Soil inorganic carbon sequestration through alkalinity regeneration using biologically induced weathering of rock powder and biochar
Muhammad Azeem1,2,3, Sajjad Raza4, Gang Li1,2, Pete Smith5, Yong-Guan Zhu1,2()
1. Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China 2. Zhejiang Key Lab of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China 3. Institute of Soil and Environmental Science, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Punjab 46300, Pakistan 4. School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 21000, China 5. Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, UK
● Soil acidification caused severe losses of soil inorganic carbon stock worldwide.
● SIC losses could be mitigated via alkalinity regeneration approaches.
● Rock/mineral powder can supply substantial basic cations to soil to reduce acidification.
● Microorgnisms could be utilized to enhance weathering of rock/mineral powder.
● Biochar and bone biochar could reduce SIC losses via alkalinity regeneration.
Soil inorganic carbon (SIC) accounts for about half of the C reserves worldwide and is considered more stable than soil organic carbon (SOC). However, soil acidification, driven mainly by nitrogen (N) fertilization can accelerate SIC losses, possibly leading to complete loss under continuous and intensive N fertilization. Carbonate-free soils are less fertile, productive, and more prone to erosion. Therefore, minimizing carbonate losses is essential for soil health and climate change mitigation. Rock/mineral residues or powder have been suggested as a cheaper source of amendments to increase soil alkalinity. However, slow mineral dissolution limits its efficient utilization. Soil microorganisms play a vital role in the weathering of rocks and their inoculation with mineral residues can enhance dissolution rates. Biochar is an alternative material for soil amendments, in particular, bone biochar (BBC) contains higher Ca and Mg that can induce even higher alkalinity. This review covers i) the contribution and mechanism of rock residues in alkalinity generation, ii) the role of biochar or BBC to soil alkalinity, and iii) the role of microbial inoculation for accelerating alkalinity generation through enhanced mineral dissolution. We conclude that using rock residues/BBC combined with microbial agents could mitigate soil acidification and SIC losses and also improve agricultural circularity.
. [J]. Soil Ecology Letters, 2022, 4(4): 293-306.
Muhammad Azeem, Sajjad Raza, Gang Li, Pete Smith, Yong-Guan Zhu. Soil inorganic carbon sequestration through alkalinity regeneration using biologically induced weathering of rock powder and biochar. Soil Ecology Letters, 2022, 4(4): 293-306.
Wood mixture enhanced SOC from 0.001–0.0069 mg C kg?1 of soil.
Wood mixture enhanced (SIC) up to 0.045 mg C kg?1 of soil.
Fidel et al., 2017
Holm oak wood, 400°C for 8 h
5% mixed with 95% compost
Copper mine spoil planted with Brassica juncea, pot experiment (90 days)
Increased 16–180 g C kg?1
3.8–37 g C kg?1 increment in SIC
Rodríguez-Vila et al., 2016
Calotropis procera, 450°C for 1h
30 and 60 tons ha–1
8 years old reclaimed mine spoil and forest soil. 6 months incubation in the field, natural conditions
Total SOC increased by 36–40 g C kg?1 compared to forest soil (21 g C kg–1)
The SIC enhanced form 1.9 g C kg–1 to 3.5 g C kg–1 and 4.5 g C kg–1 at BC30 and BC60, respectively.
Ghosh and Maiti, 2021
Rice husks (70%) and cotton seedhulls (30%), 400°C for 4 h
0, 30, 60, and 90 Mg ha?1
Wheat and maize rotation
TOC contents were enhanced by 32%–104% with 30, 60, and 90 Mg ha?1 of biochar application
SIC accumulated by 18.8%, 42.4% and 62.3%, respectively, in the 0–20 cm soil layer.
Dong et al., 2018, 2019ab
Corn straw, 360°C
4.5 Mg (ha?1 yr?1 B4.5) and 9.0 Mg ha?1 yr?1
Wheat and maize rotation
After 10 years of biochar incorporation, 62–81% of biochar-C (was transformed to SOC under 0–100 cm soil layer)
Straw incorporation (3.2–3.7 g kg–1) revealed higher SIC accumulation compared to biochar (1.0–2.0 g kg?1) and control (1.0–2.0 g kg?1), under 0–40 cm soil layer
Lu et al., 2021
Corncobs, 360°C
0, 4.5 and 9.0 Mg ha?1 year?1
Silt loam, wheat–maize rotation
Total SOC contents increased up to 16%–82%
Enhanced SIC content (3.2%–24.3%),
Shi et al., 2021
Tab.1
Fig.1
Feedstock
EC(dS m?1)
pH
CEC(cmol kg?1)
Surface area (m2 g?1)
Chemical composition (%)
C
H
O
N
P
Ca
Mg
SIC
Ash
Wood
7.46±6.1
9.05±1.2
18.2±8.1
106±300
63.71±16
3.08±1.3
19.23±8.8
0.95±1.1
0.40±0.04
26.3±2.60
0.52±0.08
3.92±3.11
5.3±7.0
Manure
0.46±0.5
9.94±1.3
66.1±8.00
22±36
30.80±10
1.39±0.6
34.01±33
4.44±6.2
2.57±0.14
52.7±3.64
5.78±2.15
-
44.6±0.97
Crop residues
2.52±3.3
8.81±1.6
56.3±3.92
111±112
59.24±12
2.54±1.1
17.34±8.5
1.22±1.4
0.80±0.09
20.7±2.16
0.61±0.07
-
21.1±0.54
Bone char
3.12±0.01
7.94±0.5
-
88±61
8.86±3.5
0.75±0.5
27.52±5.4
1.59±1.2
17.13±2.3
39.53±7.3
-
-
80.53±11.2
Bone biochar
0.88±0.5
9.37±1.3
-
115±99
24.34±19
2.02±1.3
16.74±8.6
2.49±1.3
11.77±5.8
35.04±50.4
12.6±0.11
-
51.79±5.33
Tab.2
Fig.2
Bacteria
Mineral
Crop
Type of experiment
Results
Reference
Bacillus pseudomycoides O-5
Waste mica
Camellia sinensis L.
Pot experiment
B. pseudomycoides solubilized the mica waste of 33.32 ± 2.40 μg K mL?1 in culture medium (7 days) while 47.0 ± 7.1 mg kg?1 in microcosm soil after 107 days of addition
Pramanik et al., 2019
Bacillus cereus
K-feldspar
Potato
Field experiment
42% increase in soil available K using co-use of B. cereus and K-feldspar with reduced soil pH via release of organic acids
Ali et al., 2021
Bacillus subtilis ANctcri3; B.megaterium ANctcri7
Feldspar rock powder (K 3.9%)
Elephant foot yam
Field experiment
475–522 mg kg?1 of K release was notices using both strains with lowering pH and attachment of bacteria on mineral surface
Higher plant uptake (4%-22%) and biomass accumulation of K (29%-86%)
Singh et al., 2010
Pseudomonas sp.
Muscovite
Tomato
Pot experiment
188 and 127% of K release from biotite and muscovite, respectively. Ability of K solubilization was in the range of 19–49 mg?L?1
Sarikhani et al., 2018
Bacillus edaphicus
Illite
Cotton and rape
Pot experiment
Oxalic acid production was the key in releasing the K
Sheng and He, 2006
Bacillus mucilaginosus
Waste mica
Sudan grass
Pot experiment
Mineral K release to water soluble and exchangeable K with bacterial inoculation. 13%–36% higher uptake of K in plants
Basak and Biswas, 2009
Enterobacter sp. GL7, Klebsiella sp. JM3, XF4, and XF11
K-feldspar
Tobacco
Pot experiment
0.5–4.4 mg L?1 of K release in a liquid medium
Zhang and Kong, 2014
Klebsiella oxytoca KSB-17
Waste mica
Maize
Pot experiment
Increased uptake of K (154%) in plants
Imran et al., 2020
Aspergillus sp. FS-4
27 vol% (Basalt-T) and 18 vol%(Basalt-F)
Glass composition
-
Higher release of Mg, Al, Fe, and K with Aspergillus with a reduction in pH and higher siderophores production
Hu et al., 2020
Verticillium sp.
olivine
Mg-deficient Forest soil
Incubation (9 months)
16% weathering flux in 9 months of soil incubation with (2.2 ± 1.2) × 10?10 moles of olivine per square meter per second (mol m?2 s?) of dissolution rate
Wild, 2021
Tab.3
1
A.O., Adeyemi, G.M., Gadd, 2005. Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals 18, 269– 281. https://doi.org/10.1007/s10534-005-1539-2
2
E., Ahmed, S.J. Holmström,, 2015. Microbe–mineral interactions: the impact of surface attachment on mineral weathering and element selectivity by microorganisms. Chemical Geology 403, 13– 23.
3
M.S., Akhtar, Z.A. Siddiqui,, 2008. Arbuscular Mycorrhizal Fungi as Potential Bioprotectants against Plant Pathogens. In: Siddiqui Z.A., Akhtar M.S., Futai K., eds. Mycorrhizae: Sustainable Agriculture and Forestry. Springer, Dordrecht
4
A.M., Ali, M.Y., Awad, S.A., Hegab, A.M.A.E., Gawad, M.A. Eissa, 2021. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. Journal of Plant Nutrition 44, 411– 420. https://doi.org/10.1080/01904167.2020.1822399
5
R., Amundson, L. Biardeau, 2018. Opinion: Soil carbon sequestration is an elusive climate mitigation tool. Proceedings of the National Academy of Sciences 115, 11652– 11656. https://doi.org/10.1073/pnas.1815901115%J
6
I.P., Anjanadevi, N.S., John, K.S., John, M.L., Jeeva, R.S. Misra,, 2016. Rock inhabiting potassium solubilizing bacteria from Kerala, India: characterization and possibility in chemical K fertilizer substitution. Journal of Basic Microbiology 56, 67- 77.
7
M., Azeem, A., Ali, P.G.S., Arockiam Jeyasundar, S., Bashir, Q., Hussain, F., Wahid, E.F., Ali, H., Abdelrahman, R., Li, V., Antoniadis, J., Rinklebe, S.M., Shaheen, G., Li, Z. Zhang, 2021a. Effects of sheep bone biochar on soil quality, maize growth, and fractionation and phytoavailability of Cd and Zn in a mining-contaminated soil. Chemosphere 282, 131016. https://doi.org/10.1016/j.chemosphere.2021.131016
8
M., Azeem, A., Ali, P.G.S., Arockiam Jeyasundar, Y., Li, H., Abdelrahman, A., Latif, R., Li, N., Basta, G., Li, S.M., Shaheen, J., Rinklebe, Z. Zhang, 2021b. Bone-derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi-metal contaminated mining soil. Environmental Pollution 277, 116800. https://doi.org/10.1016/j.envpol.2021.116800
9
M., Azeem, L., Hale, J., Montgomery, D., Crowley, M.E. Jr McGiffen, 2020. Biochar and compost effects on soil microbial communities and nitrogen induced respiration in turfgrass soils. PLoS One 15, 0242209. https://doi.org/10.1371/journal.pone.0242209
10
M., Azeem, T.U., Hassan, M.I., Tahir, A., Ali, P.G.S.A., Jeyasundar, Q., Hussain, S., Bashir, S., Mehmood, Z. Zhang, 2021c. Tea leaves biochar as a carrier of Bacillus cereus improves the soil function and crop productivity. Applied Soil Ecology 157, 103732. https://doi.org/10.1016/j.apsoil.2020.103732
11
M., Azeem, R., Hayat, Q., Hussain, M.I., Tahir, M., Imran, Z., Abbas, M., Sajid, A., Latif, M. Irfan, 2019. Effects of biochar and NPK on soil microbial biomass and enzyme activity during 2 years of application in the arid region. Arabian Journal of Geosciences 12, 311. https://doi.org/10.1007/s12517-019-4482-1
12
M., Azeem, S.M., Shaheen, A., Ali, P.G.S.A., Jeyasundar, A., Latif, H., Abdelrahman, R., Li, M., Almazroui, N.K., Niazi, A.K., Sarmah, G., Li, J., Rinklebe, Y.G., Zhu, Z. Zhang, 2022. Removal of potentially toxic elements from contaminated soil and water using bone char compared to plant- and bone-derived biochars: A review. Journal of Hazardous Materials 427, 128131. https://doi.org/10.1016/j.jhazmat.2021.128131
13
L.T., Bach, S.J., Gill, R.E., Rickaby, S., Gore, P. Renforth, 2019. CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems. Frontiers in Climate 1, 7. https://doi.org/10.3389/fclim.2019.00007
14
Z., Balogh-Brunstad, C.K., Keller, J.T., Dickinson, F., Stevens, C., Li, B.T. Bormann, 2008. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochimica et Cosmochimica Acta 72, 2601– 2618. https://doi.org/10.1016/j.gca.2008.04.003
15
B.B., Basak, D.R. Biswas, 2009. Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. mBio 317, 235– 255. https://doi.org/10.1128/mBio.01906-16
S., Bethers, M.E., Day, G.B., Wiersma, I.J. and Elvir, J.A. Fernandez,, 2009. Effects of chronically elevated nitrogen and sulfur deposition on sugar maple saplings: Nutrition, growth and physiology. Forest Ecology and Management 258, 895– 902
19
E.P., Burford, S., Hillier, G.M. Gadd, 2006. Biomineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate mono-and dihydrate in carboniferous limestone microcosms. Geomicrobiology Journal 23, 599– 611. https://doi.org/10.1080/01490450600964375
20
Z., Cai, B., Wang, M., Xu, H., Zhang, X., He, L., Zhang, S. Gao, 2015. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. Journal of Soils and Sediments 15, 260– 270. https://doi.org/10.1007/s11368-014-0989-y
21
I.M., Castro, J.L.R., Fietto, R.X., Vieira, M.J.M., Trópia, L.M.M., Campos, E.B., Paniago, R.L., Brandão, Castro IdM the 2000. Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy 57, 39– 49. https://doi.org/10.1016/S0304-386X(00)00088-8
22
R., Chai, X., Ye, C., Ma, Q., Wang, R., Tu, L., Zhang, H. Gao, 2019. Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon Balance and Management 14, 20. https://doi.org/10.1186/s13021-019-0133-9
23
B., Chen, E., Liu, Q., Tian, C., Yan, Y.J. Zhang,, 2014. Soil nitrogen dynamics and crop residues: A review. Agronomy for Sustainable Development 34, 429– 442
24
M.K., Conyers, D.P., Heenan, G.J., Poile, B.R., Cullis, K.R. Helyar, 1996. Influence of dryland agricultural management practices on the acidification of a soil profile. Soil & Tillage Research 37, 127– 141. https://doi.org/10.1016/0167-1987(95)01005-X
25
Z., Dai, X., Zhang, C., Tang, N., Muhammad, J., Wu, P.C., Brookes, J. Xu, 2017. Potential role of biochars in decreasing soil acidification-a critical review. Science of the Total Environment 581, 601– 611. https://doi.org/10.1016/j.scitotenv.2016.12.169
26
R. C., Dalal, B., Harms, E., Krull, W. Wang, 2005. Total soil organic matter and its labile pools following mulga (Acacia aneura) clearing for pasture development and cropping 1. Total and labile carbon. Soil Research 43, 13– 20. https://doi.org/10.1071/SR04044
27
A.K.M., de Oliveira, J.C., Pina, S.R., Pereira, J.A.M., Bono, R., Matias, F., de Freitas Pires, T.E. de Assis, 2020. Effect of basalt rock powder associated with different substrates on the initial development of aroeira seedlings (Myracrodruon urundeuva). Research. Social Development 9, e5591210790– e5591210790. https://doi.org/10.33448/rsd-v9i12.10790
28
M., Dippold, M., Biryukov, Y. Kuzyakov, 2014. Sorption affects amino acid pathways in soil: implications from position-specific labeling of alanine. Soil Biology & Biochemistry 72, 180– 192. https://doi.org/10.1016/j.soilbio.2014.01.015
X., Dong, B.P., Singh, G., Li, Q., Lin, X. Zhao, 2019a. Biochar increased field soil inorganic carbon content five years after application. Soil & Tillage Research 186, 36– 41. https://doi.org/10.1016/j.still.2018.09.013
31
X., Dong, B.P., Singh, G., Li, Q., Lin, X. Zhao, 2019b. Biochar has little effect on soil dissolved organic carbon pool 5 years after biochar application under field condition. Soil Use and Management 35, 466– 477.
32
H., Eswaran, P.F., Reich, J.M., Kimble, F.H., Beinroth, E., Padmanabhan, P. Moncharoen,, 2000. Global Carbon Stocks. In: Lal, R., Kimble, J.M., Eswaran, H., Stewart, B.A., eds. Global Climate Change and Pedogenic Carbonates. Boca Raton: CRC Press, pp. 15– 25
33
H., Etesami, S., Emami, H.A. Alikhani, 2017. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects A review. Journal of Soil Science and Plant Nutrition 17, 897– 911. https://doi.org/10.4067/S0718-95162017000400005
34
S., Fahad, A.A., Bajwa, U., Nazir, S.A., Anjum, A., Farooq, A., Zohaib, S., Sadia, W., Nasim, S., Adkins, S., Saud, M.Z., Ihsan, H., Alharby, C., Wu, D., Wang, J. Huang, 2017. Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science 8, 1147. https://doi.org/10.3389/fpls.2017.01147
35
S., Fauriel, L. Laloui, 2012. A bio-chemo-hydro-mechanical model for microbially induced calcite precipitation in soils. Computers and Geotechnics 46, 104– 120. https://doi.org/10.1016/j.compgeo.2012.05.017
36
J.M., Fernández, M.A., Nieto, E.G., López-de-Sá, G., Gascó, A., Méndez, C. Plaza, 2014. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers. Science of the Total Environment 482, 1– 7. https://doi.org/10.1016/j.scitotenv.2014.02.103
37
R.B., Fidel, D.A., Laird, T.B. Parkin,, 2017. Impact of biochar organic and inorganic carbon on soil CO2 and N2O emissions . Journal of Environmental Quality 46, 505– 513
38
P., Filippi, S.R., Cattle, M.J., Pringle, T.F. Bishop, 2020. A two-step modelling approach to map the occurrence and quantity of soil inorganic carbon. Geoderma 371, 114382. https://doi.org/10.1016/j.geoderma.2020.114382
39
R.D., Finlay, S., Mahmood, N., Rosenstock, E.B., Bolou-Bi, S.J., Köhler, Z., Fahad, A., Rosling, H., Wallander, S., Belyazid, K., Bishop, B. Lian, 2020. Reviews and syntheses: Biological weathering and its consequences at different spatial levels–from nanoscale to global scale. Biogeosciences 17, 1507– 1533. https://doi.org/10.5194/bg-17-1507-2020
40
G.M. Gadd,, 2017. Fungi, rocks, and minerals. Elements: An International Magazine of Mineralogy, Geochemistry. Petrology 13, 171– 176
41
S., Ge, Z., Zhu, Y. Jiang, 2018. Long-term impact of fertilization on soil pH and fertility in an apple production system. Journal of Soil Science and Plant Nutrition 18, 282– 293. https://doi.org/10.4067/S0718-95162018005001002
42
D., Ghosh, S.K. Maiti, 2021. Eco-restoration of coal mine spoil: Biochar application and carbon sequestration for achieving UN sustainable development goals 13 and 15. Land 10, 1112.
43
J.H., Guo, X.J., Liu, Y., Zhang, J.L., Shen, W.X., Han, W.F., Zhang, P., Christie, K., Goulding, P.M., Vitousek, F. Zhang, 2010. Significant acidification in major Chinese croplands. Science 327, 1008– 1010. https://doi.org/10.1126/science.1182570
44
W., Guo, H., Nazim, Z., Liang, D. Yang, 2016. Magnesium deficiency in plants: An urgent problem. Crop Journal 4, 83– 91. https://doi.org/10.1016/j.cj.2015.11.003
45
M., Gupta, S., Bisht, B., Singh, A., Gulati, R. Tewari, 2011. Enhanced biomass and steviol glycosides in Stevia rebaudiana treated with phosphate-solubilizing bacteria and rock phosphate. Plant Growth Regulation 65, 449– 457. https://doi.org/10.1007/s10725-011-9615-9
46
N.R., Haddaway, K., Hedlund, L.E., Jackson, T., Kätterer, E., Lugato, I.K., Thomsen, H.B., Jørgensen, P.E. Isberg, 2017. How does tillage intensity affect soil organic carbon? A systematic review. Environmental Evidence 6, 30. https://doi.org/10.1186/s13750-017-0108-9
47
K., Hagvall, P., Persson, T. Karlsson, 2015. Speciation of aluminum in soils and stream waters: the importance of organic matter. Chemical Geology 417, 32– 43. https://doi.org/10.1016/j.chemgeo.2015.09.012
48
S.K Haldar,., 2020. Introduction to Mineralogy and Petrology. New York: Elsevier
49
L., Hale, M., Luth, D. Crowley, 2015. Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biology & Biochemistry 81, 228– 235. https://doi.org/10.1016/j.soilbio.2014.11.023
50
S.E., Hale, V., Alling, V., Martinsen, J., Mulder, G., Breedveld, G. Cornelissen, 2013. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91, 1612– 1619. https://doi.org/10.1016/j.chemosphere.2012.12.057
51
S.J.T., Hangx, C.J. Spiers, 2009. Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability. International Journal of Greenhouse Gas Control 3, 757– 767. https://doi.org/10.1016/j.ijggc.2009.07.001
52
F. Haque,, 2019. Sequestration of CO2 in agricultural soils via application of carbon capturing soil amendment . Dissertation for the Doctoral Degree. Guelph: University of Guelph
53
F., Haque, Y.W., Chiang, R.M. Santos, 2019. Alkaline mineral soil amendment: a climate change ‘stabilization wedge’?. Energies 12, 2299. https://doi.org/10.3390/en12122299
54
F., Haque, R.M., Santos, Y.W. Chiang, 2020. Optimizing inorganic carbon sequestration and crop yield with wollastonite soil amendment in a microplot study. Frontiers in Plant Science 11, 1012. https://doi.org/10.3389/fpls.2020.01012
55
A.D., Harley, R.J. Gilkes, 2000. Factors influencing the release of plant nutrient elements from silicate rock powders: a geochemical overview. Nutrient Cycling in Agroecosystems 56, 11– 36. https://doi.org/10.1023/A:1009859309453
56
S.A., Hosseini, E., Réthoré, S., Pluchon, N., Ali, B., Billiot, J.C. Yvin, 2019. Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. International Journal of Molecular Sciences 20, 3777. https://doi.org/10.3390/ijms20153777
57
R., Hu, F., Li, H., Yu, J. Yang, 2020. Weathering of basalts by Aspergillus sp. FS-4 strain: glass compositions are prone to weathering. Geomicrobiology Journal 37, 101– 109. https://doi.org/10.1080/01490451.2019.1666194
58
P., Huang, J., Zhang, X., Xin, A., Zhu, C., Zhang, D., Ma, Q., Zhu, S., Yang, S. Wu, 2015. Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain. Journal of Integrative Agriculture 14, 148– 157. https://doi.org/10.1016/S2095-3119(14)60750-4
59
M., Imran, S.M., Shahzad, M.S., Arif, T., Yasmeen, B., Ali, A. Tanveer,, 2020. Inoculation of potassium solubilizing bacteria with different potassium fertilization sources mediates maize growth and productivity. Pakistan Journal of Agricultural Sciences 57, 1045– 1055
P.B., Kelemen, J. Matter, 2008. In situ carbonation of peridotite for CO2 storage. Proceedings of the National Academy of Sciences of the United States of America 105, 17295– 17300. https://doi.org/10.1073/pnas.0805794105
64
J.H., Kim, E.G., Jobbágy, D.D., Richter, S.E., Trumbore, R.B. Jackson, 2020. Agricultural acceleration of soil carbonate weathering. Global Change Biology 26, 5988– 6002. https://doi.org/10.1111/gcb.15207
65
D., Koron, L., Lavrič, E. Someus,, 2017. Comparison of animal bone biochar and plant based biochar in strawberry production. VIII International Symposium on Mineral Nutrition of Fruit Crops 1217
R., Lal, C., Monger, L., Nave, P. Smith, 2021a. The role of soil in regulation of climate. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 376, 2021084. https://doi.org/10.1098/rstb.2021.0084
69
Monger C, Nave L, Smith P. Lal R, 2021b. The role of soil in regulation of climate. Philosophical Transactions B 376, 20210084. https://doi.org/10.1098/rstb.2021.0084
Z., Li, L., Liu, J., Chen, H.H. Teng, 2016. Cellular dissolution at hypha-and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology 44, 319– 322. https://doi.org/10.1130/G37561.1
72
X., Liu, Y., Shi, Q., Zhang, G. Li, 2021. Effects of biochar on nitrification and denitrification-mediated N2O emissions and the associated microbial community in an agricultural soil. Environmental Science and Pollution Research International 28, 6649– 6663. https://doi.org/10.1007/s11356-020-10928-4
73
T., Lu, X., Wang, Z., Du, L. Wu,, 2021. Impacts of continuous biochar application on major carbon fractions in soil profile of North China Plain’s cropland: In comparison with straw incorporation. Agriculture, Ecosystems Environment 315, 107445
74
R.W., Lucas, J., Klaminder, M.N., Futter, K.H., Bishop, G., Egnell, H., Laudon, P. Högberg, 2011. A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. Forest Ecology and Management 262, 95– 104. https://doi.org/10.1016/j.foreco.2011.03.018
75
Y., Luo, H., Zang, Z., Yu, Z., Chen, A., Gunina, Y., Kuzyakov, J., Xu, K., Zhang, P.C. Brookes, 2017. Priming effects in biochar enriched soils using a three-source-partitioning approach: 14C labelling and 13C natural abundance. Soil Biology & Biochemistry 106, 28– 35. https://doi.org/10.1016/j.soilbio.2016.12.006
76
J.M., Matter, M., Stute, S.Ó., Snæbjörnsdottir, E.H., Oelkers, S.R., Gislason, E.S., Aradottir, B., Sigfusson, I., Gunnarsson, H., Sigurdardottir, E., Gunnlaugsson, G., Axelsson, H.A., Alfredsson, D., Wolff-Boenisch, K., Mesfin, D.F.R., Taya, J., Hall, K., Dideriksen, W.S. Broecker, 2016. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352, 1312– 1314. https://doi.org/10.1126/science.aad8132
77
P., Merante, C., Dibari, R., Ferrise, B., Sánchez, A., Iglesias, J.P., Lesschen, P., Kuikman, J., Yeluripati, P., Smith, M. Bindi, 2017. Adopting soil organic carbon management practices in soils of varying quality: Implications and perspectives in Europe. Soil & Tillage Research 165, 95– 106. https://doi.org/10.1016/j.still.2016.08.001
78
N.P., Mkhonza, N.N., Buthelezi-Dube, P. Muchaonyerwa, 2020. Effects of lime application on nitrogen and phosphorus availability in humic soils. Scientific Reports 10, 8634. https://doi.org/10.1038/s41598-020-65501-3
79
H.C., Monger, R.A., Kraimer, S., Khresat, D.R., Cole, X., Wang, J. Wang, 2015. Sequestration of inorganic carbon in soil and groundwater. Geology 43, 375– 378. https://doi.org/10.1130/G36449.1
80
J.F., Ng, O.H., Ahmed, M.B., Jalloh, L., Omar, Y.M., Kwan, A.A., Musah, K.H. Poong, 2022. Soil nutrient retention and ph buffering capacity are enhanced by calciprill and sodium silicate. Agronomy (Basel) 12, 219. https://doi.org/10.3390/agronomy12010219
K., Olsson-Francis, V., Pearson, C., Boardman, P., Schofield, A., Oliver, S. Summers, 2015. A culture-independent and culture-dependent study of the bacteria community from the bedrock soil interface. Advances in Microbiology 5, 842– 857. https://doi.org/10.4236/aim.2015.513089
83
K.N., Palansooriya, J.T.F., Wong, Y., Hashimoto, L., Huang, J., Rinklebe, S.X., Chang, N., Bolan, H., Wang, Y.S. Ok, 2019. Response of microbial communities to biochar-amended soils: a critical review. Biochar 1, 3– 22. https://doi.org/10.1007/s42773-019-00009-2
84
M., Palviainen, F., Berninger, V.J., Bruckman, K., Köster, C.R.M., de Assumpção, H., Aaltonen, N., Makita, A., Mishra, L., Kulmala, B., Adamczyk, X., Zhou, J., Heinonsalo, E., Köster, J. Pumpanen, 2018. Effects of biochar on carbon and nitrogen fluxes in boreal forest soil. Plant and Soil 425, 71– 85. https://doi.org/10.1007/s11104-018-3568-y
85
S.Y., Pan, C.D., Dong, J.F., Su, P.Y., Wang, C.W., Chen, J.S., Chang, H., Kim, C.P., Huang, C.M. Hung, 2021. The role of biochar in regulating the carbon, phosphorus, and nitrogen cycles exemplified by soil systems. Sustainability 13, 5612. https://doi.org/10.3390/su13105612
86
K., Parmar, B., Mehta, M. Kunt,, 2016. Isolation, characterization and identification of potassium solubilizing bacteria from rhizosphere soil of maize ( Zea mays) . International Journal of Science, Environment and Technology 5, 3030– 3037
87
D., Parrello, A., Zegeye, C., Mustin, P. Billard, 2016. Siderophore-mediated iron dissolution from nontronites is controlled by mineral cristallochemistry. Frontiers in Microbiology 7, 423– 423. https://doi.org/10.3389/fmicb.2016.00423
88
A., Perez, S., Rossano, N., Trcera, A., Verney-Carron, D., Huguenot, E.D., van Hullebusch, G., Catillon, A., Razafitianamaharavo, F. Guyot, 2015. Impact of iron chelators on short-term dissolution of basaltic glass. Geochimica et Cosmochimica Acta 162, 83– 98. https://doi.org/10.1016/j.gca.2015.04.025
89
P., Pramanik, A.J., Goswami, S., Ghosh, C. Kalita, 2019. An indigenous strain of potassium-solubilizing bacteria Bacillus pseudomycoides enhanced potassium uptake in tea plants by increasing potassium availability in the mica waste-treated soil of North-east India. Journal of Applied Microbiology 126, 215– 222. https://doi.org/10.1111/jam.14130
90
L., Qian, L., Chen, S., Joseph, G., Pan, L., Li, J., Zheng, X., Zhang, J., Zheng, X., Yu, J. Wang, 2014. Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Management 5, 145– 154. https://doi.org/10.1080/17583004.2014.912866
91
C.G., Ramos, J.C., Hower, E., Blanco, M.L.S., Oliveira, S.H. Theodoro, 2022. Possibilities of using silicate rock powder: An overview. Geoscience Frontiers 13, 101185. https://doi.org/10.1016/j.gsf.2021.101185
92
G., Ranalli, E., Zanardini, C. Sorlini,, 2009. Biodeterioration–Including Cultural Heritagle. New York: Elsevier
93
S., Raza, N., Miao, P., Wang, X., Ju, Z., Chen, J., Zhou, Y. Kuzyakov, 2020. Dramatic loss of inorganic carbon by nitrogen‐induced soil acidification in Chinese croplands. Global Change Biology 26, 3738– 3751. https://doi.org/10.1111/gcb.15101
94
S., Raza, K., Zamanian, S., Ullah, Y., Kuzyakov, I., Virto, J. Zhou, 2021. Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation. Journal of Cleaner Production 315, 128036. https://doi.org/10.1016/j.jclepro.2021.128036
95
I.D.A., Ribeiro, C.G., Volpiano, L.K., Vargas, C.E., Granada, B.B., Lisboa, L.M.P. Passaglia, 2020. Use of mineral weathering bacteria to enhance nutrient availability in crops: A review. Frontiers in Plant Science 11, 11. https://doi.org/10.3389/fpls.2020.590774
96
A., Rodríguez-Vila, V., Asensio, R., Forján, E.F. Covelo,, 2016. Carbon fractionation in a mine soil amended with compost and biochar and vegetated with Brassica juncea L . Journal of Geochemical Exploration 169, 137– 143
97
J., Rousk, E., Bååth, P.C., Brookes, C.L., Lauber, C., Lozupone, J.G., Caporaso, R.,Fierer, N. Knight, 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal 4, 1340– 1351. https://doi.org/10.1038/ismej.2010.58
98
M.C., Rowley, S., Grand, T., Adatte, E.P. Verrecchia, 2020. A cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland. Geoderma 361, 114065. https://doi.org/10.1016/j.geoderma.2019.114065
T., Samuels, C., Bryce, H., Landenmark, C., Marie-Loudon, N., Nicholson, A.H., Stevens, C. Cockell,, 2020. Microbial Weathering of Minerals and Rocks in Natural Environments. Malden: John Wiley & Sons Inc. pp. 59– 79
101
T., Samuels, D., Pybus, M., Wilkinson, C.S. Cockell, 2019. Evidence for in vitro and in situ pyrite weathering by microbial communities inhabiting weathered shale. Geomicrobiology Journal 36, 600– 611. https://doi.org/10.1080/01490451.2019.1597217
102
J. Sanderman, 2012. Can management induced changes in the carbonate system drive soil carbon sequestration? A review with particular focus on Australia. Agriculture, Ecosystems & Environment 155, 70– 77. https://doi.org/10.1016/j.agee.2012.04.015
103
M., Sarikhani, S., Oustan, M., Ebrahimi, N. Aliasgharzad,, 2018. Isolation and identification of potassium-releasing bacteria in soil and assessment of their ability to release potassium for plants. European Journal of Soil Science 69, 1078– 1086
104
X.F., Sheng, L.Y. He,, 2006. Solubilization of potassium-bearing minerals by a wild-type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat . Canadian Journal of Microbiology 52, 66– 72
105
R.Y., Shi, N., Ni, J.N., Nkoh, J.Y., Li, R.K., Xu, W. Qian, 2019. Beneficial dual role of biochars in inhibiting soil acidification resulting from nitrification. Chemosphere 234, 43– 51. https://doi.org/10.1016/j.chemosphere.2019.06.030
106
S., Shi, Q., Zhang, Y., Lou, Z., Du, Q., Wang, N., Hu, Y., Wang, A., Gunina, J. Song, 2021. Soil organic and inorganic carbon sequestration by consecutive biochar application: Results from a decade field experiment. Soil Use and Management 37, 95– 103. https://doi.org/10.1111/sum.12655
107
N. Siebers,, 2013. Bone Char Effects on Phosphorus and Cadmium in the Soil-plant-system. https://www.citalivres.com/pdf/bone-char-effects-on-phosphorus-and-cadmium-in-the-soil-plant-system
108
N., Siebers, F., Godlinski, P. Leinweber,, 2014. Bone char as phosphorus fertilizer involved in cadmium immobilization in lettuce, wheat, and potato cropping. Journal of Plant Nutrition 177, 75– 83
109
N., Siebers, P. Leinweber, 2013. Bone char: a clean and renewable phosphorus fertilizer with cadmium immobilization capability. Journal of Environmental Quality 42, 405– 411. https://doi.org/10.2134/jeq2012.0363
110
G., Singh, D.R., Biswas, T.S. Marwaha,, 2010. Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize ( Zea mays) and wheat ( Triticum aestivum L.): a hydroponics study under phytotron growth chamber . Journal of Plant Nutrition 33, 1236– 1251
111
M. Smits,, 2006. Mineral Tunnelling by Fungi. In: Gadd, G.M., ed. Fungi in Biogeochemical Cycles. Cambridge: Cambridge University Press
112
S.Ó., Snæbjörnsdóttir, B., Sigfússon, C., Marieni, D., Goldberg, S.R., Gislason, E.H. Oelkers, 2020. Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment 1, 90– 102. https://doi.org/10.1038/s43017-019-0011-8
113
M., Sommer, D., Kaczorek, Y., Kuzyakov, J. Breuer, 2006. Silicon pools and fluxes in soils and landscapes—a review. Journal of Plant Nutrition and Soil Science 169, 310– 329. https://doi.org/10.1002/jpln.200521981
114
X.D., Song, F., Yang, H.Y., Wu, J., Zhang, D.C., Li, F., Liu, Y.G., Zhao, J.L., Yang, B., Ju, C.F. Cai,, 2021. Significant loss of soil inorganic carbon at the continental scale. National Science Review
115
H., Sun, H., Lu, L., Chu, H., Shao, W. Shi, 2017. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Science of the Total Environment 575, 820– 825. https://doi.org/10.1016/j.scitotenv.2016.09.137
116
B.M., Tutolo, A., Awolayo, C. Brown, 2021. Alkalinity generation constraints on basalt carbonation for carbon dioxide removal at the gigaton-per-year scale. Environmental Science & Technology 55, 11906– 11915. https://doi.org/10.1021/acs.est.1c02733
117
L., Van Zwieten, C., Kammann, M.L., Cayuela, B.P., Singh, S., Joseph, S., Kimber, S., Donne, T., Clough, K.A. Spokas,, 2015. Biochar Effects on Nitrous Oxide and Methane Emissions from Soil. In: Lehmann, J., Joseph S., eds. Biochar for Environmental Management: Science, Technology and Implementation. London: Taylor & Francis Group
118
I., Vega-Muñoz, D., Duran-Flores, Á.D., Fernández-Fernández, J., Heyman, A., Ritter, S. Stael,, 2020. Breaking bad news: Dynamic molecular mechanisms of wound response in plants. Frontiers in Plant Science 11, http://doi.org/10.3389/fpls.2020.610445
119
T., Wang, M., Camps-Arbestain, M., Hedley, B.P., Singh, R., Calvelo-Pereira, C.J.Sr. Wang,, 2014. Determination of carbonate-C in biochars. Soil Research 52, 495– 504
120
Z., Wang, H., Zong, H., Zheng, G., Liu, L., Chen, B. Xing, 2015. Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere 138, 576– 583. https://doi.org/10.1016/j.chemosphere.2015.06.084
121
Z., Wei, X., Liang, H., Pendlowski, S., Hillier, K., Suntornvongsagul, P., Sihanonth, G.M.J.Em. Gadd,, 2013. Fungal biotransformation of zinc silicate and sulfide mineral ores. Environmental Microbiology 15, 2173– 2186.
122
B., Wild, G., Imfeld, D. Daval,, 2021. Direct measurement of fungal contribution to silicate weathering rates in soil. Geology 49, 1055– 1058
123
D.A., Wolf-Gladrow, R.E., Zeebe, C., Klaas, A., Körtzinger, A.G.J.M.C. Dickson,, 2007. Total alkalinity: The explicit conservative expression and its application to biogeochemical processes. Marine Chemistry 106, 287– 300
124
D., Woolf, J.E., Amonette, F.A., Street-Perrott, J., Lehmann, S. Joseph, 2010. Sustainable biochar to mitigate global climate change. Nature Communications 1, 56. https://doi.org/10.1038/ncomms1053
125
D., Wu, M., Senbayram, H., Zang, F., Ugurlar, S., Aydemir, N., Brüggemann, Y., Kuzyakov, R., Bol, E. Blagodatskaya,, 2018. Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils. Applied Soil Ecology 129, 121– 127
126
K., Xiao, J., Xu, C., Tang, J., Zhang, C.B. Brookes,, 2013. Differences in carbon and nitrogen mineralization in soils of differing initial pH induced by electrokinesis and receiving crop residue amendments. Soil Biology and Biochemistry 67, 70– 84
127
L., Xiao, B., Lian, J., Hao, C., Liu, S.J Wang,, 2015. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values . Scientific Reports 5, 1– 10
128
J., Xu, C., Tang, Z.L. Chen,, 2006. The role of plant residues in pH change of acid soils differing in initial pH. Soil Biology and Biochemistry 38, 709– 719
129
J.H., Yuan, R.K., Xu, H.J. Zhang,, 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology 102, 3488– 3497
130
Y., Yuan, H., Chen, W., Yuan, D., Williams, J.T., Walker, W.J. Shi,, 2017. Is biochar-manure co-compost a better solution for soil health improvement and N2O emissions mitigation? Soil Biology and Biochemistry 113, 14– 25
131
K., Zamanian, M., Zarebanadkouki, Y. Kuzyakov, 2018. Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment. Change Biology 24, 2810– 2817. https://doi.org/10.1111/gcb.14148
D.G., Zavarzina, N.I., Chistyakova, A.V., Shapkin, A.V., Savenko, T.N., Zhilina, V.V., Kevbrin, T.V., Alekseeva, A.V., Mardanov, S.N., Gavrilov, A.Y. Bychkov,, 2016. Oxidative biotransformation of biotite and glauconite by alkaliphilic anaerobes: the effect of Fe oxidation on the weathering of phyllosilicates. Chemical Geology 439, 98– 109
134
C., Zhang, F. Kong,, 2014. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology 82, 18– 25
135
W., Zhao, R., Zhang, C., Huang, B., Wang, H., Cao, L.K., Koopal, W. Tan,, 2016a. Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou Watershed on the loess plateau. CATENA 139, 191– 198
136
X., Zhao, C., Zhao, J., Wang, K., Stahr, Y. Kuzyakov,, 2016b. CaCO3 recrystallization in saline and alkaline soils . Geoderma 282, 1– 8