Please wait a minute...
Soil Ecology Letters

ISSN 2662-2289

ISSN 2662-2297(Online)

Soil Ecology Letters    2024, Vol. 6 Issue (1) : 230201    https://doi.org/10.1007/s42832-023-0201-7
Harnessing the holobiont to alleviate the stress of aluminum toxicity to rice
Hong-Zhe Li1,2, Yong-Guan Zhu1,3()
1. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
2. Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
3. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
 Download: PDF(1153 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Yong-Guan Zhu   
Issue Date: 26 January 2024
 Cite this article:   
Hong-Zhe Li,Yong-Guan Zhu. Harnessing the holobiont to alleviate the stress of aluminum toxicity to rice[J]. Soil Ecology Letters, 2024, 6(1): 230201.
 URL:  
https://academic.hep.com.cn/sel/EN/10.1007/s42832-023-0201-7
https://academic.hep.com.cn/sel/EN/Y2024/V6/I1/230201
Fig.1  Schematic representation of the role of Al-resistant SynCom in enhancing soil health and crop yield. (A) Strong soil microbiota: Depicts the relationship between crop and soil microbiota, highlighting carbon transfer from the shoot to the roots, which in turn promotes the growth of beneficial bacteria in the soil. (B) Increase crop yield: Demonstrates how the introduction of a healthy soil microbiome can lead to increased crop yield. (C) Decrease Al toxicity: Shows the process by which SynCom can increase soil pH and immobilize Al, leading to mitigate Al toxicity in the soil. (D) Improve P solubilization: Outlines the mechanisms by which SynCom enhance the solubilization of P.
1 A.J., Carthey, D.T., Blumstein, R.V., Gallagher, S.G., Tetu, M.R., Gillings, 2020. Conserving the holobiont. Functional Ecology34, 764–776.
https://doi.org/10.1111/1365-2435.13504
2 J., Degenhardt, P.B., Larsen, S.H., Howell, L.V., Kochian, 1998. Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH. Plant Physiology117, 19–27.
https://doi.org/10.1104/pp.117.1.19
3 G., Huang, W., Liang, C.J., Sturrock, B.K., Pandey, J., Giri, S., Mairhofer, D., Wang, L., Muller, H., Tan, L.M., York, J., Yang, Y., Song, Y.J., Kim, Y., Qiao, J., Xu, S., Kepinski, M.J., Bennett, D., Zhang, 2018. Rice actin binding protein RMD controls crown root angle in response to external phosphate. Nature Communications9, 2346.
https://doi.org/10.1038/s41467-018-04710-x
4 S.D., Jurburg, N., Eisenhauer, F., Buscot, A., Chatzinotas, N.M., Chaudhari, A., Heintz-Buschart, R., Kallies, K., Küsel, E., Litchman, C.A., Macdonald, S., Müller, R.C., Reuben, U.N., da Rocha, G., Panagiotou, M.C., Rillig, B.K., Singh, 2022. Potential of microbiome-based solutions for agrifood systems. Nature Food3, 557–560.
https://doi.org/10.1038/s43016-022-00576-x
5 L.V., Kochian, M.A., Piñeros, J., Liu, J.V., Magalhaes, 2015. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annual Review of Plant Biology66, 571–598.
https://doi.org/10.1146/annurev-arplant-043014-114822
6 C., Liu, M., Jiang, M.M., Yuan, E., Wang, Y., Bai, T.W., Crowther, J., Zhou, Z., Ma, L., Zhang, Y., Wang, J., Ding, W., Liu, B., Sun, R., Shen, J., Zhang, Y., Liang, 2023. Root microbiota confers rice resistance to aluminium toxicity and phosphorus deficiency in acidic soils. Nature Food4, 1–13.
https://doi.org/10.1038/s43016-023-00848-0
7 J.L., Mazza Rodrigues, M., Melotto, 2023. Naturally engineered plant microbiomes in resource-limited ecosystems. Trends in Microbiology31, 329–331.
https://doi.org/10.1016/j.tim.2023.02.006
8 P., Nannipieri, L., Giagnoni, L., Landi, G., Renella, 2011. Phosphorus in action. Soil Biology26, 215–243.
https://doi.org/10.1007/978-3-642-15271-9_9
9 J.N., Nkoh, J., Yan, R.K., Xu, R.Y., Shi, Z., Hong, 2020. The mechanism for inhibiting acidification of variable charge soils by adhered Pseudomonas fluorescens. Environmental Pollution260, 114049.
https://doi.org/10.1016/j.envpol.2020.114049
10 E.R.J., Wubs, W.H., van der Putten, M., Bosch, T.M., Bezemer, 2016. Soil inoculation steers restoration of terrestrial ecosystems. Nature Plants2, 16107.
https://doi.org/10.1038/nplants.2016.107
11 Z.B., Yang, I.M., Rao, W.J., Horst, 2013. Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Plant and Soil372, 3–25.
https://doi.org/10.1007/s11104-012-1580-1
12 N., Yoshida, T., Yano, K., Kedo, T., Fujiyoshi, R., Nagai, M., Iwano, E., Taguchi, T., Nishida, H., Takagi, 2017. A unique intracellular compartment formed during the oligotrophic growth of Rhodococcus erythropolis N9T–4. Applied Microbiology and Biotechnology101, 331–340.
https://doi.org/10.1007/s00253-016-7883-z
13 C., Zhong, J., Fu, T., Jiang, C., Zhang, G., Cao, 2018. Polyphosphate metabolic gene expression analyses reveal mechanisms of phosphorus accumulation and release in Microlunatus phosphovorus strain JN459. FEMS Microbiology Letters365, fny034.
https://doi.org/10.1093/femsle/fny034
14 T., Zou, X., Zhang, E., Davidson, 2022. Global trends of cropland phosphorus use and sustainability challenges. Nature611, 81–87.
https://doi.org/10.1038/s41586-022-05220-z
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed