (2016) Food fight: role of itaconate and other metabolites in antimicrobial defense. Cell Metab 24:379–387
https://doi.org/10.1016/j.cmet.2016.08.013
|
| 288 |
Z Luka, F Moss, LV Loukachevitch, DJ Bornhop, C Wagner (2011) Histone demethylase LSD1 Is a folate-binding protein. Biochemistry 50:4750–4756
https://doi.org/10.1021/bi200247b
|
| 289 |
Z Luka, S Pakhomova, LV Loukachevitch, MW Calcutt, ME Newcomer, C Wagner (2014) Crystal structure of the histone lysine specific demethylase LSD1 complexed with tetrahydrofolate. Protein Sci 23:993–998
https://doi.org/10.1002/pro.2469
|
| 290 |
A Luong, VC Hannah, MS Brown, JL Goldstein (2000) Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J Biol Chem 275:26458–26466
https://doi.org/10.1074/jbc.M004160200
|
| 291 |
L Lv, YP Xu, D Zhao, FL Li, W Wang, N Sasaki, Y Jiang, X Zhou, TT Li, KL Guanet al.(2013) Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell 52:340–352
https://doi.org/10.1016/j.molcel.2013.09.004
|
| 292 |
A Ly, L Hoyt, J Crowell, YI Kim (2012) Folate and DNA methylation. Antioxid Redox Signal 17:302–326
https://doi.org/10.1089/ars.2012.4554
|
| 293 |
CA Lyssiotis, LC Cantley (2014) Acetate fuels the cancer engine. Cell 159:1492–1494
https://doi.org/10.1016/j.cell.2014.12.009
|
| 294 |
RH Ma, TT Ji, HF Zhang, WQ Dong, XF Chen, PW Xu, DG Chen, XY Liang, XN Yin, YY Liuet al. (2018) A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8(+) T cells. Nat Cell Biol 20:21–27
https://doi.org/10.1038/s41556-017-0002-2
|
| 295 |
ODK Maddocks, CR Berkers, SM Mason, L Zheng, K Blyth, E Gottlieb, KH Vousden (2013) Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493:542–546
https://doi.org/10.1038/nature11743
|
| 296 |
ODK Maddocks, CF Labuschagne, PD Adams, KH Vousden (2016) Serine metabolism supports the Methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol Cell 61:210–221
https://doi.org/10.1016/j.molcel.2015.12.014
|
| 297 |
ODK Maddocks, D Athineos, EC Cheung, P Lee, T Zhang, NJF van den Broek, GM Mackay, CF Labuschagne, D Gay, F Kruiswijket al. (2017) Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544:372–376
https://doi.org/10.1038/nature22056
|
| 298 |
F Madeo, F Pietrocola, T Eisenberg, G Kroemer (2014) Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discovery 13:727–740
https://doi.org/10.1038/nrd4391
|
| 299 |
AS Madsen, C Andersen, M Daoud, KA Anderson, JS Laursen, S Chakladar, FK Huynh, AR Colaco, DS Backos, P Fristrupet al. (2016) Investigating the sensitivity of NAD+-dependent sirtuin deacylation activities to NADH. J Biol Chem 291:7128–7141
https://doi.org/10.1074/jbc.M115.668699
|
| 300 |
EA Maher, I Marin-Valencia, RM Bachoo, T Mashimo, J Raisanen, KJ Hatanpaa, A Jindal, FM Jeffrey, C Choi, C Maddenet al. (2012) Metabolism of [U-13 C]glucose in human brain tumors in vivo. NMR Biomed 25:1234–1244
https://doi.org/10.1002/nbm.2794
|
| 301 |
N Mahmood, SA Rabbani (2019) DNA methylation readers and cancer: mechanistic and therapeutic applications. Front Oncol 9
https://doi.org/10.3389/fonc.2019.00489
|
| 302 |
T Maile, S Kwoczynski, RJ Katzenberger, DA Wassarman, F Sauer (2004) TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science 304:1010–1014
https://doi.org/10.1126/science.1095001
|
| 303 |
BS Mann, JR Johnson, MH Cohen, R Justice, R Pazdur (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252
https://doi.org/10.1634/theoncologist.12-10-1247
|
| 304 |
A Manuyakorn, R Paulus, J Farrell, NA Dawson, S Tze, G Cheung-Lau, OJ Hines, H Reber, DB Seligson, S Horvathet al. (2010) Cellular histone modification patterns predict prognosis and treatment response in resectable pancreatic adenocarcinoma: results from RTOG 9704. J Clin Oncol 28:1358–1365
https://doi.org/10.1200/JCO.2009.24.5639
|
| 305 |
G Marcucci, L Silverman, M Eller, L Lintz, CL Beach (2005) Bioavailability of azacitidine subcutaneous versus intravenous in patients with the myelodysplastic syndromes. J Clin Pharmacol 45:597–602
https://doi.org/10.1177/0091270004271947
|
| 306 |
ER Mardis, L Ding, DJ Dooling, DE Larson, MD McLellan, K Chen, DC Koboldt, RS Fulton, KD Delehaunty, SD McGrathet al. (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066
https://doi.org/10.1056/NEJMoa0903840
|
| 307 |
K Marjon, MJ Cameron, P Quang, MF Clasquin, E Mandley, K Kunii, M Mcvay, S Choe, A Kernytsky, S Grosset al. (2016) MTAP deletions in cancer create vulnerability to targeting of the MAT2A/ PRMT5/RIOK1 axis. Cell Rep 15:574–587
https://doi.org/10.1016/j.celrep.2016.03.043
|
| 308 |
GD Markham, MA Pajares (2009) Structure-function relationships in methionine adenosyltransferases. Cell Mol Life Sci 66:636–648
https://doi.org/10.1007/s00018-008-8516-1
|
| 309 |
C Martinez Calejman, S Trefely, SW Entwisle, A Luciano, SM Jung, W Hsiao, A Torres, CM Hung, H Li, NW Snyderet al. (2020) mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nat Commun 11:575
https://doi.org/10.1038/s41467-020-14430-w
|
| 310 |
ML Martinez-Chantar, M Vazquez-Chantada, U Ariz, N Martinez, M Varela, Z Luka, A Capdevila, J Rodriguez, AM Aransay, R Matthiesenet al. (2008) Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology 47:1191–1199
https://doi.org/10.1002/hep.22159
|
| 311 |
T Mashimo, K Pichumani, V Vemireddy, KJ Hatanpaa, DK Singh, S Sirasanagandla, S Nannepaga, SG Piccirillo, Z Kovacs, C Foonget al. (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159:1603–1614
https://doi.org/10.1016/j.cell.2014.11.025
|
| 312 |
C Tanikawa, M Espinosa, A Suzuki, K Masuda, K Yamamoto, E Tsuchiya, K Ueda, Y Daigo, Y Nakamura, , K Matsuda (2012) Regulation of histone modification and chromatin structure by the p53-PADI4 pathway. Nat Commun 3
https://doi.org/10.1038/ncomms1676
|
| 313 |
S Matsuda, J Adachi, M Ihara, N Tanuma, H Shima, A Kakizuka, M Ikura, T Ikura, T Matsuda (2016) Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor. Nucleic Acids Res 44:636–647
https://doi.org/10.1093/nar/gkv967
|
| 314 |
MP Mattson, SL Chan (2003) Calcium orchestrates apoptosis. Nat Cell Biol 5:1041–1043
https://doi.org/10.1038/ncb1203-1041
|
| 315 |
LM Mauracher, F Posch, K Martinod, E Grilz, T Daullary, L Hell, C Brostjan, C Zielinski, C Ay, DD Wagneret al. (2018) Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J Thromb Haemost 16:508–518
https://doi.org/10.1111/jth.13951
|
| 316 |
KJ Mavrakis, ER McDonald, MR Schlabach, E Billy, GR Hoffman, A deWeck, DA Ruddy, K Venkatesan, JJ Yu, G McAllisteret al. (2016) Disordered methionine metabolism in MTAP/CDKN2Adeleted cancers leads to dependence on PRMT5. Science 351:1208–1213
https://doi.org/10.1126/science.aad5944
|
| 317 |
V Mayya, DH Lundgren, SI Hwang, K Rezaul, L Wu, JK Eng, V Rodionov, DK Han (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal 2:ra46
https://doi.org/10.1126/scisignal.2000007
|
| 318 |
MA McBrian, IS Behbahan, R Ferrari, T Su, TW Huang, K Li, CS Hong, HR Christofk, M Vogelauer, DB Seligsonet al. (2013) Histone acetylation regulates intracellular pH. Mol Cell 49:310–321
https://doi.org/10.1016/j.molcel.2012.10.025
|
| 319 |
MT McCabe, HM Ott, G Ganji, S Korenchuk, C Thompson, GS Van Aller, Y Liu, AP Graves, A Della Pietra , E Diazet al. (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 492:108–112
https://doi.org/10.1038/nature11606
|
| 320 |
N McCarthy (2013) LEUKAEMIA knowing left from right. Nat Rev Cancer 13:220–220
https://doi.org/10.1038/nrc3487
|
| 321 |
OG McDonald, X Li, T Saunders, R Tryggvadottir, SJ Mentch, MO Warmoes, AE Word, A Carrer, TH Salz, S Natsumeet al.(2017) Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet 49:367–376
https://doi.org/10.1038/ng.3753
|
| 322 |
J McGrath, P Trojer (2015) Targeting histone lysine methylation in cancer. Pharmacol Ther 150:1–22
https://doi.org/10.1016/j.pharmthera.2015.01.002
|
| 323 |
SJ Mentch, M Mehrmohamadi, L Huang, XJ Liu, D Gupta, D Mattocks, PG Padilla, G Ables, MM Bamman, AE Thalacker-Mercer et al. (2015) Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab 22:861–873
https://doi.org/10.1016/j.cmet.2015.08.024
|
| 324 |
JA Mertz, AR Conery, BM Bryant, P Sandy, S Balasubramanian, DA Mele, L Bergeron, RJ Sims (2011) Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 108:16669–16674
https://doi.org/10.1073/pnas.1108190108
|
| 325 |
M Merza, H Hartman, M Rahman, R Hwaiz, EM Zhang, E Renstrom, LT Luo, M Morgelin, S Regner, H Thorlacius (2015) Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology 149:1920–1931
https://doi.org/10.1053/j.gastro.2015.08.026
|
| 326 |
CM Metallo, PA Gameiro, EL Bell, KR Mattaini, JJ Yang, K Hiller, CM Jewell, ZR Johnson, DJ Irvine, L Guarenteet al. (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380
https://doi.org/10.1038/nature10602
|
| 327 |
P Mews, G Donahue, AM Drake, V Luczak, T Abel, SL Berger (2017) Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546:381–386
https://doi.org/10.1038/nature22405
|
| 328 |
WY Mi, YC Gu, CF Han, HY Liu, QO Fan, XL Zhang, Q Cong, WG Yu (2011) O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim Biophys Acta 1812:514–519
https://doi.org/10.1016/j.bbadis.2011.01.009
|
| 329 |
ED Michelakis, G Sutendra, P Dromparis, L Webster, A Haromy, E Niven, C Maguire, TL Gammer, JR Mackey, D Fultonet al. (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:31ra34
https://doi.org/10.1126/scitranslmed.3000677
|
| 330 |
A Michelucci, T Cordes, J Ghelfi , A Pailot, N Reiling, O Goldmann, T Binz, A Wegner, A Tallam, A Rausellet al. (2013) Immuneresponsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci USA 110:7820–7825
https://doi.org/10.1073/pnas.1218599110
|
| 331 |
EL Mills, DG Ryan, HA Prag, D Dikovskaya, D Menon, Z Zaslona, MP Jedrychowski, ASH Costa, M Higgins, E Hamset al. (2018) Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556:113–117
https://doi.org/10.1038/nature25986
|
| 332 |
M Monti, V De Rosa, F Iommelli, MV Carriero, C Terlizzi, R Camerlingo, S Belli, R Fonti, G Di Minno, and S Del Vecchio (2018) Neutrophil extracellular traps as an adhesion substrate for different tumor cells expressing RGD-binding integrins. Int J Mol Sci 19
https://doi.org/10.3390/ijms19082350
|
| 333 |
F Morrish, J Noonan, C Perez-Olsen, PR Gafken, M Fitzgibbon, J Kelleher, M VanGilst, D Hockenbery (2010) Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J Biol Chem 285:36267–36274
https://doi.org/10.1074/jbc.M110.141606
|
| 334 |
MA Moscarello, FG Mastronardi, DD Wood (2007) The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem Res 32:251–256
https://doi.org/10.1007/s11064-006-9144-5
|
| 335 |
TJ Moss, LL Wallrath (2007) Connections between epigenetic gene silencing and human disease. Mutat Res 618:163–174
https://doi.org/10.1016/j.mrfmmm.2006.05.038
|
| 336 |
AR Mullen, WW Wheaton, ES Jin, PH Chen, LB Sullivan, T Cheng, YF Yang, WM Linehan, NS Chandel, RJ DeBerardinis (2012) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385
https://doi.org/10.1038/nature10642
|
| 337 |
MP Murphy, LAJ O’Neill (2018) Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell 174:780–784
https://doi.org/10.1016/j.cell.2018.07.030
|
| 338 |
CA Musselman, S Khorasanizadeh, TG Kutateladze (2014) Towards understanding methyllysine readout. Biochim Biophys Acta 1839:686–693
https://doi.org/10.1016/j.bbagrm.2014.04.001
|
| 339 |
T Muthusamy, T Cordes, MK Handzlik, L You, EW Lim, J Gengatharan, AFM Pinto, MG Badur, MJ Kolar, M Wallaceet al.(2020) Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature
https://doi.org/10.1038/s41586-020-2609-x
|
| 340 |
S Nair, JP Huynh, V Lampropoulou, E Loginicheva, E Esaulova, AP Gounder, ACM Boon, EA Schwarzkopf, TR Bradstreet, BT Edelsonet al. (2018) Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection. J Exp Med 215:1035–1045
https://doi.org/10.1084/jem.20180118
|
| 341 |
D Namgaladze, S Zukunft, F Schnutgen, N Kurrle, I Fleming, D Fuhrmann, B Brune (2018) Polarization of human macrophages by interleukin-4 does not require ATP-citrate lyase. Front Immunol 9
https://doi.org/10.3389/fimmu.2018.02858
|
| 342 |
J Nanduri, GL Semenza, NR Prabhakar (2017) Epigenetic changes by DNA methylation in chronic and intermittent hypoxia. Am J Physiol 313:L1096–L1100
https://doi.org/10.1152/ajplung.00325.2017
|
| 343 |
A Nencioni, I Caffa, S Cortellino, VD Longo (2018) Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer 18:707–719
https://doi.org/10.1038/s41568-018-0061-0
|
| 344 |
JC Newman, E Verdin (2014a) beta-Hydroxybutyrate: much more than a metabolite. Diabetes Res Clin Pract 106:173–181
https://doi.org/10.1016/j.diabres.2014.08.009
|
| 345 |
JC Newman, E Verdin (2014b) Ketone bodies as signaling metabolites. Trends Endocrinol Metab 25:42–52
https://doi.org/10.1016/j.tem.2013.09.002
|
| 346 |
JC Newman, E Verdin (2017) beta-Hydroxybutyrate: a signaling metabolite. Annu Rev Nutr 37(37):51–76
https://doi.org/10.1146/annurev-nutr-071816-064916
|
| 347 |
E Nicodeme, KL Jeffrey, U Schaefer, S Beinke, S Dewell, CW Chung, R Chandwani, I Marazzi, P Wilson, H Costeet al. (2010) Suppression of infiammation by a synthetic histone mimic. Nature 468:1119–1123
https://doi.org/10.1038/nature09589
|
| 348 |
E Nicolas, C Roumillac, D Trouche (2003) Balance between acetylation and methylation of histone H3 lysine 9 on the E2Fresponsive dihydrofolate reductase promoter. Mol Cell Biol 23:1614–1622
https://doi.org/10.1128/MCB.23.5.1614-1622.2003
|
| 349 |
Y Nonnenmacher, K Hiller (2018) Biochemistry of proinfiammatory macrophage activation. Cell Mol Life Sci 75:2093–2109
https://doi.org/10.1007/s00018-018-2784-1
|
| 350 |
SJ Nowak, VG Corces (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220
https://doi.org/10.1016/j.tig.2004.02.007
|
| 351 |
F Obata, E Kuranaga, K Tomioka, M Ming, A Takeishi, CH Chen, T Soga, M Miura (2014) Necrosis-driven systemic immune response alters SAM metabolism through the FOXO-GNMT axis. Cell Rep 7:821–833
https://doi.org/10.1016/j.celrep.2014.03.046
|
| 352 |
EK Oermann, J Wu, KL Guan, Y Xiong (2012) Alterations of metabolic genes and metabolites in cancer. Semin Cell Dev Biol 23:370–380
https://doi.org/10.1016/j.semcdb.2012.01.013
|
| 353 |
WM Oldham, CB Clish, Y Yang, J Loscalzo (2015) Hypoxiamediated Increases in L-2-hydroxyglutarate coordinate the metabolic response to reductive stress. Cell Metab 22 :291 –303
https://doi.org/10.1016/j.cmet.2015.06.021
|
| 354 |
LE Olson, J Tollkuhn, C Scafoglio, A Krones, J Zhang, KA Ohgi, W Wu, MM Taketo, R Kemler, R Grosschedlet al.(2006) Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell 125:593–605
https://doi.org/10.1016/j.cell.2006.02.046
|
| 355 |
I Onakpoya, SK Hung, R Perry, B Wider, E Ernst (2011) The use of garcinia extract (hydroxycitric acid) as a weight loss supplement: a systematic review and meta-analysis of randomised clinical trials. J Obes 2011:
https://doi.org/10.1155/2011/509038
|
| 356 |
LAJ O’Neill, MN Artyomov (2019) Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat Rev Immunol 19:273–281
https://doi.org/10.1038/s41577-019-0128-5
|
| 357 |
LAJ O’Neill, EJ Pearce (2016) Immunometabolism governs dendritic cell and macrophage function. J Exp Med 213:15–23
https://doi.org/10.1084/jem.20151570
|
| 358 |
N Osinalde, J Mitxelena, V Sanchez-Quiles, V Akimov, K Aloria, JM Arizmendi, AM Zubiaga, B Blagoev, I Kratchmarova(2016) Nuclear phosphoproteomic screen uncovers ACLYas mediator of IL-2-induced proliferation of CD4(+) T lymphocytes. Mol Cell Proteomics 15:2076–2092
https://doi.org/10.1074/mcp.M115.057158
|
| 359 |
PW Pan, JL Feldman, MK Devries, A Dong, AM Edwards, JM Denu (2011) Structure and biochemical functions of SIRT6. J Biol Chem 286:14575–14587
https://doi.org/10.1074/jbc.M111.218990
|
| 360 |
J Pan, XY Zhao, CN Lin, HC Xu, ZL Yin, TZ Liu, SZ Zhang (2014) Immune responsive gene 1, a novel oncogene, increases the growth and tumorigenicity of glioma. Oncol Rep 32:1957–1966
https://doi.org/10.3892/or.2014.3474
|
| 361 |
M Pan, MA Reid, XH Lowman, RP Kulkarni, TQ Tran, XJ Liu, Y Yang, JE Hernandez-Davies , KK Rosales, HQ Liet al. (2016) Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat Cell Biol 18:1090–1101
https://doi.org/10.1038/ncb3410
|
| 362 |
I Papandreou, RA Cairns, L Fontana, AL Lim, NC Denko (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197
https://doi.org/10.1016/j.cmet.2006.01.012
|
| 363 |
AE Papathanassiu, JH Ko, M Imprialou, M Bagnati, PK Srivastava, HA Vu, D Cucchi, SP McAdoo, EA Ananieva, C Mauroet al. (2017) BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with infiammatory diseases. Nat Commun 8
https://doi.org/10.1038/ncomms16040
|
| 364 |
J Park, Y Chen, DX Tishkoff, C Peng, MJ Tan, LZ Dai, ZY Xie, Y Zhang, BMM Zwaans, ME Skinneret al. (2013) SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 50:919–930
https://doi.org/10.1016/j.molcel.2013.06.001
|
| 365 |
SJ Parker, CM Metallo (2016) Chasing one-carbon units to understand the role of serine in epigenetics. Mol Cell 61:185–186
https://doi.org/10.1016/j.molcel.2016.01.006
|
| 366 |
CW Parker, M Kern, HN Eisen (1962) Polyfunctional dinitrophenyl haptens as reagents for elicitation of immediate type allergic skin responses. J Exp Med 115:789–801
https://doi.org/10.1084/jem.115.4.789
|
| 367 |
S Parsa, A Ortega-Molina, H-Y Ying, M Jiang, M Teater, J Wang, C Zhao, E Reznik, JP Pasion, D Kuoet al.(2020) The serine hydroxymethyltransferase-2 (SHMT2) initiates lymphoma development through epigenetic tumor suppressor silencing. Nature Cancer 1:653–664
https://doi.org/10.1038/s43018-020-0080-0
|
| 368 |
DW Parsons, S Jones, XS Zhang, JCH Lin, RJ Leary, P Angenendt, P Mankoo, H Carter, IM Siu, GL Galliaet al. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812
https://doi.org/10.1126/science.1164382
|
| 369 |
WA Pastor, L Aravind, A Rao (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14:341–356
https://doi.org/10.1038/nrm3589
|
| 370 |
MS Patel, NS Nemeria, W Furey, F Jordan (2014) The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem 289:16615–16623
https://doi.org/10.1074/jbc.R114.563148
|
| 371 |
NN Pavlova, CB Thompson (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47
https://doi.org/10.1016/j.cmet.2015.12.006
|
| 372 |
NJ Pearce, JW Yates, TA Berkhout, B Jackson, D Tew, H Boyd, P Camilleri, P Sweeney, AD Gribble, A Shawet al. (1998) The role of ATP citrate-lyase in the metabolic regulation of plasma lipids–hypolipidaemic effects of SB-204990, a lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076. Biochem J 334:113–119
https://doi.org/10.1042/bj3340113
|
| 373 |
EL Pearce, MC Walsh, PJ Cejas, GM Harms, H Shen, LS Wang, RG Jones, YW Choi (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460:103–U118
https://doi.org/10.1038/nature08097
|
| 374 |
G Perez-Chacon, AM Astudillo, D Balgoma, MA Balboa, J Balsinde (2009) Control of free arachidonic acid levels by phospholipases A2 and lysophospholipid acyltransferases. Biochim Biophys Acta 1791:1103–1113
https://doi.org/10.1016/j.bbalip.2009.08.007
|
| 375 |
F Pietrocola, L Galluzzi, JM Bravo-San Pedro, F Madeo, G Kroemer (2015) Acetyl Coenzyme A: a central metabolite and second messenger. Cell Metab 21:805–821
https://doi.org/10.1016/j.cmet.2015.05.014
|
| 376 |
M Pineiro, PJ Gonzalez, F Hernandez, E Palacian (1991) Interaction of RNA polymerase II with acetylated nucleosomal core particles. Biochem Biophys Res Commun 177:370–376
https://doi.org/10.1016/0006-291X(91)91993-M
|
| 377 |
M Pineiro, F Hernandez, E Palacian (1992) Succinylation of histone amino groups facilitates transcription of nucleosomal cores. Biochim Biophys Acta 1129:183–187
https://doi.org/10.1016/0167-4781(92)90485-I
|
| 378 |
L Poillet-Perez, XQ Xie, L Zhan, Y Yang, DW Sharp, ZS Hu, XY Su, A Maganti, C Jiang, WY Luet al. (2018) Autophagy maintains tumour growth through circulating arginine. Nature 563:569–573
https://doi.org/10.1038/s41586-018-0697-7
|
| 379 |
V Poli, L Fagnocchi, A Fasciani, A Cherubini, S Mazzoleni, S Ferrillo, A Miluzio, G Gaudioso, V Vaira, A Turdoet al.(2018) MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state (vol 9, 1024, 2018). Nat Commun 9
https://doi.org/10.1038/s41467-018-06480-y
|
| 380 |
L Polletta, E Vernucci, I Carnevale, T Arcangeli, D Rotili, S Palmerio, C Steegborn, T Nowak, M Schutkowski, L Pellegriniet al. (2015) SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy 11:253–270
https://doi.org/10.1080/15548627.2015.1009778
|
| 381 |
CJ Poole, J van Riggelen (2017) MYC-master regulator of the cancer epigenome and transcriptome. Genes (Basel) 8
https://doi.org/10.3390/genes8050142
|
| 382 |
P Prickaerts, ME Adriaens, T van den Beucken, E Koch, L Dubois, VEH Dahlmans, C Gits, CTA Evelo, M Chan-Seng-Yue, BG Wouterset al. (2016) Hypoxia increases genome-wide bivalent epigenetic marking by specific gain of H3K27me3. Epigenet Chromatin 9
https://doi.org/10.1186/s13072-016-0086-0
|
| 383 |
C Prigent, S Dimitrov (2003) Phosphorylation of serine 10 in histone H3, what for? J Cell Sci 116:3677–3685
https://doi.org/10.1242/jcs.00735
|
| 384 |
LB Pritzker, S Joshi, JJ Gowan, G Harauz, MA Moscarello (2000) Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D. Biochemistry 39:5374–5381
https://doi.org/10.1021/bi9925569
|
| 385 |
M Pufulete, R Al-Ghnaniem, A Khushal, P Appleby, N Harris, S Gout, PW Emery, TA Sanders (2005) Effect of folic acid supplementation on genomic DNA methylation in patients with colorectal adenoma. Gut 54:648–653
https://doi.org/10.1136/gut.2004.054718
|
| 386 |
H Qi, X Ning, C Yu, X Ji, Y Jin, MA McNutt, Y Yin (2019) Succinylation-dependent mitochondrial translocation of PKM2 promotes cell survival in response to nutritional stress. Cell Death Dis 10:170
https://doi.org/10.1038/s41419-018-1271-9
|
| 387 |
W Qin, K Qin, Y Zhang, W Jia, Y Chen, B Cheng, L Peng, N Chen, Y Liu, W Zhouet al.(2019) S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat Chem Biol 15:983–991
https://doi.org/10.1038/s41589-019-0323-5
|
| 388 |
W Qin, Y Zhang, H Tang, D Liu, Y Chen, Y Liu, C Wang (2020) Chemoproteomic profiling of itaconation by bioorthogonal probes in infiammatory macrophages. J Am Chem Soc 142:10894–10898
https://doi.org/10.1021/jacs.9b11962
|
| 389 |
MJ Rardin, WJ He, Y Nishida, JC Newman, C Carrico, SR Danielson, A Guo, P Gut, AK Sahu, B Liet al. (2013) SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab 18:920–933
https://doi.org/10.1016/j.cmet.2013.11.013
|
| 390 |
MA Reid, Z Dai, JW Locasale (2017) The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol 19:1298–1306
https://doi.org/10.1038/ncb3629
|
| 391 |
J Ren, BN Singh, Q Huang, ZF Li, Y Gao, P Mishra, YL Hwa, JP Li, SC Dowdy, SW Jiang (2011) DNA hypermethylation as a chemotherapy target. Cell Signal 23:1082–1093
https://doi.org/10.1016/j.cellsig.2011.02.003
|
| 392 |
E Reytor, J Perez-Miguelsanz, L Alvarez, D Perez-Sala, MA Pajares (2009) Conformational signals in the C-terminal domain of methionine adenosyltransferase I/III determine its nucleocytoplasmic distribution. FASEB J 23:3347–3360
https://doi.org/10.1096/fj.09-130187
|
| 393 |
CT Richie, A Golden (2005) Chromosome segregation: Aurora B gets tousled. Curr Biol 15:R379–R382
https://doi.org/10.1016/j.cub.2005.05.009
|
| 394 |
VM Richon, S Emiliani, E Verdin, Y Webb, R Breslow, RA Rifkind, PA Marks (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 95:3003–3007
https://doi.org/10.1073/pnas.95.6.3003
|
| 395 |
MG Riggs, RG Whittaker, JR Neumann, VM Ingram (1977) n-Butyrate causes histone modification in HeLa and friend erythroleukaemia cells. Nature 268:462–464
https://doi.org/10.1038/268462a0
|
| 396 |
WE Roediger (1982) Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83:424–429
https://doi.org/10.1016/S0016-5085(82)80339-9
|
| 397 |
D Rohle, J Popovici-Muller, N Palaskas, S Turcan, C Grommes, C Campos, J Tsoi, O Clark, B Oldrini, E Komisopoulouet al. (2013) An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340:626–630
https://doi.org/10.1126/science.1236062
|
| 398 |
KA Romano, A Martinez-Del Campo, K Kasahara, CL Chittim, El Vivas, D Amador-Noguez, EP Balskus, FE Rey (2017) Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption. Cell Host Microbe 22(279–290):
https://doi.org/10.1016/j.chom.2017.07.021
|
| 399 |
HB Ruan, XM Han, MD Li, JP Singh, K Qian, S Azarhoush, L Zhao, AM Bennett, VT Samuel, J Wuet al. (2012) O-GlcNAc transferase/ host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1 alpha stability. Cell Metab 16:226–237
https://doi.org/10.1016/j.cmet.2012.07.006
|
| 400 |
HB Ruan, YZ Nie, XY Yang (2013) Regulation of protein degradation by O-GlcNAcylation: crosstalk with ubiquitination. Mol Cell Proteomics 12:3489–3497
https://doi.org/10.1074/mcp.R113.029751
|
| 401 |
NB Ruderman, XJ Xu, L Nelson, JM Cacicedo, AK Saha, F Lan, Y Ido (2010) AMPK and SIRT1: a long-standing partnership? Am J Physiol-Endocrinol Metab 298:E751–E760
https://doi.org/10.1152/ajpendo.00745.2009
|
| 402 |
M Ruetz, GC Campanello, M Purchal, HY Shen, L McDevitt, H Gouda, S Wakabayashi, JH Zhu, EJ Rubin, K Warnckeet al. (2019) Itaconyl-CoA forms a stable biradical in methylmalonyl-CoA mutase and derails its activity and repair. Science 366:589–593
https://doi.org/10.1126/science.aay0934
|
| 403 |
AC Rufer, R Thoma, M Hennig (2009) Structural insight into function and regulation of carnitine palmitoyltransferase. Cell Mol Life Sci 66:2489–2501
https://doi.org/10.1007/s00018-009-0035-1
|
| 404 |
R Rzem, MF Vincent, E Schaftingen, M Veiga-da-Cunha (2007) L-2-Hydroxyglutaric aciduria, a defect of metabolite repair. J Inherit Metab Dis 30:681–689
https://doi.org/10.1007/s10545-007-0487-0
|
| 405 |
BR Sabari, D Zhang, CD Allis, YM Zhao (2017) Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 18:90–101
https://doi.org/10.1038/nrm.2016.140
|
| 406 |
A Sadakierska-Chudy, M Filip (2015) A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox Res 27:172–197
https://doi.org/10.1007/s12640-014-9508-6
|
| 407 |
K Sakabe, Z Wang, GW Hart (2010) Beta-N-acetylglucosamine (OGlcNAc) is part of the histone code. Proc Natl Acad Sci USA 107:19915–19920
https://doi.org/10.1073/pnas.1009023107
|
| 408 |
SF Sakata, LL Shelly, S Ruppert, G Schutz, JY Chou (1993) Cloning and expression of murine S-adenosylmethionine synthetase. J Biol Chem 268:13978–13986
https://doi.org/10.1016/S0021-9258(19)85198-0
|
| 409 |
R Saldana-Meyer, F Recillas-Targa (2011) Transcriptional and epigenetic regulation of the p53 tumor suppressor gene. Epigenetics 6:1068–1077
https://doi.org/10.4161/epi.6.9.16683
|
| 410 |
HB Salvesen, N MacDonald, A Ryan, IJ Jacobs, ED Lynch, LA Akslen, S Das (2001) PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer 91:22–26
https://doi.org/10.1002/1097-0215(20010101)91:1<22::AID-IJC1002>3.0.CO;2-S
|
| 411 |
P Sassone-Corsi , CA Mizzen, P Cheung, C Crosio, L Monaco, S Jacquot, A Hanauer, CD Allis (1999) Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285:886–891
https://doi.org/10.1126/science.285.5429.886
|
| 412 |
W Scheppach, F Weiler (2004) The butyrate story: old wine in new bottles? Curr Opin Clin Nutr Metab Care 7:563–567
https://doi.org/10.1097/00075197-200409000-00009
|
| 413 |
AM Schmitt, S Schmid, T Rudolph, M Anlauf, C Prinz, G Kloppel, H Moch, PU Heitz, P Komminoth, A Perren (2009) VHL inactivation is an important pathway for the development of malignant sporadic pancreatic endocrine tumors. Endocr Relat Cancer 16:1219–1227
https://doi.org/10.1677/ERC-08-0297
|
| 414 |
ZT Schug, B Peck, DT Jones, QF Zhang, S Grosskurth, IS Alam, LM Goodwin, E Smethurst, S Mason, K Blythet al. (2015) Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27:57–71
https://doi.org/10.1016/j.ccell.2014.12.002
|
| 415 |
M Sciacovelli, E Goncalves, TI Johnson, VR Zecchini, ASH da Costa , E Gaude, AV Drubbel, SJ Theobald, SR Abbo, MGB Tranet al. (2016) Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition (vol 537, pg 544, 2016). Nature 540
https://doi.org/10.1038/nature19353
|
| 416 |
DB Seligson, S Horvath, T Shi, H Yu, S Tze, M Grunstein, SK Kurdistani (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435:1262–1266
https://doi.org/10.1038/nature03672
|
| 417 |
DB Seligson, S Horvath, MA McBrian, V Mah, H Yu, S Tze, Q Wang, D Chia, L Goodglick, SK Kurdistani (2009) Global levels of histone modifications predict prognosis in different cancers. Am J Pathol 174:1619–1628
https://doi.org/10.2353/ajpath.2009.080874
|
| 418 |
M Serefidou, AV Venkatasubramani, A Imhof (2019) The impact of one carbon metabolism on histone methylation. Front Genet 10
https://doi.org/10.3389/fgene.2019.00764
|
| 419 |
CL Shan, S Elf, QJ Ji, HB Kang, L Zhou, T Hitosugi, LT Jin, RT Lin, L Zhang, JH Seoet al. (2014) Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth. Mol Cell 55:552–565
https://doi.org/10.1016/j.molcel.2014.06.020
|
| 420 |
H Shen, GC Campanello, D Flicker, Z Grabarek, J Hu, C Luo, R Banerjee, VK Mootha (2017) The human knockout gene CLYBL connects itaconate to vitamin B12. Cell 171(771–782):
https://doi.org/10.1016/j.cell.2017.09.051
|
| 421 |
Y Shi, F Lan, C Matson, P Mulligan, JR Whetstine, PA Cole, RA Casero, Y Shi (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953
https://doi.org/10.1016/j.cell.2004.12.012
|
| 422 |
Y Shi, J Tomic, F Wen, S Shaha, A Bahlo, R Harrison, JW Dennis, R Williams, BJ Gross, S Walkeret al. (2010) Aberrant O-GlcNAcylation characterizes chronic lymphocytic leukemia. Leukemia 24:1588–1598
https://doi.org/10.1038/leu.2010.152
|
| 423 |
FT Shi, H Kim, W Lu, Q He, D Liu, MA Goodell, M Wan, Z Songyang (2013) Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells. J Biol Chem 288:20776–20784
https://doi.org/10.1074/jbc.M113.460386
|
| 424 |
J Shi, JH Gu, CL Dai, J Gu, X Jin, J Sun, K Iqbal, F Liu, CX Gong (2015) O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling. Sci Rep 5:14500
https://doi.org/10.1038/srep14500
|
| 425 |
WY Shi, X Yang, B Huang, WH Shen, L Liu (2017) NOK mediates glycolysis and nuclear PDC associated histone acetylation. Front Biosci 22:1792–1804
https://doi.org/10.2741/4572
|
| 426 |
EH Shim, CB Livi, D Rakheja, J Tan, D Benson, V Parekh, EY Kho, AP Ghosh, R Kirkman, S Veluet al. (2014) L-2-hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov 4:1290–1298
https://doi.org/10.1158/2159-8290.CD-13-0696
|
| 427 |
T Shimazu, MD Hirschey, J Newman, W He, K Shirakawa, N Le Moan, CA Grueter, H Lim, LR Saunders, RD Stevenset al. (2013) Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214
https://doi.org/10.1126/science.1227166
|
| 428 |
JH Shin, JY Yang, BY Jeon, YJ Yoon, SN Cho, YH Kang, DH Ryu, GS Hwang (2011) (1)H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. J Proteome Res 10:2238–2247
https://doi.org/10.1021/pr101054m
|
| 429 |
LM Shu, TO Khor, JH Lee, SSS Boyanapalli, Y Huang, TY Wu, CLL Saw, KL Cheung, ANT Kong (2011) Epigenetic CpG demethylation of the promoter and reactivation of the expression of neurog1 by curcumin in prostate LNCaP cells. Aaps J 13:606–614
https://doi.org/10.1208/s12248-011-9300-y
|
| 430 |
N Shyh-Chang, JW Locasale, CA Lyssiotis, YX Zheng, RY Teo, S Ratanasirintrawoot, J Zhang, T Onder, JJ Unternaehrer, H Zhuet al. (2013) Infiuence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339:222–226
https://doi.org/10.1126/science.1226603
|
| 431 |
P Siedlecki, RG Boy, S Comagic, R Schirrmacher, M Wiessler, P Zielenkiewicz, S Suhai, F Lyko (2003) Establishment and functional validation of a structural homology model for human DNA methyltransferase 1. Biochem Biophys Res Commun 306:558–563
https://doi.org/10.1016/S0006-291X(03)01000-3
|
| 432 |
MS Singer, A Kahana, AJ Wolf, LL Meisinger, SE Peterson, C Goggin, M Mahowald, DE Gottschling (1998) Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 150:613–632
https://doi.org/10.1093/genetics/150.2.613
|
| 433 |
N Singh, A Duenas-Gonzalez, F Lyko, JL Medina-Franco (2009a) Molecular modeling and molecular dynamics studies of hydralazine with human DNA methyltransferase 1. ChemMedChem 4:792–799
https://doi.org/10.1002/cmdc.200900017
|
| 434 |
RK Singh, MH Kabbaj, J Paik, A Gunjan (2009b) Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis. Nat Cell Biol 11:925–933
https://doi.org/10.1038/ncb1903
|
| 435 |
BN Singh, S Shankar, RK Srivastava (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82:1807–1821
https://doi.org/10.1016/j.bcp.2011.07.093
|
| 436 |
JP Singh, K Zhang, J Wu, X Yang (2015) O-GlcNAc signaling in cancer metabolism and epigenetics. Cancer Lett 356:244–250
https://doi.org/10.1016/j.canlet.2014.04.014
|
| 437 |
S Sivanand, S Rhoades, Q Jiang, JV Lee, J Benci, J Zhang, S Yuan, I Viney, S Zhao, A Carreret al. (2017) Nuclear acetyl-CoA production by ACLY promotes homologous recombination. Mol Cell 67(252–265):
https://doi.org/10.1016/j.molcel.2017.06.008
|
| 438 |
C Slawson, GW Hart (2011) O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer 11:678–684
https://doi.org/10.1038/nrc3114
|
| 439 |
C Slawson, J Pidala, R Potter (2001) Increased N-acetyl-betaglucosaminidase activity in primary breast carcinomas corresponds to a decrease in N-acetylglucosamine containing proteins. Biochim Biophys Acta 1537:147–157
https://doi.org/10.1016/S0925-4439(01)00067-9
|
| 440 |
J Smestad, L Erber, Y Chen, LJ Maher (2018) Chromatin succinylation correlates with active gene expression and is perturbed by defective TCA cycle metabolism. Iscience 2:63–75
https://doi.org/10.1016/j.isci.2018.03.012
|
| 441 |
YA Soesanto, B Luo, D Jones, R Taylor, JS Gabrielsen, G Parker, DA McClain (2008) Regulation of Akt signaling by O-GlcNAc in euglycemia. Am J Physiol Endocrinol Metab 295:E974–980
https://doi.org/10.1152/ajpendo.90366.2008
|
| 442 |
A Soloaga, S Thomson, GR Wiggin, N Rampersaud, MH Dyson, CA Hazzalin, LC Mahadevan, JS Arthur (2003) MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J 22:2788–2797
https://doi.org/10.1093/emboj/cdg273
|
| 443 |
H Song, J Ma, ZX Bian, SH Chen, JB Zhu, J Wang, N Huang, MZ Yin, FY Sun, M Xuet al. (2019) Global profiling of O-GlcNAcylated and/or phosphorylated proteins in hepatoblastoma. Signal Transduct Target Ther 4
https://doi.org/10.1038/s41392-019-0067-4
|
| 444 |
JC Soria, HY Lee, JI Lee, L Wang, JP Issa, BL Kemp, DD Liu, JM Kurie, L Mao, FR Khuri (2002) Lack of PTEN expression in nonsmall cell lung cancer could be related to promoter methylation. Clin Cancer Res 8:1178–1184
|
| 445 |
F Sorm, A Piskala, A Cihak, J Vesely(1964) 5-Azacytidine, a new, highly effective cancerostatic. Experientia 20:202–203
https://doi.org/10.1007/BF02135399
|
| 446 |
A Sreedhar, EK Wiese, T Hitosugi (2020) Enzymatic and metabolic regulation of lysine succinylation. Genes Dis 7:166–171
https://doi.org/10.1016/j.gendis.2019.09.011
|
| 447 |
JM Stafford, CH Lee, P Voigt, N Descostes, R Saldana-Meyer, JR Yu, G Leroy, O Oksuz, JR Chapman, F Suarezet al. (2018) Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. Sci Adv 4
https://doi.org/10.1101/432781
|
| 448 |
GR Steinberg, D Carling (2019) AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov 18:527–551
https://doi.org/10.1038/s41573-019-0019-2
|
| 449 |
ZE Stine, ZE Walton, BJ Altman, AL Hsieh, CV Dang (2015) MYC, metabolism, and cancer. Cancer Discov 5:1024–1039
https://doi.org/10.1158/2159-8290.CD-15-0507
|
| 450 |
AR Stram, RM Payne (2016) Post-translational modifications in mitochondria: protein signaling in the powerhouse. Cell Mol Life Sci 73:4063–4073
https://doi.org/10.1007/s00018-016-2280-4
|
| 451 |
CL Strelko, WY Lu, FJ Dufort, TN Seyfried, TC Chiles, JD Rabinowitz, MF Roberts (2011) Itaconic acid is a mammalian metabolite induced during macrophage activation. J Am Chem Soc 133:16386–16389
https://doi.org/10.1021/ja2070889
|
| 452 |
CH Su, YJ Shann, MT Hsu (2009) p53 chromatin epigenetic domain organization and p53 transcription. Mol Cell Biol 29:93–103
https://doi.org/10.1128/MCB.00704-08
|
| 453 |
M Sugimoto, H Sakagami, Y Yokote, H Onuma, M Kaneko, M Mori, Y Sakaguchi, T Soga, M Tomita (2011) Non-targeted metabolite profiling in activated macrophage secretion. Metabolomics 8:624–633
https://doi.org/10.1007/s11306-011-0353-9
|
| 454 |
T Sugimura, SM Birnbaum, M Winitz, JP Greenstein (1959) Quantitative nutritional studies with water-soluble, chemically defined diets. VII. Nitrogen balance in normal and tumor-bearing rats following forced feeding. Arch Biochem Biophys 81:439–447
https://doi.org/10.1016/0003-9861(59)90224-3
|
| 455 |
PL Sulkowski, CD Corso, ND Robinson, SE Scanlon, KR Purshouse, H Bai, Y Liu, RK Sundaram, DC Hegan, NR Fonset al. (2017) 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med 9
https://doi.org/10.1126/scitranslmed.aal2463
|
| 456 |
PL Sulkowski, RK Sundaram, S Oeck, CD Corso, Y Liu, S Noorbakhsh, M Niger, M Boeke, D Ueno, AN Kalathilet al. (2018) Krebscycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat Genet 50:1086–1092
https://doi.org/10.1038/s41588-018-0170-4
|
| 457 |
PL Sulkowski, S Oeck, J Dow, NG Economos, L Mirfakhraie, Y Liu, K Noronha, X Bao, J Li, BM Shuchet al. (2020) Oncometabolites suppress DNA repair by disrupting local chromatin signalling. Nature 582:586–591
https://doi.org/10.1038/s41586-020-2363-0
|
| 458 |
LC Sun, P Gao (2017) Reproducibility in cancer biology: small molecules remain on target for c-Myc. Elife 6
https://doi.org/10.7554/eLife.22915
|
| 459 |
LC Sun, LB Song, QF Wan, GW Wu, XH Li, YH Wang, J Wang, ZJ Liu, XY Zhong, XP Heet al. (2015) cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell Res 25:429–444
https://doi.org/10.1038/cr.2015.33
|
| 460 |
LC Sun, CX Suo, ST Li, HF Zhang, P Gao (2018) Metabolic reprogramming for cancer cells and their microenvironment: beyond the Warburg effect. Biochim Biophys Acta 1870:51–66
https://doi.org/10.1016/j.bbcan.2018.06.005
|
| 461 |
G Sutendra, A Kinnaird, P Dromparis, R Paulin, TH Stenson, A Haromy, K Hashimoto, N Zhang, E Flaim, ED Michelakis (2014) A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158:84–97
https://doi.org/10.1016/j.cell.2014.04.046
|
| 462 |
H Takahashi, JM McCaffery, RA Irizarry, JD Boeke (2006) Nucleocytosolic acetyl-coenzyme A synthetase is required for histone acetylation and global transcription. Mol Cell 23:207–217
https://doi.org/10.1016/j.molcel.2006.05.040
|
| 463 |
M Takawa, K Masuda, M Kunizaki, Y Daigo, K Takagi, Y Iwai, HS Cho, G Toyokawa, Y Yamane, K Maejimaet al. (2011) Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker. Cancer Sci 102:1298–1305
https://doi.org/10.1111/j.1349-7006.2011.01958.x
|
| 464 |
F Takusagawa, S Kamitori, GD Markham (1996) Structure and function of S-adenosylmethionine synthetase: crystal structures of S-adenosylmethionine synthetase with ADP, BrADP, and PPi at 28 angstroms resolution. Biochemistry 35:2586–2596
https://doi.org/10.1021/bi952604z
|
| 465 |
A Tallam, TM Perumal, PM Antony, C Jager, JV Fritz, L Vallar, R Balling, A del Sol, A Michelucci (2016) Gene regulatory network inference of immunoresponsive gene 1 (IRG1) identifies interferon regulatory factor 1 (IRF1) as its transcriptional regulator in mammalian macrophages. PLoS ONE 11
https://doi.org/10.1371/journal.pone.0149050
|
| 466 |
GM Tannahill, AM Curtis, J Adamik, EM Palsson-McDermott, AF McGettrick, G Goel, C Frezza, NJ Bernard, B Kelly, NH Foleyet al.(2013) Succinate is an inflammatory signal that induces IL-1 beta through HIF-1 alpha. Nature 496:238–242
https://doi.org/10.1038/nature11986
|
| 467 |
ME Taplin, A Hussain, ND Shore, B Bradley, P Trojer, C Lebedinsky, AM Senderowicz, ES Antonarakis (2018) A phase 1b/2 study of CPI-1205, a small molecule inhibitor of EZH2, combined with enzalutamide (E) or abiraterone/prednisone (A/P) in patients with metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol 36
https://doi.org/10.1200/JCO.2018.36.6_suppl.TPS398
|
| 468 |
C Thalin, S Lundstrom, C Seignez, M Daleskog, A Lundstrom, P Henriksson, T Helleday, M Phillipson, H Wallen, M Demers (2018). Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS ONE 13
https://doi.org/10.1371/journal.pone.0191231
|
| 469 |
CB Thompson (2019) Cancer cell metabolism: reexamining the regulation of anabolic growth in health and disease. Faseb J 33
https://doi.org/10.1096/fasebj.2019.33.1_supplement.226.1
|
| 470 |
S Tohme, HO Yazdani, AB Al-Khafaji, AP Chidi, P Loughran, K Mowen, YM Wang, RL Simmons, H Huang, A Tsung (2016) Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res 76:1367–1380
https://doi.org/10.1158/0008-5472.CAN-15-1591
|
| 471 |
MJ Topper, M Vaz, KB Chiappinelli, CE DeStefano Shields, N Niknafs, RC Yen, A Wenzel, J Hicks, M Ballew, M Stoneet al. (2017) Epigenetic therapy ties MYC depletion to reversing immune evasion and treating lung cancer. Cell 171(1284–1300):
https://doi.org/10.1016/j.cell.2017.10.022
|
| 472 |
J Trojan, A Brieger, J Raedle, M Esteller, S Zeuzem (2000) 5 ‘-CpG island methylation of the LKB1/STK11 promoter and allelic loss at chromosome 19p13.3 in sporadic colorectal cancer. Gut 47:272–276
https://doi.org/10.1136/gut.47.2.272
|
| 473 |
PA Tyrakis, A Palazon, D Macias, KL Lee, AT Phan, P Velica, J You, GS Chia, J Sim, A Doedenset al. (2016) S-2-hydroxyglutarate regulates CD8(+) T-lymphocyte fate. Nature 540:236–241
https://doi.org/10.1038/nature20165
|
| 474 |
MJ Uddin, Y Joe, SK Kim, SO Jeong, SW Ryter, HO Pae, HT Chung (2016) IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-infiammatory cytokine production. Cell Mol Immunol 13:170–179
https://doi.org/10.1038/cmi.2015.02
|
| 475 |
P Ulivi, L Mercatali, GL Casoni, E Scarpi, L Bucchi, R Silvestrini, S Sanna, M Monteverde, D Amadori, V Polettiet al. (2013) Multiple marker detection in peripheral blood for NSCLC diagnosis. PLoS ONE 8
https://doi.org/10.1371/journal.pone.0057401
|
| 476 |
MA van den Berg , P de Jong-Gubbels, CJ Kortland, JP van Dijken, JT Pronk, HY Steensma (1996) The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 271:28953–28959
https://doi.org/10.1074/jbc.271.46.28953
|
| 477 |
E Van Quickelberghe, A Martens, LJE Goeminne, L Clement, G van Loo, K Gevaert (2018) Identification of immune-responsive gene 1 (IRG1) as a target of A20. J Proteome Res 17:2182–2191
https://doi.org/10.1021/acs.jproteome.8b00139
|
| 478 |
S Vanharanta, W Shu, F Brenet, AA Hakimi, A Heguy, A Viale, VE Reuter, JJ Hsieh, JM Scandura, J Massague (2013) Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nat Med 19:50–56
https://doi.org/10.1038/nm.3029
|
| 479 |
S Varambally, SM Dhanasekaran, M Zhou, TR Barrette, C Kumar-Sinha, MG Sanda, D Ghosh, KJ Pienta, RGAB Sewalt, AP Otteet al. (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629
https://doi.org/10.1038/nature01075
|
| 480 |
S Varambally, Q Cao, RS Mani, S Shankar, XS Wang, B Ateeq, B Laxman, XH Cao, XJ Jing, K Ramnarayananet al. (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in Cancer. Science 322:1695–1699
https://doi.org/10.1126/science.1165395
|
| 481 |
P Vella, A Scelfo, S Jammula, F Chiacchiera, K Williams, A Cuomo, A Roberto, J Christensen, T Bonaldi, K Helinet al. (2013) Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol Cell 49:645–656
https://doi.org/10.1016/j.molcel.2012.12.019
|
| 482 |
M Ventura, F Mateo, J Serratosa, I Salaet, S Carujo, O Bachs, MJ Pujol (2010) Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by acetylation. Int J Biochem Cell Biol 42:1672–1680
https://doi.org/10.1016/j.biocel.2010.06.014
|
| 483 |
E Verdin (2015) NAD(+) in aging, metabolism, and neurodegeneration. Science 350:1208–1213
https://doi.org/10.1126/science.aac4854
|
| 484 |
KHG Verschueren, C Blanchet, J Felix, A Dansercoer, D De Vos, Y Bloch, J Van Beeumen, D Svergun, I Gutsche, SN Savvideset al. (2019) Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature 568:571–575
https://doi.org/10.1038/s41586-019-1095-5
|
| 485 |
G Vidali, LC Boffa, EM Bradbury, VG Allfrey (1978) Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. Proc Natl Acad Sci USA 75:2239–2243
https://doi.org/10.1073/pnas.75.5.2239
|
| 486 |
P Volkel, B Dupret, X Le Bourhis, PO Angrand (2015) Diverse involvement of EZH2 in cancer epigenetics. Am J Transl Res 7:175–193
|
| 487 |
L Vrba, DJ Junk, P Novak, BW Futscher (2008) p53 induces distinct epigenetic states at its direct target promoters. Bmc Genomics 9
https://doi.org/10.1186/1471-2164-9-486
|
| 488 |
N Wagener, S Macher-Goeppinger, M Pritsch, J Husing, K Hoppe-Seyler, P Schirmacher, J Pfitzenmaier, A Haferkamp, F Hoppe-Seyler, M Hohenfellner (2010) Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma. Bmc Cancer 10
https://doi.org/10.1186/1471-2407-10-524
|
| 489 |
YP Wang, QY Lei (2018) Metabolic recoding of epigenetics in cancer. Cancer Commun (Lond) 38:25
https://doi.org/10.1186/s40880-018-0302-3
|
| 490 |
Y Wang, J Wysocka, J Sayegh, YH Lee, JR Perlin, L Leonelli, LS Sonbuchner, CH McDonald, RG Cook, Y Douet al. (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283
https://doi.org/10.1126/science.1101400
|
| 491 |
J Wang, P Alexander, L Wu, R Hammer, O Cleaver, SL McKnight (2009) Dependence of mouse embryonic stem cells on threonine catabolism. Science 325:435–439
https://doi.org/10.1126/science.1173288
|
| 492 |
YJ Wang, PX Li, S Wang, J Hu, XA Chen, JH Wu, M Fisher, K Oshaben, N Zhao, Y Guet al. (2012) Anticancer peptidylarginine deiminase (PAD) inhibitors regulate the autophagyfiux and the mammalian target of rapamycin complex 1 activity. J Biol Chem 287:25941–25953
https://doi.org/10.1074/jbc.M112.375725
|
| 493 |
F Wang, J Travins, B DeLaBarre, V Penard-Lacronique, S Schalm, E Hansen, K Straley, A Kernytsky, W Liu, C Gliseret al. (2013) Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340:622–626
https://doi.org/10.1126/science.1234769
|
| 494 |
F Wang, K Wang, W Xu, SM Zhao, D Ye, Y Wang, Y Xu, LS Zhou, YW Chu, CP Zhanget al. (2017a) SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1 beta production and to prevent DSS-induced colitis in mice. Cell Rep 19:2331–2344
https://doi.org/10.1016/j.celrep.2017.05.065
|
| 495 |
Y Wang, YR Guo, K Liu, Z Yin, R Liu, Y Xia, L Tan, P Yang, JH Lee, XJ Liet al. (2017b) KAT2A coupled with the alpha-KGDH complex acts as a histone H3 succinyltransferase. Nature 552:273–277
https://doi.org/10.1038/nature25003
|
| 496 |
Y Wang, J Jin, MWH Chung, L Feng, HY Sun, Q Hao (2018a) Identification of the YEATS domain of GAS41 as a pH-dependent reader of histone succinylation. Proc Natl Acad Sci USA 115:2365–2370
https://doi.org/10.1073/pnas.1717664115
|
| 497 |
YG Wang, YR Guo, DM Xing, YJ Tao, ZM Lu (2018b) Supramolecular assembly of KAT2A with succinyl-CoA for histone succinylation. Cell Discov 4
https://doi.org/10.1038/s41421-018-0048-8
|
| 498 |
C Wang, C Zhang, X Li, J Shen, Y Xu, H Shi, X Mu, J Pan, T Zhao, M Liet al. (2019a) CPT1A-mediated succinylation of S100A10 increases human gastric cancer invasion. J Cell Mol Med 23:293–305
https://doi.org/10.1111/jcmm.13920
|
| 499 |
GX Wang, JG Meyer, WK Cai, S Softic, ME Li, E Verdin, C Newgard, B Schilling, CR Kahn (2019b) Regulation of UCP1 and mitochondrial metabolism in brown adipose tissue by reversible succinylation. Mol Cell 74:844–857
https://doi.org/10.1016/j.molcel.2019.03.021
|
| 500 |
PS Ward, J Patel, DR Wise, O Abdel-Wahab, BD Bennett, HA Coller, JR Cross, VR Fantin, CV Hedvat, AE Perlet al. (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17:225–234
https://doi.org/10.1016/j.ccr.2010.01.020
|
| 501 |
JA Watson, CJ Watson, A McCann, J Baugh (2010) Epigenetics, the epicenter of the hypoxic response. Epigenetics 5:293–296
https://doi.org/10.4161/epi.5.4.11684
|
| 502 |
BT Weinert, C Scholz, SA Wagner, V Iesmantavicius, D Su, JA Daniel, C Choudhary (2013) Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 4:842–851
https://doi.org/10.1016/j.celrep.2013.07.024
|
| 503 |
JM Weiss, LC Davies, M Karwan, L Ileva, MK Ozaki, RYS Cheng, LA Ridnour, CM Annunziata, DA Wink, DW McVicar (2018) Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors. J Clin Investig 128:3794–3805
https://doi.org/10.1172/JCI99169
|
| 504 |
KE Wellen, G Hatzivassiliou, UM Sachdeva, TV Bui, JR Cross, CB Thompson (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080
https://doi.org/10.1126/science.1164097
|
| 505 |
NC Williams, LAJ O’Neill (2018) A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation. Front Immunol 9:141
https://doi.org/10.3389/fimmu.2018.00141
|
| 506 |
NC Williams, LA O’Neill (2020) ACLY-matizing macrophages to histone modification during immunometabolic reprogramming. Trends Immunol 41:93–94
https://doi.org/10.1016/j.it.2019.12.009
|
| 507 |
SC Williams, MA Karajannis, L Chiriboga, JG Golfinos, A von Deimling, D Zagzag (2011) R132H-mutation of isocitrate dehydrogenase-1 is not sufficient for HIF-1 alpha upregulation in adult glioma. Acta Neuropathol 121:279–281
https://doi.org/10.1007/s00401-010-0790-y
|
| 508 |
DR Wise, PS Ward, JES Shay, JR Cross, JJ Gruber, UM Sachdeva, JM Platt, RG DeMatteo, MC Simon, CB Thompson (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 108:19611–19616
https://doi.org/10.1073/pnas.1117773108
|
| 509 |
EE Witalison, PR Thompson, LJ Hofseth (2015) Protein arginine deiminases and associated citrullination: physiological functions and diseases associated with dysregulation. Curr Drug Targets 16:700–710
https://doi.org/10.2174/1389450116666150202160954
|
| 510 |
CC Wong, Y Qian, J Yu(2017) Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches. Oncogene 36:3359–3374
https://doi.org/10.1038/onc.2016.485
|
| 511 |
JG Wood, B Rogina, S Lavu, K Howitz, SL Helfand, M Tatar, D Sinclair (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689
https://doi.org/10.1038/nature02789
|
| 512 |
GW Wu, MQ Yuan, SQ Shen, XY Ma, JW Fang, LB Zhu, LC Sun, ZJ Liu, XP He, D Huanget al. (2017) Menin enhances c-Mycmediated transcription to promote cancer progression. Nat Commun 8
https://doi.org/10.1038/ncomms15278
|
| 513 |
S Xia, R Lin, L Jin, L Zhao, HB Kang, Y Pan, S Liu, G Qian, Z Qian, E Konstantakouet al.(2017) Prevention of dietary-fat-fueled ketogenesis attenuates BRAF V600E tumor growth. Cell Metab 25:358–373
https://doi.org/10.1016/j.cmet.2016.12.010
|
| 514 |
Y Xiangyun, N Xiaomin, G Linping, X Yunhua, L Ziming, Y Yongfeng, C Zhiwei, L Shun (2017) Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget 8:6984–6993
https://doi.org/10.18632/oncotarget.14346
|
| 515 |
HB Xiao, WX Cao, HR Yin, YZ Lin, SH Ye (2001) Infiuence of L-methionine-deprived total parenteral nutrition with 5-fiuorouracil on gastric cancer and host metabolism. World J Gastroenterol 7:698–701
https://doi.org/10.3748/wjg.v7.i5.698
|
| 516 |
A Xiao, H Li, D Shechter, SH Ahn, LA Fabrizio, H Erdjument-Bromage, S Ishibe-Murakami, B Wang, P Tempst, K Hofmannet al. (2009) WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457:57–62
https://doi.org/10.1038/nature07668
|
| 517 |
M Xiao, H Yang, W Xu, S Ma, H Lin, H Zhu, L Liu, Y Liu, C Yang, Y Xuet al. (2012) Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26:1326–1338
https://doi.org/10.1101/gad.191056.112
|
| 518 |
Z Xie, J Dai, L Dai, M Tan, Z Cheng, Y Wu, JD Boeke, Y Zhao (2012) Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics 11:100–107
https://doi.org/10.1074/mcp.M111.015875
|
| 519 |
ZY Xie, D Zhang, DJ Chung, ZY Tang, H Huang, LZ Dai, SK Qi, JY Li, G Colak, Y Chenet al. (2016) Metabolic regulation of gene expression by histone lysine beta-hydroxybutyrylation. Mol Cell 62:194–206
https://doi.org/10.1016/j.molcel.2016.03.036
|
| 520 |
Q Xu, Y Li, X Gao, K Kang, JG Williams, L Tong, J Liu, M Ji, LJ Deterding, X Tonget al.(2020) HNF4alpha regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer. Nat Commun 11:3978
https://doi.org/10.1038/s41467-020-17818-w
|
| 521 |
D Xu, F Shao, X Bian, Y Meng, T Liang, Z Lu (2021) The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metab 33:33–50
https://doi.org/10.1016/j.cmet.2020.12.015
|
| 522 |
T Yadav, JP Quivy, G Almouzni (2018) Chromatin plasticity: a versatile landscape that underlies cell fate and identity. Science 361:1332–1336
https://doi.org/10.1126/science.aat8950
|
| 523 |
H Yan, DW Parsons, GL Jin, R McLendon, BA Rasheed, WS Yuan, I Kos, I Batinic-Haberle, S Jones, GJ Rigginset al. (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773
https://doi.org/10.1056/NEJMoa0808710
|
| 524 |
J Yang (2019) Sweetly profiling the cysteinome. Nat Chem Biol 15:935–936
https://doi.org/10.1038/s41589-019-0348-9
|
| 525 |
X Yang, K Qian (2017) Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol 18:452–465
https://doi.org/10.1038/nrm.2017.22
|
| 526 |
Y Yang, AA Sauve (2016) NAD(+) metabolism: bioenergetics, signaling and manipulation for therapy. Biochim Biophys Acta 1864:1787–1800
https://doi.org/10.1016/j.bbapap.2016.06.014
|
| 527 |
M Yang, KH Vousden (2016) Serine and one-carbon metabolism in cancer. Nat Rev Cancer 16:650–662
https://doi.org/10.1038/nrc.2016.81
|
| 528 |
XY Yang, FX Zhang, JE Kudlow (2002) Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110:69–80
https://doi.org/10.1016/S0092-8674(02)00810-3
|
| 529 |
HY Yang, T Yang, JA Baur, E Perez, T Matsui, JJ Carmona, DW Lamming, NC Souza-Pinto, VA Bohr, A Rosenzweiget al. (2007) Nutrient-sensitive mitochondrial NAD(+) levels dictate cell survival. Cell 130:1095–1107
https://doi.org/10.1016/j.cell.2007.07.035
|
| 530 |
CS Yang, X Wang, G Lu, SC Picinich (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9:429–439
https://doi.org/10.1038/nrc2641
|
| 531 |
CF Yang, WY Sun, W Cui, XK Li, J Yao, XY Jia, CJ Li, HJ Wu, ZY Hu, XM Zou (2015) Procoagulant role of neutrophil extracellular traps in patients with gastric cancer. Int J Clin Exp Pathol 8:14075–14086
|
| 532 |
HJ Yao, PX Li, BJ Venters, S Zheng, PR Thompson, BF Pugh, YM Wang (2008) Histone Arg modifications and p53 regulate the expression of OKL38, a mediator of apoptosis. J Biol Chem 283:20060–20068
https://doi.org/10.1074/jbc.M802940200
|
| 533 |
D Ye, SH Ma, Y Xiong, KL Guan (2013) R-2-hydroxyglutarate as the key effector of IDH mutations promoting oncogenesis. Cancer Cell 23:274–276
https://doi.org/10.1016/j.ccr.2013.03.005
|
| 534 |
D Ye, KL Guan, Y Xiong (2018) Metabolism, activity, and targeting of D- and L-2-hydroxyglutarates. Trends Cancer 4:151–165
https://doi.org/10.1016/j.trecan.2017.12.005
|
| 535 |
K Yen, J Travins, F Wang, MD David, E Artin, K Straley, A Padyana, S Gross, B DeLaBarre, E Tobinet al. (2017) AG-221, a first-inclass therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov 7:478–493
https://doi.org/10.1158/2159-8290.CD-16-1034
|
| 536 |
CH Yi, H Pan, J Seebacher, IH Jang, SG Hyberts, GJ Heffron, MG Vander Heiden, R Yang, F Li, JW Locasaleet al. (2011) Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell 146:607–620
https://doi.org/10.1016/j.cell.2011.06.050
|
| 537 |
J Yoo, JL Medina-Franco (2011) Homology modeling, docking and structure-based pharmacophore of inhibitors of DNA methyltransferase. J Comput Aided Mol Des 25:555–567
https://doi.org/10.1007/s10822-011-9441-1
|
| 538 |
CB Yoo, S Jeong, G Egger, GN Liang, P Phiasivongsa, CL Tang, S Redkar, PA Jones (2007) Delivery of 5-aza-2 ‘-deoxycytidine to cells using oligodeoxynucleotides. Cancer Res 67:6400–6408
https://doi.org/10.1158/0008-5472.CAN-07-0251
|
| 539 |
J Yu, J Yu, DR Rhodes, SA Tomlins, X Cao, G Chen, R Mehra, X Wang, D Ghosh, RB Shahet al. (2007) A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67:10657–10663
https://doi.org/10.1158/0008-5472.CAN-07-2498
|
| 540 |
XH Yu, DW Zhang, XL Zheng, CK Tang (2019) Itaconate: an emerging determinant of inflammation in activated macrophages. Immunol Cell Biol 97:134–141
|
| 541 |
H Yuan, Y Han, X Wang, N Li, Q Liu, Y Yin, H Wang, L Pan, L Li, K Songet al. (2020) SETD2 Restricts Prostate Cancer Metastasis by Integrating EZH2 and AMPK Signaling Pathways. Cancer Cell.
https://doi.org/10.1016/j.ccell.2020.05.022
|
| 542 |
MY Yun, J Wu, JL Workman, B Li (2011) Readers of histone modifications. Cell Res 21:564–578
https://doi.org/10.1038/cr.2011.42
|
| 543 |
AE Yuzhalin (2019) Citrullination in cancer. Cancer Res 79:1274–1284
https://doi.org/10.1158/0008-5472.CAN-18-2797
|
| 544 |
AE Yuzhalin, AN Gordon-Weeks, ML Tognoli, K Jones, B Markelc, R Konietzny, R Fischer, A Muth, E O’Neill, PR Thompsonet al. (2018) Colorectal cancer liver metastatic growth depends on PAD4-driven citrullination of the extracellular matrix. Nat Commun 9
https://doi.org/10.1038/s41467-018-07306-7
|
| 545 |
N Zaidi, JV Swinnen, K Smans (2012) ATP-citrate lyase: a key player in cancer metabolism. Cancer Res 72:3709–3714
https://doi.org/10.1158/0008-5472.CAN-11-4112
|
| 546 |
MM Zamierowski, C Wagner (1977) Identification of folate binding proteins in rat liver. J Biol Chem 252:933–938
https://doi.org/10.1016/S0021-9258(19)75187-4
|
| 547 |
JD Zeng, WKK Wu, HY Wang, XX Li (2019) Serine and one-carbon metabolism, a bridge that links mTOR signaling and DNA methylation in cancer. Pharmacol Res 149
https://doi.org/10.1016/j.phrs.2019.104352
|
| 548 |
ZH Zhang, MJ Tan, ZY Xie, LZ Dai, Y Chen, YM Zhao (2011) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7:58–63
https://doi.org/10.1038/nchembio.495
|
| 549 |
Q Zhang, X Liu, W Gao, P Li, J Hou, J Li, J Wong(2014) Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked beta-N-acetylglucosamine transferase (OGT). J Biol Chem 289:5986–5996
https://doi.org/10.1074/jbc.M113.524140
|
| 550 |
W Zhang, SL Zhang, X Hu, KY Tam (2015) Targeting tumor metabolism for cancer treatment: is pyruvate dehydrogenase kinases (PDKs) a viable anticancer target? Int J Biol Sci 11:1390–1400
https://doi.org/10.7150/ijbs.13325
|
| 551 |
D Zhang, ZY Tang, H Huang, GL Zhou, C Cui, YJ Weng, WC Liu, S Kim, S Lee, M Perez-Neutet al. (2019a) Metabolic regulation of gene expression by histone lactylation. Nature 574:575–580
https://doi.org/10.1038/s41586-019-1678-1
|
| 552 |
XR Zhang, RL Cao, JR Niu, SM Yang, HD Ma, S Zhao, HT Li (2019b) Molecular basis for hierarchical histone de-beta-hydroxybutmlation by SIRT3. Cell Discov 5
https://doi.org/10.1038/s41421-019-0103-0
|
| 553 |
HF Zhang, K Tang, JW Ma, L Zhou, JC Liu, LP Zeng, LY Zhu, PW Xu, J Chen, KK Weiet al. (2020) Ketogenesis-generated betahydroxybutyrate is an epigenetic regulator of CD8(+) T-cell memory development. Nat Cell Biol 22:18–25
https://doi.org/10.1038/s41556-019-0440-0
|
| 554 |
K Zhao, H Miao (2020) Targeting metabolic/epigenetic pathways: a potential strategy for cancer therapy in diffuse intrinsic pontine gliomas. Signal Transduct Target Ther 5:226
https://doi.org/10.1038/s41392-020-00344-y
|
| 555 |
G Zhao, ME Winkler (1996) A novel alpha-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J Bacteriol 178:232–239
https://doi.org/10.1128/jb.178.1.232-239.1996
|
| 556 |
S Zhao, Y Lin, W Xu, W Jiang, Z Zha, P Wang, W Yu, Z Li, L Gong, Y Penget al. (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324:261–265
https://doi.org/10.1126/science.1170944
|
| 557 |
S Zhao, W Xu, W Jiang , W Yu, Y Lin, T Zhang, J Yao, L Zhou, Y Zeng, H Liet al. (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004
https://doi.org/10.1126/science.1179689
|
| 558 |
S Zhao, A Torres, RA Henry, S Trefely, M Wallace, JV Lee, A Carrer, A Sengupta, SL Campbell, YM Kuoet al. (2016) ATP-citrate lyase controls a glucose-to-acetate metabolic switch. Cell Rep 17:1037–1052
https://doi.org/10.1016/j.celrep.2016.09.069
|
| 559 |
D Zhao, YY Li, XZ Xiong, ZL Chen, HT Li (2017) YEATS domain-A histone acylation reader in health and disease. J Mol Biol 429:1994–2002
https://doi.org/10.1016/j.jmb.2017.03.010
|
| 560 |
S Zhao, X Zhang, H Li (2018) Beyond histone acetylation-writing and erasing histone acylations. Curr Opin Struct Biol 53:169–177
https://doi.org/10.1016/j.sbi.2018.10.001
|
| 561 |
S Zhao, C Jang, J Liu, K Uehara, M Gilbert, L Izzo, XF Zeng, S Trefely, S Fernandez, A Carreret al. (2020) Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 579:586–591
https://doi.org/10.1038/s41586-020-2101-7
|
| 562 |
QF Zheng, I Maksimovic, A Upad, Y David (2020) Non-enzymatic covalent modifications: a new link between metabolism and epigenetics. Protein Cell 11:401–416
https://doi.org/10.1007/s13238-020-00722-w
|
| 563 |
LS Zhou, F Wang, RQ Sun, XF Chen, ML Zhang, Q Xu, Y Wang, SW Wang, Y Xiong, KL Guanet al. (2016) SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Rep 17:811–822
https://doi.org/10.15252/embr.201541643
|
| 564 |
A Zippo, A De Robertis, R Serafini, S Oliviero (2007) PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 9:932
https://doi.org/10.1038/ncb1618
|
| 565 |
J Zuber, JW Shi, E Wang, AR Rappaport, H Herrmann, EA Sison, D Magoon, J Qi, K Blatt, M Wunderlichet al. (2011) RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478:524
https://doi.org/10.1038/nature10334
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|