|
|
|
SARS-CoV-2 impairs the disassembly of stress granules and promotes ALS-associated amyloid aggregation |
Yichen Li1,2, Shuaiyao Lu3,4, Jinge Gu6,7, Wencheng Xia6,7, Shengnan Zhang6,7, Shenqing Zhang1,2, Yan Wang8, Chong Zhang8, Yunpeng Sun6,7, Jian Lei8, Cong Liu6,7, Zhaoming Su8( ), Juntao Yang5( ), Xiaozhong Peng3,4( ), Dan Li1,9,10( ) |
1. Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China 2. School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China 3. National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650031, China 4. State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China 5. State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China 6. Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China 7. University of Chinese Academy of Sciences, Beijing 100049, China 8. State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China 9. Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China 10. Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
|
|
Abstract The nucleocapsid (N) protein of SARS-CoV-2 has been reported to have a high ability of liquid-liquid phase separation, which enables its incorporation into stress granules (SGs) of host cells. However, whether SG invasion by N protein occurs in the scenario of SARS-CoV-2 infection is unknow, neither do we know its consequence. Here, we used SARS-CoV-2 to infect mammalian cells and observed the incorporation of N protein into SGs, which resulted in markedly impaired self-disassembly but stimulated cell cellular clearance of SGs. NMR experiments further showed that N protein binds to the SG-related amyloid proteins via non-specific transient interactions, which not only expedites the phase transition of these proteins to aberrant amyloid aggregation in vitro, but also promotes the aggregation of FUS with ALS-associated P525L mutation in cells. In addition, we found that ACE2 is not necessary for the infection of SARS-CoV-2 to mammalian cells. Our work indicates that SARS-CoV-2 infection can impair the disassembly of host SGs and promote the aggregation of SG-related amyloid proteins, which may lead to an increased risk of neurodegeneration.
|
| Keywords
SARS-CoV-2
nucleocapsid protein
stress granule
|
|
Corresponding Author(s):
Zhaoming Su,Juntao Yang,Xiaozhong Peng,Dan Li
|
|
Issue Date: 27 July 2022
|
|
| 1 |
R Amraei, W Yin, MA Napoleon, EL Suder, J Berrigan, Q Zhao, J Olejnik, K Chandler, C Xia, J Feldman, et al (2021) CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2. bioRxiv
|
| 2 |
J Bellmann, A Monette, V Tripathy, A Sojka, M Abo-Rady, A Janosh, R Bhatnagar, M Bickle, AJ Mouland, J Sterneckert (2019) Viral infections exacerbate FUS-ALS phenotypes in iPSC-derived spinal neurons in a virus species-specific manner. Front Cell Neurosci 13: 480
https://doi.org/10.3389/fncel.2019.00480
|
| 3 |
M Bostanciklioglu (2020) Severe acute respiratory syndrome coronavirus 2 is penetrating to dementia research. Curr Neurovasc Res.
|
| 4 |
JR Buchan, RM Kolaitis, JP Taylor, R Parker (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153: 1461- 1474
https://doi.org/10.1016/j.cell.2013.05.037
|
| 5 |
KA Burke, AM Janke, CL Rhine, NL Fawzi (2015) Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase Ⅱ. Mol Cell 60: 231- 241
https://doi.org/10.1016/j.molcel.2015.09.006
|
| 6 |
CR Carlson, JB Asfaha, CM Ghent, CJ Howard, N Hartooni, M Safari, AD Frankel, DO Morgan (2020) Phosphoregulation of phase separation by the SARS-CoV-2 N protein suggests a biophysical basis for its dual functions. Mol Cell 80: 1092- 1103
https://doi.org/10.1016/j.molcel.2020.11.025
|
| 7 |
JF Chan, KH Kok, Z Zhu, H Chu, KK To, S Yuan, KY Yuen (2020) Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 9: 221- 236
https://doi.org/10.1080/22221751.2020.1719902
|
| 8 |
H Chen, Y Cui, X Han, W Hu, M Sun, Y Zhang, PH Wang, G Song, W Chen, J Lou (2020) Liquid-liquid phase separation by SARS-CoV-2 nucleocapsid protein and RNA. Cell Res 30: 1143- 1145
https://doi.org/10.1038/s41422-020-00408-2
|
| 9 |
J Chen, J Fan, Z Chen, M Zhang, H Peng, J Liu, L Ding, M Liu, C Zhao, P Zhao et al (2021) Nonmuscle myosin heavy chain IIA facilitates SARS-CoV-2 infection in human pulmonary cells. Proc Natl Acad Sci USA 118: e2111011118
https://doi.org/10.1073/pnas.2111011118
|
| 10 |
ME Cohen, R Eichel, B Steiner-Birmanns, A Janah, M Ioshpa, R Bar-Shalom, JJ Paul, H Gaber, V Skrahina, NM Bornstein et al (2020) A case of probable Parkinson’s disease after SARS-CoV-2 infection. Lancet Neurol 19: 804- 805
https://doi.org/10.1016/S1474-4422(20)30305-7
|
| 11 |
AE Conicella, GH Zerze, J Mittal, NL Fawzi (2016) ALS mutations disrupt phase separation mediated by alpha-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24: 1537- 1549
https://doi.org/10.1016/j.str.2016.07.007
|
| 12 |
F Crunfli, VC Carregari, FP Veras, PH Vendramini, AG Fragnani Valença, ASL Marcelo Antunes, C Brandão-Teles, G da Silva Zuccoli, G Reis-de-Oliveira, LC Silva-Costa, et al (2021) SARS-CoV-2 infects brain astrocytes of COVID-19 patients and impairs neuronal viability. medRxiv
|
| 13 |
J Cubuk, JJ Alston, JJ Incicco, S Singh, MD Stuchell-Brereton, MD Ward, MI Zimmerman, N Vithani, D Griffith, JA Wagoner, et al (2020) The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. bioRxiv
|
| 14 |
R De Santis, V Alfano, V de Turris, A Colantoni, L Santini, MG Garone, G Antonacci, G Peruzzi, E Sudria-Lopez, E Wyler et al (2019) Mutant FUS and ELAVL4 (HuD) aberrant crosstalk in amyotrophic lateral sclerosis. Cell Rep 27: 3818- 3831
https://doi.org/10.1016/j.celrep.2019.05.085
|
| 15 |
D Dormann, R Rodde, D Edbauer, E Bentmann, I Fischer, A Hruscha, ME Than, IR Mackenzie, A Capell, B Schmid et al (2010) ALS-associated fused in sarcoma (FUS) mutations disrupt transportinmediated nuclear import. EMBO J 29: 2841- 2857
https://doi.org/10.1038/emboj.2010.143
|
| 16 |
Y Duan, A Du, J Gu, G Duan, C Wang, X Gui, Z Ma, B Qian, X Deng, K Zhang et al (2019) PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins. Cell Res 29: 233- 247
https://doi.org/10.1038/s41422-019-0141-z
|
| 17 |
WA Eimer, DK Vijaya Kumar, NK Navalpur Shanmugam, AS Rodriguez, T Mitchell, KJ Washicosky, B Gyorgy, XO Breakefield, RE Tanzi, RD Moir (2018) Alzheimer’s disease-associated beta-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 99: 56- 63
https://doi.org/10.1016/j.neuron.2018.06.030
|
| 18 |
C Gao, J Zeng, N Jia, K Stavenhagen, Y Matsumoto, H Zhang, J Li, AJ Hume, E Muhlberger, Die I van, et al (2020) SARS-CoV-2 spike protein interacts with multiple innate immune receptors. bioRxiv
|
| 19 |
EM Gatto, J Fernandez Boccazzi (2020) COVID-19 and neurodegeneration: what can we learn from the past? Eur J Neurol.
https://doi.org/10.1111/ene.14311
|
| 20 |
DE Gordon, GM Jang, M Bouhaddou, J Xu, K Obernier, KM White, MJ O’Meara, VV Rezelj, JZ Guo, DL Swaney et al (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583: 459- 468
https://doi.org/10.1038/s41586-020-2286-9
|
| 21 |
J Gu, C Wang, R Hu, Y Li, S Zhang, Y Sun, Q Wang, D Li, Y Fang, C Liu (2021a) Hsp70 chaperones TDP-43 in dynamic, liquid-like phase and prevents it from amyloid aggregation. Cell Res 31: 1024- 1027
https://doi.org/10.1038/s41422-021-00526-5
|
| 22 |
Y Gu, J Cao, X Zhang, H Gao, Y Wang, J Wang, J He, X Jiang, J Zhang, G Shen, et al (2021b) Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Res
|
| 23 |
S Guseva, S Milles, MR Jensen, N Salvi, JP Kleman, D Maurin, RWH Ruigrok, M Blackledge (2020) Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly. Sci Adv 6: eaaz7095
https://doi.org/10.1126/sciadv.aaz7095
|
| 24 |
Y Gwon, BA Maxwell, RM Kolaitis, P Zhang, HJ Kim, JP Taylor (2021) Ubiquitination of G3BP1 mediates stress granule disassembly in a context-specific manner. Science 372: eabf6548
https://doi.org/10.1126/science.abf6548
|
| 25 |
ER Hascup, KN Hascup (2020) Does SARS-CoV-2 infection cause chronic neurological complications? Geroscience 42: 1083- 1087
https://doi.org/10.1007/s11357-020-00207-y
|
| 26 |
MT Heneka, D Golenbock, E Latz, D Morgan, R Brown (2020) Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res Ther 12: 69
https://doi.org/10.1186/s13195-020-00640-3
|
| 27 |
C Iserman, CA Roden, MA Boerneke, RSG Sealfon, GA McLaughlin, I Jungreis, EJ Fritch, YJ Hou, J Ekena, CA Weidmann et al (2020) Genomic RNA elements drive phase separation of the SARS-CoV-2 nucleocapsid. Mol Cell 80: 1078- 1091
https://doi.org/10.1016/j.molcel.2020.11.041
|
| 28 |
S Jain, JR Wheeler, RW Walters, A Agrawal, A Barsic, R Parker (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164: 487- 498
https://doi.org/10.1016/j.cell.2015.12.038
|
| 29 |
H Jang, D Boltz, K Sturm-Ramirez, KR Shepherd, Y Jiao, R Webster, RJ Smeyne (2009) Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc Natl Acad Sci USA 106: 14063- 14068
https://doi.org/10.1073/pnas.0900096106
|
| 30 |
BS Johnson, D Snead, JJ Lee, JM McCaffery, J Shorter, AD Gitler (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 284: 20329- 20339
https://doi.org/10.1074/jbc.M109.010264
|
| 31 |
M Kato, TW Han, S Xie, K Shi, X Du, LC Wu, H Mirzaei, EJ Goldsmith, J Longgood, J Pei et al (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149: 753- 767
https://doi.org/10.1016/j.cell.2012.04.017
|
| 32 |
R Kaur, SK Lal (2020) The multifarious roles of heterogeneous ribonucleoprotein A1 in viral infections. Rev Med Virol 30: e2097
|
| 33 |
HJ Kim, NC Kim, YD Wang, EA Scarborough, J Moore, Z Diaz, KS MacLea, B Freibaum, S Li, A Molliex et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495: 467- 473
https://doi.org/10.1038/nature11922
|
| 34 |
T Klingstedt, H Shirani, KO Aslund, NJ Cairns, CJ Sigurdson, M Goedert, KP Nilsson (2013) The structural basis for optimal performance of oligothiophene-based fluorescent amyloid ligands: conformational flexibility is essential for spectral assignment of a diversity of protein aggregates. Chemistry 19: 10179- 10192
https://doi.org/10.1002/chem.201301463
|
| 35 |
TJ Jr Kwiatkowski, DA Bosco, AL Leclerc, E Tamrazian, CR Vanderburg, C Russ, A Davis, J Gilchrist, EJ Kasarskis, T Munsat (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323: 1205- 1208
https://doi.org/10.1126/science.1166066
|
| 36 |
MM Lai, D Cavanagh (1997) The molecular biology of coronaviruses. Adv Virus Res 48: 1- 100
|
| 37 |
IC Lee, TI Huo, YH Huang (2020) Gastrointestinal and liver manifestations in patients with COVID-19. J Chin Med Assoc 83: 521- 523
https://doi.org/10.1097/JCMA.0000000000000319
|
| 38 |
W Li, MJ Moore, N Vasilieva, J Sui, SK Wong, MA Berne, M Somasundaran, JL Sullivan, K Luzuriaga, TC Greenough et al (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450- 454
https://doi.org/10.1038/nature02145
|
| 39 |
H Li, Q Xue, X Xu (2020) Involvement of the nervous system in SARS-CoV-2 infection. Neurotox Res 38: 1- 7
https://doi.org/10.1007/s12640-020-00219-8
|
| 40 |
Z Liu, S Zhang, J Gu, Y Tong, Y Li, X Gui, H Long, C Wang, C Zhao, J Lu et al (2020) Hsp27 chaperones FUS phase separation under the modulation of stress-induced phosphorylation. Nat Struct Mol Biol 27: 363- 372
https://doi.org/10.1038/s41594-020-0399-3
|
| 41 |
L Luo, Z Li, P Ma, Y Zou, P Li, A Liang, Z Jin, T Chi, C Huang, Y Zhang, et al (2020) . SARS-CoV-2 Nucleocapsid protein impairs SG assembly by partitioning into G3BP condensate. SSRN Electron J
|
| 42 |
L Luo, Z Li, T Zhao, X Ju, P Ma, B Jin, Y Zhou, S He, J Huang, X Xu et al (2021a) SARS-CoV-2 nucleocapsid protein phase separates with G3BPs to disassemble stress granules and facilitate viral production. Sci Bull 66: 1194- 1204
https://doi.org/10.1016/j.scib.2021.01.013
|
| 43 |
L Luo, Z Li, T Zhao, X Ju, P Ma, B Jin, Y Zhou, S He, J Huang, X Xu et al (2021b) SARS-CoV-2 nucleocapsid protein phase separates with G3BPs to disassemble stress granules and facilitate viral production. Sci Bull 66 (12): 1194- 1204
https://doi.org/10.1016/j.scib.2021.01.013
|
| 44 |
L Mao, H Jin, M Wang, Y Hu, S Chen, Q He, J Chang, C Hong, Y Zhou, D Wang et al (2020) Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan. China. JAMA Neurol 77 (6): 683- 690
https://doi.org/10.1001/jamaneurol.2020.1127
|
| 45 |
R Marreiros, A Muller-Schiffmann, SV Trossbach, I Prikulis, S Hansch, S Weidtkamp-Peters, AR Moreira, S Sahu, I Soloviev, S Selvarajah et al (2020) Disruption of cellular proteostasis by H1N1 influenza A virus causes alpha-synuclein aggregation. Proc Natl Acad Sci USA 117: 6741- 6751
https://doi.org/10.1073/pnas.1906466117
|
| 46 |
J Matschke, M Lutgehetmann, C Hagel, JP Sperhake, AS Schroder, C Edler, H Mushumba, A Fitzek, L Allweiss, M Dandri et al (2020) Neuropathology of patients with COVID-19 in Germany: a postmortem case series. Lancet Neurol 19: 919- 929
https://doi.org/10.1016/S1474-4422(20)30308-2
|
| 47 |
R McBride, Zyl M van, BC Fielding (2014) The coronavirus nucleocapsid is a multifunctional protein. Viruses 6: 2991- 3018
https://doi.org/10.3390/v6082991
|
| 48 |
A Molliex, J Temirov, J Lee, M Coughlin, AP Kanagaraj, HJ Kim, T Mittag, JP Taylor (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163: 123- 133
https://doi.org/10.1016/j.cell.2015.09.015
|
| 49 |
A Monette, M Niu, L Chen, S Rao, RJ Gorelick, AJ Mouland (2020) Pan-retroviral nucleocapsid-mediated phase separation regulates genomic RNA positioning and trafficking. Cell Rep 31: 107520
https://doi.org/10.1016/j.celrep.2020.03.084
|
| 50 |
MM Moosa, PR Banerjee (2020) Subversion of host stress granules by coronaviruses: potential roles of pi-rich disordered domains of viral nucleocapsids. J Med Virol.
https://doi.org/10.1002/jmv.26195
|
| 51 |
K Onomoto, M Jogi, JS Yoo, R Narita, S Morimoto, A Takemura, S Sambhara, A Kawaguchi, S Osari, K Nagata et al (2012) Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS ONE 7: e43031
https://doi.org/10.1371/journal.pone.0043031
|
| 52 |
A Paniz-Mondolfi, C Bryce, Z Grimes, RE Gordon, J Reidy, J Lednicky, EM Sordillo, M Fowkes (2020) Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol 92: 699- 702
https://doi.org/10.1002/jmv.25915
|
| 53 |
A Patel, HO Lee, L Jawerth, S Maharana, M Jahnel, MY Hein, S Stoynov, J Mahamid, S Saha, TM Franzmann et al (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162: 1066- 1077
https://doi.org/10.1016/j.cell.2015.07.047
|
| 54 |
TY Peng, KR Lee, WY Tarn (2008) Phosphorylation of the arginine/serine dipeptide-rich motif of the severe acute respiratory syndrome coronavirus nucleocapsid protein modulates its multimerization, translation inhibitory activity and cellular localization. FEBS J 275: 4152- 4163
https://doi.org/10.1111/j.1742-4658.2008.06564.x
|
| 55 |
TM Perdikari, AC Murthy, VH Ryan, S Watters, MT Naik, NL Fawzi (2020) SARS-CoV-2 nucleocapsid protein phase-separates with RNA and with human hnRNPs. EMBO J 39: e106478
|
| 56 |
DSW Protter, R Parker (2016) Principles and properties of stress granules. Trends Cell Biol 26: 668- 679
https://doi.org/10.1016/j.tcb.2016.05.004
|
| 57 |
S Qamar, G Wang, SJ Randle, FS Ruggeri, JA Varela, JQ Lin, EC Phillips, A Miyashita, D Williams, F Strohl et al (2018) FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-pi interactions. Cell 173: 720- 734
https://doi.org/10.1016/j.cell.2018.03.056
|
| 58 |
B Readhead, JV Haure-Mirande, CC Funk, MA Richards, P Shannon, V Haroutunian, M Sano, WS Liang, ND Beckmann, ND Price et al (2018) Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 99: 64- 82
https://doi.org/10.1016/j.neuron.2018.05.023
|
| 59 |
KS Saikatendu, JS Joseph, V Subramanian, BW Neuman, MJ Buchmeier, RC Stevens, P Kuhn (2007) Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. J Virol 81: 3913- 3921
https://doi.org/10.1128/JVI.02236-06
|
| 60 |
A Savastano, de Opakua A Ibanez, M Rankovic, M Zweckstetter (2020) Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. Nat Commun 11: 6041
https://doi.org/10.1038/s41467-020-19843-1
|
| 61 |
PJ Serrano-Castro, G Estivill-Torrus, P Cabezudo-Garcia, JA Reyes-Bueno, N Ciano Petersen, MJ Aguilar-Castillo, J Suarez-Perez, MD Jimenez-Hernandez, MA Moya-Molina, B Oliver-Martos et al (2020) Impact of SARS-CoV-2 infection on neurodegenerative and neuropsychiatric diseases: a delayed pandemic? Neurologia 35: 245- 251
https://doi.org/10.1016/j.nrl.2020.04.002
|
| 62 |
CMS Singal, P Jaiswal, P Seth (2020) SARS-CoV-2, more than a respiratory virus: its potential role in neuropathogenesis. ACS Chem Neurosci 11: 1887- 1899
https://doi.org/10.1021/acschemneuro.0c00251
|
| 63 |
E Song, C Zhang, B Israelow, A Lu-Culligan, AV Prado, S Skriabine, P Lu, OE Weizman, F Liu, Y Dai et al (2021) Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med 218: e20202135
https://doi.org/10.1084/jem.20202135
|
| 64 |
A Soresina, D Moratto, M Chiarini, C Paolillo, G Baresi, E Foca, M Bezzi, B Baronio, M Giacomelli, R Badolato (2020) Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatr Allergy Immunol 31 (5): 565- 569
https://doi.org/10.1111/pai.13263
|
| 65 |
I Thevarajan, THO Nguyen, M Koutsakos, J Druce, L Caly, CE van de Sandt, X Jia, S Nicholson, M Catton, B Cowie et al (2020) Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med 26: 453- 455
https://doi.org/10.1038/s41591-020-0819-2
|
| 66 |
B Wolozin, P Ivanov (2019) Stress granules and neurodegeneration. Nat Rev Neurosci 20: 649- 666
https://doi.org/10.1038/s41583-019-0222-5
|
| 67 |
F Wu, S Zhao, B Yu, YM Chen, W Wang, ZG Song, Y Hu, ZW Tao, JH Tian, YY Pei et al (2020) A new coronavirus associated with human respiratory disease in China. Nature 579: 265- 269
https://doi.org/10.1038/s41586-020-2008-3
|
| 68 |
X Zhang, F Wang, Y Hu, R Chen, D Meng, L Guo, H Lv, J Guan, Y Jia (2020) In vivo stress granule misprocessing evidenced in a FUS knock-in ALS mouse model. Brain 143: 1350- 1367
https://doi.org/10.1093/brain/awaa076
|
| 69 |
D Zhao, W Xu, X Zhang, X Wang, Y Ge, E Yuan, Y Xiong, S Wu, S Li, N Wu et al (2021) Understanding the phase separation characteristics of nucleocapsid protein provides a new therapeutic opportunity against SARS-CoV-2. Protein Cell 12: 734- 740
https://doi.org/10.1007/s13238-021-00832-z
|
| 70 |
P Zhou, XL Yang, XG Wang, B Hu, L Zhang, W Zhang, HR Si, Y Zhu, B Li, CL Huang et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270- 273
https://doi.org/10.1038/s41586-020-2012-7
|
| 71 |
N Zhu, D Zhang, W Wang, X Li, B Yang, J Song, X Zhao, B Huang, W Shi, R Lu et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382: 727- 733
https://doi.org/10.1056/NEJMoa2001017
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|