|
|
Automated interpretation of metabolic capacity from genome and metagenome sequences |
|
Automated interpretation of metabolic capacity from genome and metagenome sequences |
Minoru Kanehisa( ) |
Institute for Chemical Research, Kyoto University, Uji Kyoto 611-0011, Japan |
|
|
Abstract: The KEGG pathway maps are widely used as a reference data set for inferring high-level functions of the organism or the ecosystem from its genome or metagenome sequence data. The KEGG modules, which are tighter functional units often corresponding to subpathways in the KEGG pathway maps, are designed for better automation of genome interpretation. Each KEGG module is represented by a simple Boolean expression of KEGG Orthology (KO) identifiers (K numbers), enabling automatic evaluation of the completeness of genes in the genome. Here we focus on metabolic functions and introduce reaction modules for improving annotation and signature modules for inferring metabolic capacity. We also describe how genome annotation is performed in KEGG using the manually created KO database and the computationally generated SSDB database. The resulting KEGG GENES database with KO (K number) annotation is a reference sequence database to be compared for automated annotation and interpretation of newly determined genomes. |
Key words:
metabolic pathway
functional module
genome annotation
genome interpretation
KEGG database
|
收稿日期: 2013-08-15
出版日期: 2013-09-05
|
Corresponding Author(s):
Kanehisa Minoru,Email:kanehisa@kuicr.kyoto-u.ac.jp
|
1 |
Kanehisa, M., Goto,S., Sato, Y., Furumichi, M. and Tanabe, M. (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. , 40, D109-D114 doi: 10.1093/nar/gkr988 pmid:.22080510
|
2 |
Gene Ontology Consortium. (2013) Gene Ontology annotations and resources. Nucleic Acids Res. , 41, D530-D535 doi: 10.1093/nar/gks1050 pmid:.23161678
|
3 |
Papin, J. A., Reed,J. L. and Palsson, B. O. (2004) Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem. Sci. , 29, 641-647 doi: 10.1016/j.tibs.2004.10.001 pmid:.15544950
|
4 |
Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. and Barabási, A. L. (2002) Hierarchical organization of modularity in metabolic networks. Science , 297, 1551-1555 doi: 10.1126/science.1073374 pmid:.12202830
|
5 |
Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I. and Dandekar, T. (2002) Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics , 18, 351-361 doi: 10.1093/bioinformatics/18.2.351 pmid:.11847093
|
6 |
Yamada, T., Kanehisa, M. and Goto, S. (2006) Extraction of phylogenetic network modules from the metabolic network. BMC Bioinformatics , 7, 130 doi: 10.1186/1471-2105-7-130 pmid:.16533389
|
7 |
Ogata, H., Fujibuchi, W., Goto, S. and Kanehisa, M. (2000) A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. Nucleic Acids Res. , 28, 4021-4028 doi: 10.1093/nar/28.20.4021 pmid:.11024183
|
8 |
Muto, A., Kotera, M., Tokimatsu, T., Nakagawa, Z., Goto,S. and Kanehisa, M. (2013) Modular architecture of metabolic pathways revealed by conserved sequences of reactions. J. Chem. Inf. Model. , 53, 613-622 doi: 10.1021/ci3005379 pmid:.23384306
|
9 |
Kanehisa, M. (2013) Chemical and genomic evolution of enzyme-catalyzed reaction networks. FEBS Lett. , doi: 10.1016/j.febslet.2013.06.026 pmid:.23816707
|
10 |
Maeder, D. L., Weiss,R. B., Dunn, D. M., Cherry, J. L., González, J. M., DiRuggiero, J. and Robb, F. T. (1999) Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Genetics , 152, 1299-1305 pmid:10430560.
|
11 |
Pruitt, K. D., Tatusova, T., Brown, G. R. and Maglott, D. R. (2012) NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. , 40, D130-D135 doi: 10.1093/nar/gkr1079 pmid:.22121212
|
12 |
McDonald, A. G., Boyce,S. and Tipton, K. F. (2009) ExplorEnz: the primary source of the IUBMB enzyme list. Nucleic Acids Res. , 37, D593-D597 doi: 10.1093/nar/gkn582 pmid:.18776214
|
13 |
Howell, D. M., Harich, K., Xu, H. and White, R. H. (1998) α-keto acid chain elongation reactions involved in the biosynthesis of coenzyme B (7-mercaptoheptanoyl threonine phosphate) in methanogenic Archaea. Biochemistry , 37, 10108-10117 doi: 10.1021/bi980662p pmid:.9665716
|
14 |
Drevland, R. M., Jia,Y., Palmer, D. R. and Graham, D. E. (2008) Methanogen homoaconitase catalyzes both hydrolyase reactions in coenzyme B biosynthesis. J. Biol. Chem. , 283, 28888-28896 doi: 10.1074/jbc.M802159200 pmid:.18765671
|
15 |
Howell, D. M., Graupner, M., Xu, H. and White, R. H. (2000) Identification of enzymes homologous to isocitrate dehydrogenase that are involved in coenzyme B and leucine biosynthesis in methanoarchaea. J. Bacteriol. , 182, 5013-5016 doi: 10.1128/JB.182.17.5013-5016.2000 pmid:.10940051
|
16 |
Fazius, F., Shelest, E., Gebhardt, P. and Brock, M. (2012) The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate. Mol. Microbiol. , 86, 1508-1530 doi: 10.1111/mmi.12076 pmid:.23106124
|
17 |
Berg, I. A., Kockelkorn, D., Ramos-Vera, W. H., Say, R. F., Zarzycki, J., Hügler, M., Alber, B. E. and Fuchs, G. (2010) Autotrophic carbon fixation in archaea. Nat. Rev. Microbiol. , 8, 447-460 doi: 10.1038/nrmicro2365 pmid:.20453874
|
18 |
Ohashi, Y., Shi,W., Takatani, N., Aichi, M., Maeda, S., Watanabe, S., Yoshikawa, H. and Omata, T. (2011) Regulation of nitrate assimilation in cyanobacteria. J. Exp. Bot. , 62, 1411-1424 doi: 10.1093/jxb/erq427 pmid:.21282331
|
19 |
van der Ploeg, J. R., Eichhorn, E. and Leisinger, T. (2001) Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch. Microbiol. , 176, 1-8 doi: 10.1007/s002030100298 pmid:.11479697
|
20 |
Liu, Y. and Whitman, W. B. (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci. , 1125, 171-189 doi: 10.1196/annals.1419.019 pmid:.18378594
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|