Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (1) : 15-21    https://doi.org/10.1007/s11703-011-1087-1
RESEARCH ARTICLE
Inheritance and QTL analysis of dough rheological parameters in wheat
Caiying ZHANG1,2(), Changhai DONG1,2, Jun MA1,2,3, Guijun YAN1,2,3, Chunji LIU1,2,3, Guangmin LI1
1. College of Life Sciences, Agricultural University of Hebei, Baoding 071001, China; 2. CSIRO Plant Industry, Brisbane 4067, Australia; 3. School of Plant Biology, The University of Western Australia, Perth, 6009, Australia
 Download: PDF(264 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A RIL population from two Australian wheats, Lang and CSCR6, was employed to evaluate the genetic variation and to detect QTL associated with dough rheological characters based on DArT and SSR markers and two environmental experiments. It was showed that the higher variation existed in the RIL for dough rheological characters, and so did much more abundant selection potentials that lacked in Chinese current commercial varieties. Nine additive QTLs for dough rheological characters were identified. Of which those for water absorption (WA) were located on chromosome 2A and 5A, stability time (ST) on 4B and 1B, breaking time (BT) on 1B, degree of softening (DS) on 1B, band width (BW) on 2B (two loci), evaluation value (EV) on 1B. And seven epistatic QTLs were screened out, and non-significant variance was found for the interaction between these epistatic QTLs and the environment. Correlation analysis indicated that there was a significantly positive relation between WA and development time (DT), and EV, whereas negatively related to BW. A significantly positive relation existed between DT, ST, BT and EV each other. They were negatively related to mixing tolerance index (MTI) and degree of softening (DS), both had a markedly positive relation.

Keywords dough rheological characters      quality properties      QTL      DArT      additive effect     
Corresponding Author(s): ZHANG Caiying,Email:Zhangcaiying@hebau.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Caiying ZHANG,Changhai DONG,Jun MA, et al. Inheritance and QTL analysis of dough rheological parameters in wheat[J]. Front Agric Chin, 2011, 5(1): 15-21.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-011-1087-1
https://academic.hep.com.cn/fag/EN/Y2011/V5/I1/15
parameterWADTSTMTIBTDSBWEV
L1mean65.428.5613.8713.9021.7128.6869.4274.23
max72.4022.3032.4055.0040.50110.00100.0093.67
min57.804.604.000.009.000.0047.3358.00
SD2.572.796.0911.506.4121.219.057.56
CSCR662.606.908.2020.0016.5050.0062.0067.00
Lang66.006.906.4029.0014.5035.0070.0069.00
L2mean61.439.3316.498.3724.6719.8077.9675.22
max70.4019.7028.0062.6738.50134.00110.0095.00
min54.203.474.000.008.800.0049.0054.00
SD3.113.745.8811.146.2320.0713.348.92
CSCR660.204.908.0018.0017.3025.0080.0063.00
Lang64.009.6018.905.0030.000.0070.0080.00
Tab.1  Dough rheological traits of RIL population at two locations
traitparentRILs
LangCSCR6averagerangSDskewnesskurtosis
WA/%65.0061.4063.4357.3-71.42.670.10-0.05
DT/min8.255.908.954.57-15.102.460.57-0.54
ST/min12.658.1015.184.25-26.704.830.200.15
MTI/BU17.0019.0011.140.00-41.338.750.981.00
BT/min22.2516.9023.199.50-34.505.27–0.160.18
DS/BU17.5037.5024.240.00-82.0016.010.981.00
BW/BU70.0071.0073.6953.67-100.009.570.07-0.32
EV75.5065.0074.7258.67-92.176.820.09-0.16
Tab.2  Basic statistic parameters of eight dough rheological traits for RILs and their parents
traitWADTSTMTIBTDSBW
DT0.366**------
ST0.0420.603**-----
MTI-0.119-0.304**-0.726**----
BT0.1760.705**0.916**-0.708**---
DS0.054-0.360**-0.810**0.783**-0.824**--
BW-0.492**-0.329**0.004**0.117-0.115-0.007-
EV0.340**0.831**0.754**-0.547**0.851**-0.626**-0.194
Tab.3  Correlation coefficients between dough rheological traits in the RIL population
traitQTLmarker-intervalpositionrangeAR2AE1AE2
WAQwa-2AWPT-1480-WPT-97973.00.0-9.8-0.888**8.03-0.0010.000
Qwa-5AWPT-8226-WPT-54678.34.0-13.51.302**15.860.0000.000
STQst-4BWPT-7569-GWM04959.54.6-14.31.352**6.740.667-0.669
Qst-1BWPT-8832-WPT-167512.05.0-12.52.255**16.910.0000.000
BTQbt-1BWPT-8832-WPT-167510.04.0-12.52.192**14.84-0.4590.460
DSQda-1BWPT-8832-WPT-167510.04.0-12.5-6.612**12.230.0000.000
BWQbw-2BWPT-6519-WPT-87602.00.0-5.6-1.795**5.81-1.0821.090
Qbw-2BWPT-4559-WPT-73226.00.0-8.0-3.391**8.62-0.2550.260
EVQev-1BWPT-8832-WPT-167510.02.0-12.52.798**10.410.010-0.010
Tab.4  Additive and additive×environment interaction effects of QTL for dough rheological traits
Fig.1  Detected QTL for dough rheological traits
traitQTLiInterval-iPositionQTLjInterval-jpositionAAR2AAE1AAE2
WAQwa-3BWMC0754-WPT-869232.8Qwa-4AWPT-3363-WPT-277716.3-0.834**7.87-0.0000.000
BTQbt-3BWPT-0940-wpt-255930.9Qbt-3DWPT-6738-WPT-41537.31.625**5.771.167-1.225
DSQds-3BWPT-7614-WPT-507230.7Qds-3DWPT-6738-WPT-41537.3-4.949**5.563.223-3.356
MTIQmti-3BWPT-5072-WPT-094030.8Qmti-3DWPT-8185-WPT-42374.6-3.466**9.11-1.7531.792
BWQbw-3BWPT-11419-STM053828.5Qbw-3AWPT-9422-WPT-369732.42.193**5.031.720-1.710
Qbw-2BWPT-2703-WPT-098138.1Qbw-2AWPT-0071-WPT-790110.63.268**9.121.266-1.237
EVQev-3BWPT-8959-WPT-188424.7Qev-1BWPT-1770-WPT-61423.02.983**11.700.533-0.546
Tab.5  Epistatic and epistatic×environment interaction effects of QTL for dough rheological traits
traitentryGtraitentryGtraitentryGtraitentryG
WAP14.514BTP13.817BWP10.275EVP15.781
P2-2.699P20.567P210.647P20.185
GSL4.514GSL3.817GSL10.647GSL5.781
STP14.514MTIP1-3.466DSP1-11.561---
P2-2.699P2-3.466P21.663---
GSL4.514GSL3.466GSL11.561---
Tab.6  Prediction of genetic effects for P1, P2 and GSL for dough rheological traits
traitQTLGSLtraitQTLGSLtraitQTLGSLtraitQTLGSL
WAQwa-2AqqBWQbw-2BqqBTQbt-1BQQMTIQmti-3Bqq
Qwa-5AQQQbw-2BqqQbt-3BQQQmti-3DQQ
Qwa-3BqqQbw-3BQQQbt-3DQQEVQev-1BQQ
Qwa-4AQQQbw-3AQQDSQds-1BqqQev-3BQQ
STQst-4BQQQbw-2BQQQds-3BqqQev-1BQQ
Qst-1BQQQbw-2AQQQds-3DQQ---
Tab.7  QTL Genotypes of the predicted GSL for dough rheological traits
1 American Association of Cereal Chemists (1983). Approved methods of the AACC. MN, USA: The American Association of Cereals Chemists
2 Blanco A, Pasqualone A, Troccoli A, DiFonzo N, Simeone R (2002). Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Mol Biol , 48(5/6): 615–623
doi: 10.1023/A:1014864230933
3 Elangovan M, Rai R, Dholakia B B, Lagu M D, Tiwari R, Gupta R K, Rao V S, R?der M S, Gupta V S (2008). Molecular genetic mapping of quantitative trait loci associated with loaf volume in hexaploid wheat (Triticum aestivum). J Cereal Sci , 47(3): 587–598
doi: 10.1016/j.jcs.2007.07.003
4 Groos C, Bervasb E, Charmet G (2004). Genetic analysis of grain protein content, grain hardness and dough rheology in a hard×hard bread wheat progeny. J Cereal Sci , 40(2): 93–100
doi: 10.1016/j.jcs.2004.08.006
5 Hong Y H, Xiao N, Zhang C, Su Y, Chen J M (2009). Principle of diversity arrays technology (DArT) and its applications in genetic research of plants. Hereditas , 31(4): 359–364
6 Jaccoud D, Peng K, Feinstein D, Kilian A (2001). Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res , 29(4): 2–7
doi: 10.1093/nar/29.4.e25
7 Kuchel H, Langridge P, Mosionek L, Willams K, Jefferies S P (2006). The genetic control of milling yield, dough rheology and baking quality of wheat. Theor Appl Genet , 112(8): 1487–1495
doi: 10.1007/s00122-006-0252-z
8 Li H B, Vaillancourt R, Mendham N, Zhou M X (2008). Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.). BMC Genomics , 9(1): 401
doi: 10.1186/1471-2164-9-401
9 Li Z Z, Sun F T, Zhang C Y, Jin Y C (1990). Quality traits of different varieties and correlations among them in wheat. Scientia Agricultura Sinica , 23(6): 35–40
10 Ma J, Li H B, Zhang C Y, Yang X M, Liu Y X, Yan G J, Liu C J (2009). Identification and validation of a major QTL conferring crown rot resistance in hexaploid wheat. Theor Appl Genet , 120(6): 1119–1128
doi: 10.1007/s00122-009-1239-3
11 Ma W J, Sutherland M W, Kammholza S, Banks P, Brennan P, Bovill W, Daggard G (2007). Wheat flour protein content and water absorption analysis in a doubled haploid population. J Cereal Sci , 45(3): 302–308
doi: 10.1016/j.jcs.2006.10.005
12 Ma W, Appels R, Bekes F, Larroque Q, Morell M K, Gale K R (2005). Genetic characterization of dough rheological properties in a wheat doubled haploid population: additive genetic effects and epistatic interactions. Theor Appl Genet , 111(3): 410–422
doi: 10.1007/s00122-005-2001-0
13 Mantovani P, Maccaferri M, Sanguineti M C, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Huttner E, DeAmbrogio E, Kilian A (2008). An integrated DArT- SSR linkage map of durum wheat. Mol Breed , 22(4): 629–648
doi: 10.1007/s11032-008-9205-3
14 McCartney C A, Somers D J, Lukow O, Ames N, Noll J, Cloutier S, Humphreys D G, McCallum B D (2006). QTL analysis of quality traits in the spring wheat cross RL4452בAC Domain’. Plant Breed , 125(6): 565–575
doi: 10.1111/j.1439-0523.2006.01256.x
15 Peleg Z, Saranga Y S, Suprunova T, Ronin Y, R?der M S, Kilian A, Korol A B, Fahima T (2008). High-density genetic map of durum wheat ×ild emmer wheat based on SSR and DArT markers. Theor Appl Genet , 117(1): 103–115
doi: 10.1007/s00122-008-0756-9
16 Semagn K, Bj?rnstad ?, Skinnes H, Mar?y A G, Taregne Y, William M (2006). Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome , 49(5): 545–555
doi: 10.1139/G06-002
17 Suprayogi Y, Pozniak, Curtis Jerry, Clarke F R, Clarke J M, Knox R E, Singh A K (2009). Identification and validation of quantitative trait loci for grain protein concentration in adapted Canadian durum wheat populations. Theor Appl Genet , 119: 437–448
18 Yang H, Shang H Y, Li W, Wei Y M, Zhang Y L (2006). Analysis of agronomic and quality characters of new wheat varieties and lines in Sichuan. Southwest China J Agric Sci , 19(2): 170–177
19 Yang J, Hu C C, Ye X Z, Zhu Z H, Zhu Z X, Zhu J (2005). QTL Network-2.1 User Manual. Hangzhou: Zhejiang University, China
20 Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008). QTL Network: mapping and visualizing genetic architecture of complex traits in experimental populations. Applications Note , 24(5): 721–723 .
21 Zanetti S, Winzeler M, Feuillet C, Keller B, Messmer M (2001). Genetic analysis of bread-making quality in wheat and spelt. Plant Breed , 120(1): 13–19
doi: 10.1046/j.1439-0523.2001.00552.x
22 Zhang X P, Wang S Z, Wang C L, Gao H T, Wu S H, Duan G H, Lu S Z (2003). Analysis of the major qualities and characteristics of new winter wheat breeds and its inspiration for breeding. J Henan Vocation-Technical Teachers College , 31(2): 5–7
23 Zhu J, Huang S, Khan K, Brien L O (2001). Relationship of protein quantity, quality and dough properties with Chinese steamed bread quality. J Cereal Sci , 33(2): 205–212
doi: 10.1006/jcrs.2000.0358
[1] Junyi CHEN, Li XU. The candidate QTLs affecting phosphorus absorption efficiency and root weight in maize (Zea mays L.)[J]. Front Agric Chin, 2011, 5(4): 456-462.
[2] Junyi CHEN, Li XU. Comparative mapping of QTLs for H+ secretion of root in maize (Zea mays L.) and cross phosphorus levels on two growth stages[J]. Front Agric Chin, 2011, 5(3): 284-290.
[3] Shengliang YUAN, Minsheng YANG, Baojia GAO. Additive insect-resistant effects of transgenic triploid Chinese white poplar against Clostera anachoreta[J]. Front Agric Chin, 2011, 5(2): 237-240.
[4] Junyi CHEN, Yilin CAI, Li XU, Jiuguang WANG, Wenlong ZHANG, Guoqiang WANG, Delin XU, Tianqing CHEN, Xuegao LU, Haiyan SUN, Aiying HUANG, Ying LIANG, Guoli DAI, Hongni QIN, Zuchun HUANG, Zhaojing ZHU, Zhiguo YANG, Jun XU, Shoufeng KUANG. Identification of QTLs for biomass production in maize (Zea mays L.) under different phosphorus levels at two sites[J]. Front Agric Chin, 2011, 5(2): 152-161.
[5] Wenying SUN, Yuxing ZHANG, Wenying SUN, Wenquan LE, Hai’e ZHANG. Construction of a genetic linkage map and QTL analysis for some leaf traits in pear (Pyrus L.)[J]. Front Agric Chin, 2009, 3(1): 67-74.
[6] GAI Junyi, LIU Ying, LV Huineng, XING Han, ZHAO Tuanjie, YU Deyue, CHEN Shouyi. Identification, inheritance and QTL mapping of root traits related to tolerance to rhizo-spheric stresses in soybean (G. max (L.) Merr.)[J]. Front. Agric. China, 2007, 1(2): 119-128.
[7] Junyi GAI,Yongjun WANG,Xiaolei WU,Shouyi CHEN. A comparative study on segregation analysis and QTL mapping of quantitative traits in plants—with a case in soybean[J]. Front. Agric. China, 2007, 1(1): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed