Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2009, Vol. 3 Issue (1) : 67-74     DOI: 10.1007/s11703-009-0013-2
RESEARCH ARTICLE |
Construction of a genetic linkage map and QTL analysis for some leaf traits in pear (Pyrus L.)
Wenying SUN1, Yuxing ZHANG1(), Wenying SUN2, Wenquan LE3, Hai’e ZHANG3
1. Key Laboratory of Fruit Setting Physiology and Molecular Biology, Agricultural University of Hebei, Baoding 071001, China,; 2. Plant Science Department, Henan Vocational College of Agriculture, Zhengzhou 451450, China; 3. Hebei Changli Institute of Pomology, Changli 066600, China
Download: PDF(547 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  

The major incompatibility barriers to specific inbred lines and the long generation duration in Pyrus L. may hinder the Pyrus breeding process. A genetic linkage map provides the foundation for quantitative trait loci (QTL) mapping and molecular marker-assisted breeding. In this study, we constructed a genetic map with 145 F1 populations from a cross of two cultivars, Yali and Jingbaili, using AFLP and SSR markers. The map consisted of 18 linkage groups which included 402 genetic markers and covered 1395.9 cM, with an average genetic distance of 3.8 cM. The interval mapping was used to identify quantitative trait loci associated with four leaf agronomic traits in the F1 population. The results indicated that four QTLs were associated with leaf length, two QTLs with leaf width, two with leaf length/leaf width, and three with petiole length. The eleven QTLs were associated with 9.9%-48.5% of the phenotypic variation in different traits. It is considered that the map covers almost the whole genome, and molecular markers will be greatly helpful to the related breeding.

Keywords Pyrus L      molecular linkage map      QTL analysis      leaf traits     
Corresponding Authors: ZHANG Yuxing,Email:jonsonzhyx@yahoo.com.cn   
Issue Date: 05 March 2009
URL:  
http://academic.hep.com.cn/fag/EN/10.1007/s11703-009-0013-2     OR     http://academic.hep.com.cn/fag/EN/Y2009/V3/I1/67
Fig.1  
Fig.2  
Fig.3  Molecular genetic maps in pear based on AFLP and SSR markers
Fig.4  The frequency distribution of four leaf traits in pear mapping population
traitlinkage groupQTLLODthe nearest markerposition/cMdistance/cMExpl/%
leaf lengthLG8pyc-12.47McaaEact147m40.30.210.7
pyc-23.57McaaEaag253p45.00.19.9
LG15pyc-32.92MctaEagg145m*67.40.410.6
LG16pyc-42.92M9a-146p5.04.010.1
leaf widthLG10pyk-12.50McttEaat200m56.80.248.5
LG15pyk-22.56MctaEtc360p44.60.447.8
leaf length /widthLG5ycw-12.57McaaEaaa443f14.50.57.9
ycw-22.52McaaEaag113m48.90.19.8
petiole lengthLG4ybc-13.66MctaEact350f8.20.239.2
LG15ybc-23.38McaaEtc160m55.90.140.6
ybc-33.73McacEaaa123p61.23.839.4
Tab.1  The QTLs distribution of 4 leaf traits in pear genetic linkage map
1 Burr B, Burr F A, Thompson K H, Albertson M C, Stuber C W (1988). Gene mapping with recombinant inbreds in maize .Genetics , 118: 519-526
2 Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J, Specht J E (1999). An integrated genetic linkage map of the soybean genome. Crop Science , 39: 1464-1490
3 Fang J G, Liu D J, Ma Z Q (2003). Constructing mango (Mangifera indica L.) genetic map using markers for double heterozygous loci. Molecular Plant Breeding , 1(3): 313-319 (in Chinese)
4 Fang X J, Wu W R, Tang J L (2001). “863” Biological High-technology Series-Crop DNA Marker Assisted Breeding. Beijing: Science Press (in Chinese)
5 Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S Y, Antonio B A, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush G S, Sasaki T (1998). A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics , 148(1): 479-494
6 Hemmat M, Weeden N F, Manganris A G, Lawson D W (1994). Molecular marker linkage map for apple. J Heredity , 85: 4-11
7 JoinMap. Version 2.0 (1995). Netherlands: CPRO-DLO of Wageningen
8 Meyers B C, Chin D B, Shen K A, Sivaramakrishnan S, Lavelle D O, Zhang Z, Michelmore R W (1998). The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell , 1998, 10: 1817-1832
9 Parniske M, Jones J D G (1999). Recombination between diverged clusters of the tomato Cf-9 plant disease resistance gene family. Plant Biology , 96(10): 5850-5855
10 Pierantoni L, Dondini L, Cho K-H, Shin I-S, Gennari F, Chiodini R, Tartarini S, Kang S-J, Sansavini S (2007). Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genetics and Genomes , 3(4): 311-317
doi: 10.1007/s11295-006-0070-0
11 Qi X, Stain P, Lindhout P (1998). Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet , 96(3-4): 376-384
doi: 10.1007/s001220050752
12 Shen L Y (2005). Construction of genetic linkage map and mapping QTLs for some traits in Chinese jujube (Ziziphus jujuba Mill.). Dissertation for the Doctoral Degree . Baoding: Agricultural University of Hebei (in Chinese)
13 Smith J S C, Chin E C L, Shu H, Smith O S, Wall S J, Senior M L, Mitchell S E, Kresovich S, Ziegle J (1997). An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): Comparisons with data from RFLPs and pedigree. Theor Appl Genet , 95: 163-173
doi: 10.1007/s001220050544
14 Tanksley S D, Ganal M W, Prince J P, deVincente M C, Bonierbale M W, Brown P, Fulton T M, Giovanonni J J, Grandillo S, Martin G, Messeguer R, Miller J, Miller L, Paterson A, Pineda O, Roder M, Wing R, Wu W, Young N (1992). High density molecular linkage maps of the tomato and potato genomes: biological inferences and practical applications. Genetics , 132: 1141-1160
15 Tanksley S D, Ganal M W, Prince J P, de Vicente M C, Bonierbale M W, Broun P, Fulton T, Giovannoni J J, van der Vossen E A G, van der Voor J N A M, Rouppe t, Kanyuka K, Bendahmane A, Sandbrink H, Baulcombe D, Bakker J, Stiekema W J, Klein-Lankhorst R M (2000). Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. The Plant Journal , 23(5): 567-576
doi: 10.1046/j.1365-313x.2000.00814.x
16 Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002). Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet , 106(1): 9-18
17 Yu D N (1998). The molecular makers and genetic mapping in tomato. Acta Horiculturae Sinica , 25(4): 361-366 (in Chinese)
[1] Junyi CHEN, Li XU. The candidate QTLs affecting phosphorus absorption efficiency and root weight in maize (Zea mays L.)[J]. Front Agric Chin, 2011, 5(4): 456-462.
[2] Junyi CHEN, Li XU. Comparative mapping of QTLs for H+ secretion of root in maize (Zea mays L.) and cross phosphorus levels on two growth stages[J]. Front Agric Chin, 2011, 5(3): 284-290.
[3] Junyi CHEN, Yilin CAI, Li XU, Jiuguang WANG, Wenlong ZHANG, Guoqiang WANG, Delin XU, Tianqing CHEN, Xuegao LU, Haiyan SUN, Aiying HUANG, Ying LIANG, Guoli DAI, Hongni QIN, Zuchun HUANG, Zhaojing ZHU, Zhiguo YANG, Jun XU, Shoufeng KUANG. Identification of QTLs for biomass production in maize (Zea mays L.) under different phosphorus levels at two sites[J]. Front Agric Chin, 2011, 5(2): 152-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed