Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2009, Vol. 3 Issue (3) : 294-299    https://doi.org/10.1007/s11703-009-0051-9
RESEARCH ARTICLE
Determination of ultratrace cadmium in food and environmental samples by ETAAS after vapor generation and in situ preconcentration
Ran SUO1,2,3(), Weijuan AN1, Na LI1
1. College of Food Science, Agricultural University of Hebei, Baoding 071001, China; 2. School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; 3. Tianjin Rice Technical Engineering Center, Tianjin 300457, China
 Download: PDF(110 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A method is described for the determination of ultratrace cadmium by coupling a continuous flow vapor generation system with in situ preconcentration technique and electrothermal atomic absorption spectrometry (ETAAS). A graphite tube coated with Ir as permanent chemical modifier was used for trapping cadmium vapor species. The effects of the flow rates of carrier gas and sample injection in vapor generation systems on the trapping measurement for cadmium were respectively investigated. Graphite tubes with different characteristic surfaces were comparatively studied for trapping cadmium vapor. The experimental results showed that the permanent chemical modifier of Ir is an alternative to the thermolabile modifier of Pd for simplifying the trapping measurement. The trapping efficiency of cadmium on the graphite tube coated with Ir was estimated. The trapping temperature and time were also investigated. A detection limit (3σ) of 0.005 μg·L-1 was obtained for this proposed method. The relative standard deviation (RSD) was 1.4% for 0.5 μg·L-1 of Cd (n=11). This method can be applied to the determination of ultratrace cadmium in food and environmental samples with good agreement between the certified and found values.

Keywords vapor generation      ETAAS      permanent chemical modifier      in situ preconcentration      cadmium     
Corresponding Author(s): SUO Ran,Email:ransuo@yahoo.com.cn   
Issue Date: 05 September 2009
 Cite this article:   
Ran SUO,Weijuan AN,Na LI. Determination of ultratrace cadmium in food and environmental samples by ETAAS after vapor generation and in situ preconcentration[J]. Front Agric Chin, 2009, 3(3): 294-299.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-009-0051-9
https://academic.hep.com.cn/fag/EN/Y2009/V3/I3/294
Fig.1  Schematic diagram of the vapor generation and trapping system
Note: Numbers of (1)-(9) represent peristaltic pump, KBH, sample, waste, carrier gas, mixing tube, gas/liquid separator (GLS), transfer line and graphite tube, respectively.
steptemperature/°Cramp time/shold time/sinternal gas flow/(mL?min-1)
11101050300
21303050300
312003020300
42000 (for Ir)2600 (for Zr)13300
Tab.1  Temperature program for graphite tube coating
steptemperature/°Cramp time/shold time/sinternal gas flow/(mL?min-1)read
1120110300
230010400
3300110300
41600040yes
52300410300
Tab.2  Temperature program for trapping and measurement
Fig.2  Effects of trapping temperature on the signal
Note: (a) Zr-coated, (b) Ir-coated, (c) Pd-coated and (d) uncoated.
Fig.3  Effects of atomization temperature on the signal
Note: (a) Ir-coated; (b) uncoated.
CRMscertified value/(μg?g-1)found value/(μg?g-1)
wheat flour (GBW 08503)0.031±0.0020.028±0.007
rice flour (GBW 08502)0.020±0.0020.024±0.009
peach leaf (GBW 08501)0.018±0.0040.016±0.004
tea (GBW 08505)0.023±0.0040.019±0.006
Tab.3  Analytical results (average ±, =7)
1 Andrew T, Simon B, David J H, Linda M W O, Mark W (2000). Atomic spectrometry update. Clinical and biological materials, foods and beverages. J Anal At Spectrom , 15(4): 451-487
2 Dimiter L T (1999). Hyphenated vapor generation atomic absorption spectrometric techniques. J Anal At Spectrom , 14: 147-162
doi: 10.1039/a807304j
3 Dimiter L T (2000). Vapor generation or electrothermal atomic absorption spectrometry? - Both. Spectrochimica Acta, Part B , 55: 917-933
4 Dimiter L T, Vera I S, Leonardo L, Alessandro D, Rositsa G (2000). Permanent modification in electrothermal atomic absorption spectrometry-advances, anticipations and reality. Spectrochimica Acta, Part B , 55: 473-490
5 Drasch G, Meyer L V, Kauert G (1980). Auwendung der gtaphitrohrkuvette zur arsenbestimmung in biologischen prober mit der hydride-AAS-technik. Fresenius’ Z Anal Chem , 304(2-3): 141-145
doi: 10.1007/BF00474372
6 Guo X M, Guo X Wei, Huang B L (2000), The gaseous phase enrichment techniques in hydride generation. Spectroscopy and Spectral Analysis , 20(4): 533-536
7 Heidi G I, María L F S, Alfredo S (1997). Vesicular Hydride generation-in situ Preconcentration-electrothermal atomic absorption spectrometry determination of sub-parts-per-billion levels of cadmium. J Anal At Spectrom , 12(11): 1333-1336
doi: 10.1039/a701387f
8 Heidi G I, Maria L F, Alfredo S (1998). Vesicle-assisted determination of ultratrace amounts of cadmium in urine by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry. J Anal At Spectrom , 13(9): 899-903
doi: 10.1039/a801610k
9 Henryk M, Mariusz K, Ralph E S (1997). Determination of cadmium in environmental samples by hydride generation with in situ concentration and atomic absorption detection. Analyst , 122(4): 331-336
doi: 10.1039/a606747f
10 James M, Gerhard S, Ian L S, Phil J, Steve J H (1999). Simultaneous multi-element determination of hydride-forming elements by “in-atomiser trapping” electrothermal atomic absorption spectrometry on an iridium-coated graphite tube. J Anal At Spectrom , 14(10): 1593-1600
doi: 10.1039/a904468j
11 Lee D S (1982). Determination of bismuth in environmental samples by flameless atomic absorption spectrometry with hydride generation. Anal Chem , 54: 1682-1686
doi: 10.1021/ac00248a006
12 Leonardo L, Claudia S, Dimiter L T (2003). Hydride generation atomic absorption spectrometry with different flow systems and in-atomizer trapping for determination of cadmium in water and urine-overview of existing data on cadmium vapour generation and evaluation of critical parameters. Talanta , 61: 683-698
doi: 10.1016/S0039-9140(03)00324-2
13 Lian L, Steven, Cornelius C, Molena H, James S W (1998). Determination of arsenic in water at sub-part-trillion levels by hydride generation Pd coated platform collection and GFAAS detection. Talanta , 47: 569-583
doi: 10.1016/S0039-9140(98)00079-4
14 Mark R C, Owen B, Simon R N C, Jennifer M C, Malcolm S C, Douglas L M (2001). Atomic spectrometry update. Environmental analysis. J Anal At Spectrom , 16(2): 194-235
doi: 10.1039/b010194j
15 Matusiewicz H, Sturgeon R E (1996). Atomic spectrometric detection of hydride forming elements following in situ trapping within a graphite furnace. Spectrochimica Acta, Part B , 51: 377-397
16 Sturgeon R E, Willie S N, Sproule G I, Robinson P T, Berman S S (1989). Sequestration of volatile element hydrides by platinum group elements for graphite furnace atomic absorption. Spectrochimica Acta, Part B , 44(7): 667-682
17 Sun H W, Suo R (2004). Enhancement reagents for simultaneous vapor generation of zinc and cadmium with intermittent flow system coupled to atomic fluorescence spectrometry, Anal Chim Acta . 509: 71-76
doi: 10.1016/j.aca.2003.12.024
[1] Huitao LI, Kangsen MAI, Qinghui AI, Chunxiao ZHANG, Lu ZHANG. Effects of dietary squid viscera meal on growth and cadmium accumulation in tissues of large yellow croaker, Pseudosciaena crocea R.[J]. Front Agric Chin, 2009, 3(1): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed