Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

邮发代号 80-971

Quantitative Biology  2017, Vol. 5 Issue (3): 272-275   https://doi.org/10.1007/s40484-017-0114-5
  本期目录
Strategic planning for national biomedical big data infrastructure in China
Zhen Wang1, Zefeng Wang1(), Yixue Li1,2()
1. Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
2. Shanghai Center for Bioinformation Technology, Shanghai Industrial Technology Institute, Shanghai 201206, China
 全文: PDF(85 KB)   HTML
Abstract

The promise that big data will revolutionize scientific discovery and technology innovation is now being widely recognized. With the explosive growth of biomedical data, life science is being transformed into a digital science in which novel insights are gained from in-depth data analysis and modeling. Extensive and innovative utilization of biomedical big data is a key to the success of precision medicine. Therefore, constructing a centralized national-level biomedical big data infrastructure becomes crucial and urgent for China. Such infrastructure should achieve superb capacity of safe data storage, standardized data processing and quality control, systematic data integration across multiple types, and in-depth data mining and effective data sharing. Full data chain service including information retrieval, knowledge discovery and technology support can be provided to data centers, research institutes and healthcare industries. Relying on Shanghai Institutes for Biological Sciences, agreements have been signed that a main node of the infrastructure will be located in Shanghai, and a backup node will be set up in Guizhou Province. After a construction period of five years, the infrastructure should greatly enhance China’s core competence in collection, interpretation and application of biomedical big data.

Key wordsbiomedical big data    national infrastructure    precision medicine
收稿日期: 2017-05-19      出版日期: 2017-08-24
Corresponding Author(s): Zefeng Wang,Yixue Li   
 引用本文:   
. [J]. Quantitative Biology, 2017, 5(3): 272-275.
Zhen Wang, Zefeng Wang, Yixue Li. Strategic planning for national biomedical big data infrastructure in China. Quant. Biol., 2017, 5(3): 272-275.
 链接本文:  
https://academic.hep.com.cn/qb/CN/10.1007/s40484-017-0114-5
https://academic.hep.com.cn/qb/CN/Y2017/V5/I3/272
1 Mayer-Schönberger,  V.  and  Cukier, K.  (2013) Big Data: A Revolution That Will Transform How We Live, Work, and Think. Boston: Houghton Mifflin Harcourt
2 Chouard, T. (2016) The Go Files: AI computer wraps up 4-1 victory against human champion. Nature doi: 10.1038/nature. 2016.19575.
3 Gray, J. (2009) Jim Gray on eScience: A Transformed Scientific Method. Hey, T., Tansley, S., and Tolle, K. M. eds. In The Fourth Paradigm: Data-intensive Scientific Discovery. Redmond, WA: Microsoft Research, xix
4 Hey, T., Tansley,  S. and Tolle, K. M.  (2009) The Fourth Paradigm: Data-intensive Scientific Discovery. Redmond, WA: Microsoft Research
5 Hood, L. and Rowen,  L. (2013) The Human Genome Project: big science transforms biology and medicine. Genome Med., 5, 79
https://doi.org/10.1186/gm483 pmid: 24040834
6 Stephens, Z. D. ,  Lee, S. Y. ,  Faghri, F. ,  Campbell, R. H. ,  Zhai, C. ,  Efron, M. J. ,  Iyer, R. ,  Schatz, M. C. ,  Sinha, S.  and  Robinson, G. E.  (2015) Big data: astronomical or genomical? PLoS Biol., 13, e1002195.
https://doi.org/10.1371/journal.pbio.1002195 pmid: 26151137
7 Gomez-Cabrero, D., Abugessaisa,  I., Maier, D. ,  Teschendorff, A. ,  Merkenschlager, M. ,  Gisel, A. ,  Ballestar, E. ,  Bongcam-Rudloff, E. ,  Conesa, A.  and  Tegnér, J.  (2014) Data integration in the era of omics: current and future challenges. BMC Syst. Biol., 8, I1.
https://doi.org/10.1186/1752-0509-8-S2-I1 pmid: 25032990
8 Ashley, E. A.  (2016) Towards precision medicine. Nat. Rev. Genet., 17, 507–522.
https://doi.org/10.1038/nrg.2016.86 pmid: 27528417
9 Gligorijević,  V. ,  Malod-Dognin, N.  and  Pržulj, N.  (2016) Integrative methods for analyzing big data in precision medicine. Proteomics, 16, 741–758.
https://doi.org/10.1002/pmic.201500396 pmid: 26677817
10 Cochrane, G., Karsch-Mizrachi,  I., Takagi, T.  and the International Nucleotide Sequence Database Collaboration. (2016) The International Nucleotide Sequence Database Collaboration. Nucleic Acids Res., 44, D48–D50.
https://doi.org/10.1093/nar/gkv1323 pmid: 26657633
11 Wheeler, D. L. ,  Barrett, T. ,  Benson, D. A. ,  Bryant, S. H. ,  Canese, K. ,  Chetvernin,  V. ,  Church, D. M. ,  DiCuccio, M. ,  Edgar, R. ,  Federhen, S . (2016) Database resources of the national center for biotechnology information. Nucleic Acids Res., 44, D7–D19.
https://doi.org/10.1093/nar/gkv1290 pmid: 26615191
12 Zhan, Q. and Qian,  H. (2016) Opportunities and Advantages for The Development of Precision Medicine in China. In: Precision Medicine in China. Sanders, S. and Oberst, J. eds, pp. 6–9. Washington, DC: Science/AAAS
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed