Please wait a minute...
Frontiers of Agriculture in China

ISSN 1673-7334

ISSN 1673-744X(Online)

CN 11-5729/S

Front Agric Chin    2011, Vol. 5 Issue (4) : 543-551    https://doi.org/10.1007/s11703-011-1147-6
RESEARCH ARTICLE
Effect of intercropping, Bradyrhizobium inoculation and N, P fertilizers on yields, physical and chemical quality of cowpea seeds
Ekhlas M. MUSA1, Elsiddig A. E. ELSHEIKH1, Isam A. MOHAMED AHMED2,3, Elfadil E. BABIKER2()
1. Department of Soil Sciences & Environment, Faculty of Agriculture, University of Khartoum, Shambat 14413, Sudan; 2. Department of Food Science & Technology, Faculty of Agriculture, University of Khartoum, Shambat 14413, Sudan; 3. Department of Agricultural, Biological, and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
 Download: PDF(150 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The present study was aimed to determine the effects of inoculation with Bradyrhizobium strain, intercropping, nitrogen and phosphorus fertilization and their interaction on the yield, physical and chemical properties of cowpea seeds. The results showed that the seed yield of cowpea was significantly (P≤0.05) increased by Bradyrhizobium inoculation, nitrogen and phosphorus fertilizers, but not by intercropping. All treatments of intercropping, P, Bradyrhizobium plus N and Bradyrhizobium plus P treatments significantly (P≤0.05) increased the hydration coefficient and cookability of cowpea seeds compared to untreated plants in both seasons. For chemical composition, all treatments significantly (P≤0.05) increased the dry matter, ash, protein and fiber content of the seeds compared to the untreated plants for the two systems and in both seasons, whereas it significantly (P≤0.05) decreased carbohydrate content of the seeds. Fat content of the seeds was not increased by Bradyrhizobium inoculation and intercropping, but it was significantly increased by nitrogen and phosphorus fertilization. Intercropping, Bradyrhizobium inoculation and nitrogen and phosphorus fertilization significantly (P≤0.05) increased tannin content and in vitro protein digestibility of the seeds compared to untreated plants for both systems and in the two seasons.

Keywords Bradyrhizobium inoculation      chemical composition      cowpea      intercropping      fertilization     
Corresponding Author(s): BABIKER Elfadil E.,Email:elfadibabiker@yahoo.com   
Issue Date: 05 December 2011
 Cite this article:   
Ekhlas M. MUSA,Elsiddig A. E. ELSHEIKH,Isam A. MOHAMED AHMED, et al. Effect of intercropping, Bradyrhizobium inoculation and N, P fertilizers on yields, physical and chemical quality of cowpea seeds[J]. Front Agric Chin, 2011, 5(4): 543-551.
 URL:  
https://academic.hep.com.cn/fag/EN/10.1007/s11703-011-1147-6
https://academic.hep.com.cn/fag/EN/Y2011/V5/I4/543
ParametersValue
Depth (cm)0-30
Sand (%)11.5
Silt (%)19.6
Clay (%)68.9
pH (paste)8.1
EC (ds/m)0.4
Total N (%)0.056
Organic carbon (%)0.52
Available P (mg/kg soil)4.3
CaCO3 (%)2.0
SO42-(meq/L)0-7
NO3--(meq/L)0-5
Tab.1  Physiochemical characteristic of the soil in the experimental site
TreatmentsYield (kg/hm2)
1st season2nd season
Monocropping system
Control334.89 b344.26 d
20 k /hm-2 of N367.93 ab400.28 bc
50 kg/hm-2 of P406.17 a426.70 ab
TAL 169383.31 a384.06 c
TAL 169+ 20 kg/hm-2 of N402.23 a407.91 b
TAL 169+ 50 kg/hm-2 of P418.17 a435.82 a
Intercropping system
Control302.37 c310.49 c
20 kg/hm2 of N337.00 bc397.39 a
50 kg/hm2 of P383.97 ab406.33 a
TAL 169371.27 b353.39 b
TAL 169+ 20 kg/hm-2 of N389.50 ab401.52 a
TAL 169+ 50 kg/hm-2 of P415.11 a417.57 a
Tab.2  Effect of inoculation, N, P and intercropping (sorghum/ cowpea) on yields of rain fed cowpea (kg/hm) growing for two consecutive seasons
TreatmentsHydration coefficientCookability100-seed weight
1st season2nd season1st season2nd season1st season2nd season
Monocropping system
Control205.43 c207.00 b10.09 c12.08 a18.22 d16.88 c
20 kg/hm-2 of N208.38 b210.54 ab11.64 bc12.30 a20.27 c18.74 ab
50 kg/hm-2 of P208.97 ab212.97 a11.29 bc12.22 a20.88 bc18.88 ab
TAL 169208.06 bc208.39 ab10.99 c12.25 a21.54 ab18.54 ab
TAL 169+ 20 kg/hm-2 of N209.53 ab213.63 a12.64 ab14.33 a22.56 a19.56 a
TAL 169+ 50 kg/hm-2 of P210.07 ab213.73 a12.27 b14.18 a22.81 a19.81 a
Intercropping system
Control210.43 ab211.93 ab12.33 ab13.65 a20.06 d18.23 b
20 kg/hm-2 of N213.16 ab214.49 a13.64 abc13.92 a20.78 bc18.88 bc
50 kg/hm-2 of P212.54 ab214.21 a13.70 abc14.13 a21.14 bc18.97 bc
TAL 169212.65 ab212.83 ab14.95 a13.88 a20.81 bc18.88 bc
TAL 169+ 20 kg/hm-2 of N214.82 a215.15 a14.86 a14.32 a21.51 b19.23 c
TAL 169+ 50 kg/hm-2 of P215.03 a216.28 a14.74 ab14.40 a21.52 ab19.20 a
Tab.3  Effect of inoculation, N, P and intercropping (sorghum/cowpea) on hydration coefficient and cookability (%) of rain fed cowpea seeds growing for two consecutive seasons
TreatmentsDry matterAsh
1st season2nd season1st season2nd season
Monocropping system
Control92.00 ab7.87 d3.08 b3.08 c
20 kg/hm2 of N91.63 bc8.75 b3.97 a3.35 c
50 kg/hm2 of P91.25 c8.67 b3.98 a3.58 b
TAL 16991.67 b8.25 c3.73 a3.52 b
TAL 169+ 20 kg/hm2 of N91.17 c9.18 a4.03 a3.87 a
TAL 169+ 50 kg/hm2 of P91.25 c9.30 a4.08 a3.87 a
Intercropping system
Control92.17 a8.47 b4.07 b3.57 c
20 kg/hm2 of N91.25 c9.00 a4.40 b4.10 b
50 kg/hm2 of P91.17 c9.08 a4.47 a4.07 b
TAL 16991.17 c8.53 b4.55 a4.12 b
TAL 169+ 20 kg N/hm2 of N91.25 c9.33 a4.62 a4.38 b
TAL 169+ 50 kg P/hm2 of P91.17 c9.33 a4.68 a4.42 a
Tab.4  Effect of inoculation, N, P and intercropping (sorghum/cowpea) on dry matter and ash contents (%) of rain fed cowpea seeds growing for two consecutive seasons
TreatmentsFatFiber
1st season2nd season1st season2nd season
Monocropping system
Control1.95 ab1.67 d4.18 ab4.08 d
20 kg/hm2 of N2.17 a2.06 ab4.43 abc4.87 c
50 kg/hm2 of P2.17 a2.00 abcd4.30 ab5.02 abcd
TAL 1691.56 c1.67 d4.12 d4.98 bcd
TAL 169+ 20 kg/hm2 of N2.11 a2.00 abcd4.50 abc5.18 abcd
TAL 169+ 50 kg P/hm2 of P2.06 a2.22 a4.67 ab5.43 a
Intercropping system
Control1.72 bc1.78 cd4.32 abc4.90 cd
20 kg/hm2 of N1.89 abc2.17 a4.82 a5.23 abc
50 kg/hm2 of P2.11 a2.22 a4.88 a5.30 ab
TAL 1691.84 abc1.72 cd4.75 ab4.33 e
TAL 169+ 20 kg/hm2 of N2.11 a2.11 ab4.93 a5.33 ab
TAL 169+ 50 kg/hm2 of P2.17 a2.22 a4.98 a5.30 ab
Tab.5  Effect of inoculation, N, P, Intercropping (sorghum/cowpea) on fat and fiber contents (%) of rain fed cowpea seeds growing for two consecutive seasons
TreatmentsProteinCarbohydrates
1st season2nd season1st season2nd season
Monocropping system
Control26.17 d24.86 f56.62 a58.44 a
20 kg/hm2 of N27.33 c26.77 cd53.69 b54.21 bc
50 kg/hm2 of P28.21 abc26.66 cd52.59 bc54.02 bc
TAL 16927.44 c26.69 cd52.99 bc54.89 bc
TAL 169+ 20 kg/hm2 of N28.16 bc28.20 ab52.36 c51.57 d
TAL 169+ 50 kg/hm2 of P29.26 ab29.33 a51.19 cd49.85 de
Intercropping system
Control28.03 c26.39 f54.03 a55.50 a
20 kg/hm2 of N29.70 ab27.90 abc50.60 bc51.60 bc
50 kg/hm2 of P29.95 ab29.87 a49.46 c49.46 d
TAL 16929.66 ab27.49 bcd50.36 b53.70 b
TAL 169+ 20 kg/hm2 of N31.98 a28.47 ab47.61 c50.87 cd
TAL 169+ 50 kg/hm2 of P32.64 a27.92 abc46.70 c50.81 cd
Tab.6  Effect of inoculation, N, P and intercropping (sorghum/cowpea) on protein and carbohydrates contents (%) of rain fed cowpea seeds growing for two consecutive seasons
TreatmentsTanninProtein digestibility
1st season2nd season1st season2nd season
Monocropping system
Control1.28 e1.37 c66.67 f67.84 d
20 kg/hm2 of N1.38 bcde1.45 bc79.64 ab80.64 ab
50 kg/hm2 of P1.35 de1.45 bc76.66 cd80.78 ab
TAL 1691.32 e1.40 b79.47 a78.78 b
TAL 169+ 20 kg/hm2 of N1.47 abc1.57 ab73.13 cd76.57 c
TAL 169+ 50 kg/hm2 of P1.45 abcd1.53 ab72.01 e81.73 a
Intercropping system
Control1.37 cde1.42 bc69.70 g72.20 g
20 kg/hm2 of N1.50 a1.58 ab77.31 c84.16 b
50 kg/hm2 of P1.48 bc1.57 ab75.18 d87.92 a
TAL 1691.47 abc1.52 b71.26 fg81.82 bc
TAL 169+ 20 kg/hm2 of N1.52 a1.60 ab79.61 ab85.84 ab
TAL 169+ 50 kg/hm2 of P1.53 a1.62 a81.48 a86.25 ab
Tab.7  Effect of inoculation, N, P and intercropping (sorghum/cowpea) on tannin content and protein digestibility (%) of rain fed cowpea seeds growing for two consecutive seasons
1 Abd El Lattif E M (1997). Cowpea (Vigna unguiculata L. Walp) yield and seed macronutrient content as affected by combined nitrogen and sulfur applications. Egypt J Physiol Sci , 21(2): 129–138
2 Abdelgani M E, Elsheikh E A E, Mukhtar N O (1999). The effect of Rhizobium inoculation and chemical fertilization on seed quality of fenugreek seeds. Food Chem , 64(3): 289–293
doi: 10.1016/S0308-8146(98)00098-3
3 Ahmed E I A (1998). Effect of intercropping and inoculation with Rhizobium on growth, yield and seed quality of faba bean. Dissertation for the Master Degree , Shambat: University of Khartoum
4 Altieri M A (1999). The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ , 74(1-3): 19–31
doi: 10.1016/S0167-8809(99)00028-6
5 Anon (2006) Agricultural Statistics Administration, Ministry of Agriculture and Forestry, Sudan
6 AOAC (1995) Official methods of analysis, 16th ed. Washington, DC: Association of Official analytical chemistry
7 Azraf-ul-Haq A, Ahmad R, Mahmood N, Tanveer A (2007). Performance of forage sorghum intercropped with forage legumes under different planting patterns. Pakistan Journal of Botany , 39(2): 431–439
8 Babiker E E, El Sheikh E A E, Osman A J, El Tiny A H (1995). Effect of nitrogen fixation, nitrogen fertilization and viral infection on yield, tannin and protein content and in vitro protein digestibility of faba bean. Plant Foods Hum Nutr , 47(3): 257–263
doi: 10.1007/BF01088334
9 Babiker E E, El Tinay A H (1993). Effect of soaking in water or in sodium carbonate on tannin content and in vitro protein digestibility of sorghum cultivars. Int J Food Sci Technol , 28: 389–395
10 Bloem A A, Barnard R O (2000). Spatial variability of nitrate nitrogen in soil during the growing season of maize, cowpea and soybean. South African Journal of Plant and Soil , 17(3): 128–132
11 Corre-Hellou G, Fustec J, Crozat Y (2006). Interspecific competition for soil N and its interaction with N-2 fixation, leaf expansion and crop growth in pea-barley intercrops. Plant and Soil , 282(1-2): 195–208
doi: 10.1007/s11104-005-5777-4
12 Creamer N G, Baldwin K R (2000). An evaluation of summer cover crops for use in vegetable production systems in North Carolina. HortScience , 35(4): 600–603
13 Dahmardeh M, Ghanbari A, Syasar B, Ramrodi M (2009). Intercropping maize (Zea mays L.) and cow pea (Vigna unguiculata L.) as a whole-crop forage: Effects of planting ratio and harvest time on forage yield and quality. J Food Agric Environ , 7(2): 505–509
14 Desai D T, Khistria M K, Akbari K N (2001). Effect of NP fertilization and biofertilizers on yield, quality and nutrient uptake by cowpea. Advances in Plant Sciences , 14(2): 571–576
15 El Hadi E A, Elsheikh E A E (1999). Effect of Rhizobium inoculation and nitrogen fertilization on yield and protein content of six chickpea (Cicer arietinum L.) cultivars in marginal soils under irrigation. Nutr Cycl Agroecosyst , 54(1): 57–63
doi: 10.1023/A:1009778727102
16 Elsheikh E A E (2001). Effect of inoculation with Rhizobium on the seed chemical and physical properties of legumes. Asp Appl Biol , 63: 151–163
17 Elsheikh E A E, Ahmed E I A (2000). A note on the effect of intercropping and Rhizobium inoculation on the seed quality of faba bean (Vicia faba). University of Khartoum. J Agric Sci , 8: 171–172
18 Elsheikh E A E, Elzidany A A (1997a). Effect of Rhizobium inoculation, organic and chemical fertilizers on proximate composition, in vitro protein digestibility (IVPD), tannin and sulphur content of faba beans. Food Chem , 59(1): 41–45
doi: 10.1016/S0308-8146(96)00046-5
19 Elsheikh E A E, Elzidany A A (1997b). Effects of Rhizobium inoculation, organic and chemical fertilizers on yield and physical properties of faba bean seeds. Plant Foods Hum Nutr , 51(2): 137–144
doi: 10.1023/A:1007937614660 pmid:9527348
20 Elsheikh E A E, Ibrahim K A (1999). The effect of Bradyrhizobium inoculation on yield and seed quality of guar (Cyamopsis tetragonoloba L.). Food Chem , 65(2): 183–187
doi: 10.1016/S0308-8146(98)00192-7
21 Elsheikh E A E, Mohamedzein E M M (1998a). Effect of Bradyrhizobium, VA mycorrhiza and fertilisers on seed composition of groundnut. Ann Appl Biol , 132(2): 325–330
doi: 10.1111/j.1744-7348.1998.tb05207.x
22 Elsheikh E A E, Mohamedzein E M M (1998b). Effects of biological, organic and chemical fertilizers on yield, hydration coefficient, cookability and mineral composition of groundnut seeds. Food Chem , 63(2): 253–257
doi: 10.1016/S0308-8146(97)00223-9
23 Elsheikh E A E, Salih S S M, Elhussein A A, Babiker E E (2009). Effects of intercropping, Bradyrhizobium inoculation and chicken manure fertilisation on the chemical composition and physical characteristics of soybean seed. Food Chem , 112(3): 690–694
doi: 10.1016/j.foodchem.2008.06.037
24 Fan F, Zhang F, Song Y, Sun J, Bao X, Guo T, Li L (2006). Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant Soil , 283(1-2): 275–286
doi: 10.1007/s11104-006-0019-y
25 Fukai S, Trenbath B R (1993). Processes determining intercrop productivity and yields of component crops. Field Crops Res , 34(3-4): 247–271
doi: 10.1016/0378-4290(93)90117-6
26 Ibrahim K A, Elsheikh E A E, Babiker E E (2008). Bradyrhizobium inoculation and chicken manure or sulphur fertilization of hyacinth bean (Dolichos hyacinth L.): Changes in physical characteristics and chemical composition of the seeds. Australian Journal of Basic and Applied Sciences , 2(3): 605–616
27 Joshi S S, Thorve P V, Nagre K T (1989). Effect of Rhizobium and nitrogen on yield and quality of groundnut and soybean. PKV Res J , 13(2): 152–155
28 Khan S M, Bhat M A, Qayoom S, Shah M H, Sidiqque M (2002). Performance of maize (Zea mays) and cowpea (Vigna unguiculata) intercropping system under Kashmir conditions. Plant Archives , 2(2): 229–231
29 Kishan S, Rathore S V S, Ganeshamurthy A N, Singh D R, Swaroop K (2001). A study on pod, shoot, yield and dry matter production of vegetable cowpea (Vigna unguiculata Walp.) as affected by phosphorus, potash and Rhizobium. Vegetable Science , 28(2): 190–191
30 Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009). Mixing plant species in cropping systems: concepts, tools and models; A review. Agronomy for Sustainable Development , 29(1): 43–62
doi: 10.1051/agro:2007057
31 Mohamedzein E M M (1996). Effects of Bradyrhizobium and Vesicular Arbuscular Mycorrhizal (VAM) inoculation on symbiotic properties, yield and seed quality of groundnut. Dissertation for the Master Degree , Shambat: University of Khartoum
32 Mpairwe D R, Sabiiti E N, Ummuna N N, Tegegne A, Osuji P (2002). Effect of intercropping cereal crops with forage legumes and source of nutrients on cereal grain yield and fodder dry matter yields. African Crop Science Journal , 10: 81–97
33 Mustafa M A, Gamar Y (1971). The adsorption and desorption of diurnal and fluometuron by soils. African Soils , 10: 105–113
34 Neumann A, Schmidtke K, Rauber R (2007). Effects of crop density and tillage system on grain yield and N uptake from soil and atmosphere of sole and intercropped pea and oat. Field Crops Res , 100(2-3): 285–293
doi: 10.1016/j.fcr.2006.08.001
35 Obied K A I (2003). Effects of Bradyrhizobium, chicken manure, sulphur and their residual effect on nodulation, growth, yield and seed quality of soybean and hyacinth bean. Dissertation for the Doctoral Degree , Shambat: University of Khartoum
36 Olowe V I O, Adeyemo A Y (2009). Enhanced crop productivity and compatibility through intercropping of sesame and sunflower varieties. Ann Appl Biol , 155(2): 285–291
doi: 10.1111/j.1744-7348.2009.00340.x
37 Price M L, Van Scoyoc S, Butler L G (1978). A critical evaluation of vanillin reaction as an assay for tannin in sorghum grain. J Agric Food Chem , 26(5): 1214–1218
doi: 10.1021/jf60219a031
38 Salih S S M (2002). Symbiotic nitrogen fixation and chicken manure fertilization in soy bean/ sorghum intercropping system. Dissertation for the Doctoral Degree , Shambat: University of Khartoum.
39 Saunders R M, Connor M A, Booth A N, Bickoff E M, Kohler G O (1973). Measurement of digestibility of alfalfa protein concentrates by in vivo and in vitro methods. J Nutr , 103(4): 530–535
pmid:4571427
40 Singh R V, Singh R R (1990). Uptake of N, P and K by guar (Cyamopsis tetragonoloba L.) as influenced by nitrogen (with and without seed inoculation), P and seeding rates under rainfed conditions. Annals of Agricultural Research , 11: 329–332
41 Vandermeer J, van Noordwijk M, Anderson J, Ong C, Perfecto I (1998). Global change and multi-species agroecosystems: concepts and issues. Agric Ecosyst Environ , 67(1): 1–22
doi: 10.1016/S0167-8809(97)00150-3
42 Zegada-Lizarazu W, Izumi Y, Iijima M (2006). Water competition of intercropped pearl millet with cowpea under drought and soil compaction stresses. Plant Prod Sci , 9(2): 123–132
doi: 10.1626/pps.9.123
[1] Limin SUN, Chunjie LI, Ping HE, Mengchao LIU, Jinghui HU. Long-term application of K fertilizer and straw returning improve crop yield, absorptive capacity of K, and soil nutrient natural supplying capacity in North China[J]. Front Agric Chin, 2011, 5(4): 563-569.
[2] Junhua ZHANG, Wei HUANG, Fenglu ZHANG, Lifeng ZHANG, . Root distributions in tillage layers and yields of pumpkin and oil sunflower in an intercropping system[J]. Front. Agric. China, 2009, 3(4): 388-396.
[3] Junhua ZHANG, Wei HUANG, Fenglu ZHANG, Lifeng ZHANG. Ecological effect analysis of pumpkin and oil sunflower intercropping in arid area of northwest Hebei Province: I. moisture analysis[J]. Front Agric Chin, 2009, 3(3): 284-290.
[4] XU Huaqin, XIAO Runlin, SONG Tongqing. Effects of different fertilization on microbial biomass carbon from the red soil in tea garden[J]. Front. Agric. China, 2008, 2(4): 418-422.
[5] ZHENG Weiwei, CHEN Feng, ZHAI Heng, XU Yuehua, ZHANG Jing. Interactive effects of organic fertilizer, CaSO4 and amino acid Ca on Fuji apple in Burozem soil in China[J]. Front. Agric. China, 2007, 1(4): 460-467.
[6] Jie PENG,Jiaheng SHEN. Fertilization in Brassica campestris ssp. pekinensis and its duration of each stage[J]. Front. Agric. China, 2007, 1(1): 62-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed