Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (4) : 479-485    https://doi.org/10.1007/s11703-011-1114-2
RESEARCH ARTICLE
Screening of conidium development mutant of Botrytis cinerea and functional analysis of the related gene
Zhongbo XIA, Jihong XING, Xuan WANG, Bin ZHAO, Jianmin HAN(), Jingao DONG()
Molecular Plant Pathology Lab, Agricultural University of Hebei, Baoding 071001, China
 Download: PDF(269 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel conidium development mutant was obtained by screening the transformants of Botrytis cinerea produced by Agrobacterium tumefaciens mediated method, which lost the ability of producing conidia. The flanking sequence of T-DNA insertion site was acquired by TAIL-PCR technology, and then, the T-DNA insertion in the second exon of BC1G_02800.1 confirmed by BLAST between the flanking sequence and the known sequence in the B. cinerea gene database. The mutant gene was identified as BC1G_02799.1 located in the upstream of BC1G_02800.1 gene by RT-PCR. The DNA full-length sequence of BC1G_02799.1 was 1951 bp and contained 1848 bp coding region, which encoded a 615 amino acids putative protein similar to ABC-transporter, and the function of BC1G_02799.1 gene was unknown to date. Phenotype analysis of the mutant found that the mutant strain colony was white, grew slowly, and did not produce conidium and sclerotia on PDA medium but showed a stronger pathogenicity to tomato leaves and successfully increased the enzyme activity related to pathogenicity compared to the wild type strain. The results suggested that the BC1G_02799.1 gene was involved in the conidium development, the sclerotia formation, and pathogenicity in B. cinerea. Our research will facilitate in understanding the molecular mechanism of conidium development, sclerotia formation, and pathogenic in B. cinerea.

Keywords Botrytis cinerea      T-DNA insertional mutant      TAIL-PCR      conidium development     
Corresponding Author(s): HAN Jianmin,Email:hanjianmin64@tom.com; DONG Jingao,Email:dongjingao@126.com   
Issue Date: 05 December 2011
 Cite this article:   
Zhongbo XIA,Jihong XING,Xuan WANG, et al. Screening of conidium development mutant of Botrytis cinerea and functional analysis of the related gene[J]. Front Agric Chin, 2011, 5(4): 479-485.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-011-1114-2
https://academic.hep.com.cn/fag/EN/Y2011/V5/I4/479
Gene nameSequence of primers
Upstream gene5'-GTAAAGTCTCCGAGTTATGACCGAT-3' 5'-GTGATGAAGCCAAAGGTATCCAAAC-3'
T-DNA insertion gene5'-AGGGTGTCTTGTTTCTCCAACTCAT-3' 5'-GAGGCTGGTTGATGAGAATGGAGTA-3'
Downstream gene5'-TATCGGAAGAGTTGGTTTCGTATGA-3' 5'-GTCATAAGGGAAAGAGAGTCTGGCA-3'
Tublin5'-ACTGGGCTAAGGGTCATT-3' 5'-TCTCCGTAAGATGGGTTG-3'
Tab.1  Primer pairs for semiquantitative RT-PCR analysis
Fig.1  Identification of transformant BMH179 by PCR. M is Trans 2K DNA marker; 1 is DNA of wild-type BC22 strain; 2 is DNA of transformant BMH179.
Fig.2  Results of TAIL-PCR (A) and identification of T-DNA insertion site in BMH179 by PCR (B). M is Trans 2 K DNA Marker; 1 is the secondary PCR of TAIL-PCR; 2 is the tertiary PCR of TAIL-PCR; 3-4 are amplification with primers LX-1 and RX-1; and 5-6 are amplification with primers LB3 and RX-1. 3 and 6 are wild-type BC22. 4 and 5 are BMH179.
Fig.3  RT-PCR results of the gene , , and in BMH179 (A) and phylogenetic analysis of (B). 1 is wide-type BC22, and 2 is BMH179.
Fig.4  Colony (A), conidial production (B), and growth rate (C) of wild-type BC22 and BMH179.
Fig.5  The pathogenicity in the tomato leaf blade comparison between wild-type BC22 and BMH179. * means significant difference at 0.05 probability level.
Fig.6  Enzyme activity analysis of wild-type BC22 and BMH179. * means significant difference at 0.05 probability level.
1 Broome J C, English J T, Marois J J, Latorre B A, Aviles J C (1995). Development of an infection model for Botrytis bunch rot of grapes based on wetness duration and temperature. Phytopathology , 85(1): 97-102
doi: 10.1094/Phyto-85-97
2 Choquer M, Fournier E, Kunz C, Levis C, Pradier J M, Simon A, Viaud M (2007). Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett , 277(1): 1-10
doi: 10.1111/j.1574-6968.2007.00930.x pmid:17986079
3 Del Sorbo G, Ruocco M, Schoonbeek H J, Scala F, Pane C, Vinale F, De Waard M A (2008). Cloning and functional characterization of BcatrA, a gene encoding an ABC transporter of the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Mycol Res , 112(Pt 6): 737-746
doi: 10.1016/j.mycres.2008.01.005 pmid:18515055
4 Doehlemann G, Berndt P, Hahn M (2006). Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol , 59(3): 821-835
doi: 10.1111/j.1365-2958.2005.04991.x pmid:16420354
5 Espino J J, Brito N, Noda J, Gonzalez C (2005). Botrytis cinerea endo-β-1,4-glucanase Cel5A is expressed during infection but is not required for pathogenesis. Physiol Mol Plant Pathol , 66(6): 213-221
doi: 10.1016/j.pmpp.2005.06.005
6 Gourgues M, Brunet-Simon A, Lebrun M H, Levis C (2004). The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Mol Microbiol , 51(3): 619-629
doi: 10.1046/j.1365-2958.2003.03866.x pmid:14731267
7 Kars I, Krooshof G H, Wagemakers L, Joosten R, Benen J A E, van Kan J A L (2005). Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J , 43(2): 213-225
doi: 10.1111/j.1365-313X.2005.02436.x pmid:15998308
8 Kars I, McCalman M, Wagemakers L, van Kan J A (2005). Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10. Mol Plant Pathol , 6(6): 641-652
doi: 10.1111/j.1364-3703.2005.00312.x pmid:20565686
9 Kauffman H F, van der Heide S, de Vries K (1987). Botrytis cinerea: a study of the immunological properties during growth. Int Arch Allergy Appl Immunol , 83(4): 359-365 3112026
doi: 10.1159/000234369
10 Klimpel A, Gronover C S, Williamson B, Stewart J A, Tudzynski B (2002). The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Mol Plant Pathol , 3(6): 439-450
doi: 10.1046/j.1364-3703.2002.00137.x pmid:20569351
11 Li X L, Gao Z M, Li Y M, Cao Z G, Chen W, Wang S J (2008). Differentiation of pathogenicity of Botrytis cinerea strains from different hosts to tomato. Mycosystema , 27(3): 343-350
12 Liu W, Leroux P, Fillinger S (2008). The HOG1-like MAP kinase Sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bos1 and is not involved in dicarboximide- and phenylpyrrole-resistance. Fungal Genet Biol , 45(7): 1062-1074
doi: 10.1016/j.fgb.2008.04.003 pmid:18495505
13 Mullins E D, Chen X, Romaine P, Raina R, Geiser D M, Kang S (2001). Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology , 91(2): 173-180
doi: 10.1094/PHYTO.2001.91.2.173 pmid:18944391
14 Panikashvili D, Aharoni A (2008). ABC-type transporters and cuticle assembly: Linking function to polarity in epidermis cells. Plant Signal Behav , 3(10): 806-809
doi: 10.4161/psb.3.10.5887 pmid:19704564
15 Reis H, Pfiffi S, Hahn M (2005). Molecular and functional characterization of a secreted lipase from Botrytis cinerea. Mol Plant Pathol , 6(3): 257-267
doi: 10.1111/j.1364-3703.2005.00280.x pmid:20565655
16 Rui O, Hahn M (2007). The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Mol Plant Pathol , 8(2): 173-184
doi: 10.1111/j.1364-3703.2007.00383.x pmid:20507489
17 Schamber A, Leroch M, Diwo J, Mendgen K, Hahn M (2010). The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Mol Plant Pathol , 11(1): 105-119
doi: 10.1111/j.1364-3703.2009.00579.x pmid:20078780
18 Segmüller N, Ellendorf U, Tudzynski B, Tudzynski P (2007). BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea.Eukaryot Cell , 6(2): 211-221
doi: 10.1128/EC.00153-06 pmid:17189492
19 Segmüller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P (2008). NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant Microbe Interact , 21(6): 808-819
doi: 10.1094/MPMI-21-6-0808 pmid:18624644
20 Siewers V, Viaud M, Jimenez-Teja D, Collado I G, Gronover C S, Pradier J M, Tudzynski B, Tudzynski P (2005). Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol Plant Microbe Interact , 18(6): 602-612
doi: 10.1094/MPMI-18-0602 pmid:15986930
21 Stahmann K P, Pielken P, Schimz K L, Sahm H (1992). Degradation of Extracellular beta-(1,3)(1,6)-d-Glucan by Botrytis cinerea. Appl Environ Microbiol , 58(10): 3347-3354
pmid:16348789
22 Stefanato F L, Abou-Mansour E, Buchala A, Kretschmer M, Mosbach A, Hahn M, Bochet C G, Métraux J P, Schoonbeek H J (2009). The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana. Plant J , 58(3): 499-510
doi: 10.1111/j.1365-313X.2009.03794.x pmid:19154205
23 Turrion-Gomez J L, Eslava A P, Benito E P (2010). The flavohemoglobin BCFHG1 is the main NO detoxification system and confers protection against nitrosative conditions but is not a virulence factor in the fungal necrotroph Botrytis cinerea. Fungal Genet Biol , 47(5): 484-496
doi: 10.1016/j.fgb.2010.03.001 pmid:20223291
24 Valette-Collet O, Cimerman A, Reignault P, Levis C, Boccara M (2003). Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Mol Plant Microbe Interact , 16(4): 360-367
doi: 10.1094/MPMI.2003.16.4.360 pmid:12744465
25 Viaud M, Fillinger S, Liu W, Polepalli J S, Le Pêcheur P, Kunduru A R, Leroux P, Legendre L (2006). A class III histidine kinase acts as a novel virulence factor in Botrytis cinerea. Mol Plant Microbe Interact , 19(9): 1042-1050
doi: 10.1094/MPMI-19-1042 pmid:16941908
26 Williamson B, Tudzynski B, Tudzynski P, van Kan J A (2007). Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol , 8(5): 561-580
doi: 10.1111/j.1364-3703.2007.00417.x pmid:20507522
27 Wu J Y (2007). The species of cutinase and cell-wall degrading enzymes produced by Botrytis cinerea and their pathogenicity to tomato plants. Yangzhou University , 26-31 (in Chinese)
[1] Jihong XING, Qiaoyun WENG, Helong SI, Jianmin HAN, Jingao DONG. Identification and molecular tagging of two Arabidopsis resistance genes to Botrytis cinerea[J]. Front Agric Chin, 2011, 5(4): 430-436.
[2] Bin ZHAO, Meng ZHENG, Zhiying SUN, Zhiyong LI, Jihong XING, Jingao DONG. BcDR1, a putative gene, regulates the development and pathogenicity of Botrytis cinerea[J]. Front Agric Chin, 2011, 5(3): 338-343.
[3] Yuxia DONG, Jihong XING, Jiao JIA, Qiaoyun WENG, Zhimin HAO, Jingao DONG. Cloning and pharmaceutical analysis of CaMK gene of Botrytis cinerea[J]. Front Agric Chin, 2011, 5(3): 299-304.
[4] Shutong WANG, Tongle HU, Yanling JIAO, Jianjian WEI, Keqiang CAO. Isolation and characterization of Bacillus subtilis EB-28, an endophytic bacterium strain displaying biocontrol activity against Botrytis cinerea Pers.[J]. Front Agric Chin, 2009, 3(3): 247-252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed