Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2009, Vol. 3 Issue (2) : 164-170     DOI: 10.1007/s11703-009-0026-x
Mycorrhizal and dark septate endophytic fungi under the canopies of desert plants in Mu Us Sandy Land of China
Yanqing WU1, Xueli HE1(), Tiantian LIU2
1. College of Life Sciences, Hebei University, Baoding 071002, China; 2. College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
Download: PDF(240 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Biodiversity of arbuscular mycorrhizal colonization and spore density was investigated in 20 desert plants (dominant or common species) collected from different locations of Mu Us Sandy Land of China. We observed three mycorrhizal types including Arum-type,Paris-type, and an intermediate type among the plants. Another type of potentially beneficial fungi associated with roots of all species was also observed, namely, dark septate endophytic fungi (DSEF). Of the 20 sample plants examined, all species were coinfected by the two target fungi (Arbuscular mycorrhizal fungi (AMF) colonization of Salix psammophila and DSEF colonization of Periploca sepium were as low as 4%). Based on this investigation, we speculated that the DSEF are ubiquitous in desert ecosystems and can co-occur with AMF in desert plants, functioning much like mycorrhizal fungi. Further studies will be required to elucidate interactional mechanisms with AMF and the mechanisms operating in desert ecosystem.

Keywords Arbuscular mycorrhizal fungi      mycorrhiza type      root endophytic fungi      desert plants     
Corresponding Authors: HE Xueli,   
Issue Date: 05 June 2009
URL:     OR
plant samplesite description
familyspecieslife formroot typenaturelocationlong. (E)lat. (N)altitude/m
SalicaceaeS. psammophilashrubtap rootnoYC107°10′054″37°54′333″1460
TamaricaceaeT. chinensisshrubtap rootnoYC107°10′054″37°54′333″1460
LeguminosaeC. intermediashrubtap rootnoYC107°10′054″37°54′333″1460
C. microphyllashrubtap rootnoYC109°57′733″40°13′175″1206
C. korshinskiishrubtap rootnoYC105°4′293″37°31′418″1255
A. mongolicusshrubtap rootyesALS104°58′099″37°54′333″1460
O. aciphyllashrubtap rootyesSPT104°48′406″37°26′799″1592
H. scopariumshrubtap rootyesSPT104°56′075″37°26′372″1360
H. fruticosumperennial herbtap rootnoYJZ110°11′226″39°29′401″1280
A. adsurgensperennial herbtap rootyesYC107°10′054″37°54′333″1460
G. uralensisperennial herbtap rootyesYC107°10′054″37°54′333″1460
ZygophyllaceaeS. xanthoxylumshrubtap rootnoYC107°10′054″37°54′333″1460
AsclepiadaceaeP. sepiumshrubfibrous rootyesALS104°58′099″37°43′573″1357
CompositaeA. ordosicasemi-shrubtap rootyesYC107°10′054″37°54′333″1460
A. sphaerocephalasemi-shrubtap rootyesRSCF109°42′541″38°20′072″1100
A. scopariaperennial herbtap rootyesRSCF109°42′541″38°20′072″1100
GramineaeS. capillataperennial herbfibrous rootyesSPT107°3′674″37°59′129″1415
P. villosperennial herbfibrous rootyesSPT104°56′075″37°26′372″1360
P. austiralisperennial herbfibrous rootyesSPT105°03′853″37°31′883″1242
LiliaceaeA . mongolicumbiennial herbfibrous rootyesSPT104°48′406″37°26′799″1592
Tab.1  Description of site and plant sampling
Fig.1  Mycorrhizal types
Note: (a), (b) and (c) represent Paris-type of , intermediate type of , and coexistence of AMF and DSEF in respectively. H, HC, V, HH and MS represent hyphae of AMF, hyphal coils of AMF, vesicles of AMF, hyaline hypha of DSEF and microsclerotium, respectively.
plant speciesmycorrhiza typeshyphae∕%vesicle∕%arbuscule∕%total AM & DSE/%DSE∕%MS∕%total AM∕%spore density/(spore number·g-1 dry soil)
SalicaceaeS. psammophilaI440410012434.75
TamaricaceaeT. chinensisA68280242486833.00
LeguminosaeC. intermediaI87971067535010063.25
C. microphyllaI956725247131005.36
C. korshinskii.I91602544022918.94
A. mongolicumP8800241868816.50
O. aciphyllaP589205858429233.45
H. scopariumI856507575308511.20
H. fruticosumA8083093977977.50
A. adsurgensP80400102008026.50
G. uralensisP1020027100302010.85
ZygophyllaceaeS. xanthoxylumA606704033206756.00
AsclepiadaceaeP. sepiumI962008441008.20
CompositaeA. ordosicaP563244048126474.60
A. sphaerocephalaP83330333308312.40
A. scopariaA30400102505039.25
GramineaeS. capillataP8590070701010083.60
P. villosaP23430439720462.80
P. australisA28280283328332.450
LiliaceaeA. mongolicumI06706773276716.05
Tab.2  Status of different structures and spore density of AMF and DSEF tissues in the arid plots
Fig.2  Colonization by AMF and DSEF in tissues
Note: (a) represents superficial hyphae of AMF (AMH) and DSE (DH) on lateral roots of . fruticosum. (b) represents hyhae of AMF (AMH) through the cell wall in the roots of . (c) represents superficial hyphae of DSE on roots of . (d) represents vesicles of AMF in the roots of . (e) represents vesicles of AMF in the roots of . (f) represents arbuscule (Ar) of AMF in the roots of . (g) represents vesicles of AMF in the roots of . (h) represents superficial hyphae of DSE and microsclerotia (MS) on the roots of ((a), bar=100 μm ; (b), (c), (d), (e), (f), (g) and (h), bar = 25 μm).
itemvesiclearbusculartotal AMspore densityDSEmicrosclerotium
total AM0.103-0.376-0.025
spore density-0.0540.068
Tab.3  Correlations of different AM structures and DSE tissues
1 Addy H D, Piercey M M, Currah R S (2005). Microfungal endophytes in roots. Can J Bot , 83: 1-13
doi: 10.1139/b04-171
2 Ahulu E M, Andoh H, Nonaka M (2007). Host-related variability in arbuscular mycorrhizal fungal structures in roots of Hedera rhombea , Rubus parvifollus, and Rosa multiflora under controlled conditions. Mycorrhiza , 17: 93-101
doi: 10.1007/s00572-006-0080-7
3 Alarcón C, Cuenca G (2005). Arbuscular mycorrhizas in coastal sand dunes of the Paraguaná Peninsula, Venezuela. Mycorrhiza , 16(1): 1-9
doi: 10.1007/s00572-005-0005-x
4 Allen M F (1983). Formation of vesicular-mycorrhizae in Atriplex gardneri (Chenopodiaceae): Seasonal response in a cold desert. Mycologia , 75: 773-776
doi: 10.2307/3792769
5 Auge R M, Stodola A J W (1990). An apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of droughted Rosa plants. New Phytol , 115: 285-295
doi: 10.1111/j.1469-8137.1990.tb00454.x
6 Barrow J R (2003). Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza , 13: 239-247
doi: 10.1007/s00572-003-0222-0
7 Bearden B N, Petersen L (1999). Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant and Soil , 218: 173-183
doi: 10.1023/A:1014923911324
8 Brundrett M (1991). Mycorrhizas in natural ecosystems. Advances in Ecological Research , 21: 171-313
doi: 10.1016/S0065-2504(08)60099-9
9 Collier S C, Yarnes C T, Herman R P (2003). Mycorrhizal dependency of Chihuahuan Desert plants is influenced by life history strategy and root morphology. Journal of Arid Environments , 55: 223-229
doi: 10.1016/S0140-1963(03)00031-4
10 Dalpe Y (1993). Vesicular-arbuscular mycorrhiza. In: Carter M R, ed. Soil Sampling and Methods of Analysis . Raton: Lewis Publishers, 287-301
11 Department of Geography of Peking University, Commission for Integrated Survey of Natural Resources of Chinese Academy of Sciences, Lanzhou Institute of Desert Research of Chinese Academy of Sciences, Lanzhou Institute of Glacier, Frozen Soil of Chinese Academy of Sciences (1983). Natural Conditions and Its Improvement and Utilization in the Mu Us Sandland. Beijing: Science Press (in Chinese)
12 Dhillion S S, Zak J C (1993). Microbial dynamics in arid ecosystems: Desertification and the potential role of mycorrhizas. Revista Chilena de Historia Natural , 66: 253-270
13 Ebbers B C, Anderson R C, Liberta A E (1987). Aspects of the mycorrhizal ecology of prairie dropseed, Sporobolus heterolepis (Poaceae). American Journal of Botany , 74: 564-573
doi: 10.2307/2443836
14 Eom A H, Hartnett D C, Wilson G W T (2000). Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia , 122: 435-444
doi: 10.1007/s004420050050
15 Ferrol N, Calvente R, Cano C, Barea J M, Concepción A A (2004). Analysing arbuscular mycorrhizal fungal diversity in shrub-associated resource islands from a desertification threatened semiarid Mediterranean ecosystem. Applied Soil Ecology , 25: 123-133
doi: 10.1016/j.apsoil.2003.08.006
16 Fontenla S, Godoy R, Rosso P, Havrylenko M (1998). Root associations in Austrocedrus forests and seasonal dynamics of arbuscular mycorrhizas. Mycorrhiza , 8: 29-33
doi: 10.1007/s005720050207
17 Francis R, Read D J (1994). The contributions of mycorrhizal fungi to the determination of plant community structure. Plant and Soil , 159: 11-25
18 Gange A C, Brown V K, Sinclair G S (1993). Vesicular-arbuscular mycorrhizal fungi: a determinantion of plant community structure in early succession. Funct Ecol , 7: 616-622
doi: 10.2307/2390139
19 Hartnett D C, Wilson G W T (2002). The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant and Soil , 244: 319-331
doi: 10.1023/A:1020287726382
20 Jumpponen A, Trappe J M (1998). Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol , 140: 295-310
doi: 10.1046/j.1469-8137.1998.00265.x
21 Jumpponen A (2001). Dark septate endophytes—are they mycorrhizal? Mycorrhiza , 11: 207-211
doi: 10.1007/s005720100112
22 Lorgio E A, Julio R G, Peter L M (1999). Variation in soil microorganisms and nutrients underneath and outside the canopy of Adesimia bedwellii (Papilionaceae) shrubs in arid coastal Chile following drought and above average rainfall. Journal of Arid Environments , 42: 61-70
doi: 10.1006/jare.1999.0503
23 Mandyam K, Jumpponen A (2005). Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology , 53: 173-189
24 Moraes R M, Andrade D Z, Bedir E, Dayan F E, Lata H, Khan I (2004). Arbuscular mycorrhiza improves acclimatization and increases lignan content of micropropagated mayapple (Podophyllum peltatum L.). Plant Science , 166: 23-29
doi: 10.1016/j.plantsci.2003.07.003
25 Olsson P A, Tyler G (2004). Occurrence of non-mycorrhizal plant species in south Swedish rocky habitats is related to exchangeable soil phosphate. Journal of Ecology , 92: 808-815
doi: 10.1111/j.0022-0477.2004.00912.x
26 Postma J W M, Olsson P, Falkengren-Grerup U (2007). Root colonization by arbuscular mycorrhizal, fine endophytic and dark septate fungi across a pH gradient in acid beech forests. Soil Biology & Biochemistry , 39: 400-408
doi: 10.1016/j.soilbio.2006.08.007
27 Read D J, Haselwandter K (1981). Observations on the mycorrhizal status of some alpine plant communities. New Phytol , 88: 341-352
doi: 10.1111/j.1469-8137.1981.tb01729.x
28 Sigüenza C, Espejel I, Allen E B (1996). Seasonality of mycorrhizae in coastal sand dunes of Baja California. Mycorrhiza , 6: 151-157
doi: 10.1007/s005720050120
29 Skujins J, Allen M F (1986). Use of mycorrhizae for land rehabilitation. Mircen J Appl Microbiol Biotechnol , 2: 161-176
doi: 10.1007/BF00937191
30 Smith F A, Smith S E (1997). Structural diversity in vesicular-arbuscular mycorrhizal symbioses. New Phytol , 137: 373-388
doi: 10.1046/j.1469-8137.1997.00848.x
31 Smith S E (1995). Discoveries, discussions and directions in research on mycorrhizae. In: Varma A, Hock B, eds. Mycorrhiza, Structure, Function, Molecular Biology and Biotechnology . Berlin: Springer-Verlag, 324
32 Sylvia D M, Williams S E (1992). Vesicular arbuscular mycorrhizae and environmental stress. ASA Special Publication , 54: 101-124
33 Tarafdar J C, Praveen-Kumar (1996). The role of vesicular arbuscular mycorrhizal fungi on crop, tree and grasses grown in an arid environment. Journal of Arid Environments , 34: 197-203
doi: 10.1006/jare.1996.0101
34 Yu T, Nassuth A, Peterson R L (2001). Characterization of the interaction between the dark septate fungus Phialocephala fortinii and Asparagus officinalis roots. Can J Microbiol , 47: 741-753
doi: 10.1139/cjm-47-8-741
[1] Panna DAS, Highland KAYANG, . Arbuscular mycorrhizal fungi and dark septate endophyte colonization in bamboo from Northeast India[J]. Front. Agric. China, 2010, 4(3): 375-382.
Full text